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Abstract—We consider the spatial restricted circular three-body problem in the nonresonant case. The
massless body (satellite) is assumed to have a large sail area and, therefore, the light pressure is taken into
account. We study the evolution of the satellite orbit based on Gauss’s scheme: the averaged equations
of motion are investigated in Keplerian phase space, when a Keplerian ellipse with its focus in the main
body (Sun) is taken as an unperturbed orbit located inside a sphere whose radius is equal to the orbital
radius of the outer planet (inner problem). An investigation of the averaged model in the classical case,
where the light pressure is neglected, is known to run into considerable difficulties both in calculating the
averaged force function and in analyzing the evolving orbits. We have shown for the first time that the twice-
averaged force function admits of an explicit analytical representation via hypergeometric (generalized
hypergeometric) functions expandable into convergent power series based on the application of Parseval’s
formula. We have also shown that the averaged equations of motion including the additional influence of
light pressure are Liouville-integrated (we have three independent first integrals in involution). We have
investigated, at fixed values of the Lidov–Kozai integral, the stationary regimes of oscillations in the case
of low values of the satellite’s unperturbed semimajor axis (Hill’s case), their bifurcation as a function of
the light pressure coefficient δ. In the plane of Keplerian elements e and ω we have constructed the phase
portraits of the oscillations at various values of the light pressure coefficient. The portrait rearrangement
due to both equilibrium position bifurcations and separatrix splitting is described. The separatrix splitting is
shown to reverse the direction of evolution of the argument of pericenter ω in the case of rotational motions.
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INTRODUCTION

The light pressure is of considerable importance
in calculating the parameters of the motion of celes-
tial objects with a large frontal area-to-mass ratio.
Musen (1960) and Parkinson et al. (1960) were the
first to be faced with the necessity to take into ac-
count this effect in their calculations related to the
Vanguard I satellite, when it was required to also
take into account the light pressure on the satellite
to explain the orbital degradation. The light pressure
played a major role in investigating the motion of
the Echo 1, Echo 2, and PAGEOS balloon satellites,
to which a number of papers are devoted. Among
them we should mention the paper by Kozai (1961),
where the shadow equation was solved, the paper by
Ferraz-Mello (1964), where it was proposed to take
into account the satellite’s entry into the shadow by
introducing the shadow function, and the papers by
Vashkov’yak (1974, 1976), where it was proposed to
calculate the shadow function in the form of a series

*E-mail: a.dobroslavskiy@gmail.com

in Legendre polynomials and to express it via orbital
elements, as a result of which the secular and long-
period perturbations of the orbital elements under
the influence of light pressure were obtained. The
influence of light pressure and the Earth’s shadow on
the evolution of Keplerian orbital elements in the first
approximation of the small-parameter method was
investigated in the monograph by Aksenov (1977).

Investigating the motion of objects with a large
sail area is particularly important in connection with
space debris moving in high orbits. For example,
in addition to the perturbations from zonal harmon-
ics, Krivov et al. (1995) considered the perturba-
tions from light pressure forces. The same problem,
but supplemented by the perturbations from electro-
magnetic forces, was considered by Hamilton and
Krivov (1996).

In August 2018 the Parker Solar Probe was
launched (Szabo 2018), with the study of the solar
corona being among its objectives. The Probe
corresponds in its parameters to objects with a large
frontal area-to-mass ratio.
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In particular, the averaging method, whose ap-
plications to the classical three-body problem were
analyzed in detail by Moiseev (1945), is used to in-
vestigate the orbits of the above-mentioned objects
on significant time scales. Using the ideas of the
averaging method, Bryant (1961) described a clear
change in the semimajor axis over the orbital period
of a satellite by taking into account the light pressure
and the shadow effect. He also showed that the semi-
major axis of the satellite orbit retains its unperturbed
value in the absence of a shadow. Lidov (1961, 1962)
described the orbital evolution of a planetary satellite
in terms of the elliptical three-body problem for Hill’s
case (the case of a small ratio of the unperturbed
semimajor axis of the satellite orbit to the radius of
the planetary orbit); the fall of the satellite to the
central body, when the orbital plane of the satellite
is perpendicular to the orbital plane of the perturb-
ing body, was described. Kozai (1962) derived an
approximate expression for the twice-averaged dis-
turbing force function in an asteroidal circular three-
body problem and calculated the critical orbital incli-
nations. Sidorenko (2018) investigated the eccentric
Lidov–Kozai effect, which can be interpreted as a
resonant effect. Aksenov (1967) derived an analytical
expression for the twice-averaged disturbing force
function in the circular three-body problem in the
form of a Fourier series whose coefficients are ex-
pressed via special functions written as quadratures.
This author gave a justification for Gauss’s averaging
method, which replaces the procedure of averaging
over the mean anomaly of the planet’s motion by a
uniform smearing of the planet’s mass over its or-
bit. Aksenov (1979a, 1979b) investigated the plane
restricted elliptical three-body problem by the twice-
averaging method and studied the evolution of the
trajectories of a satellite and, in particular, described
the trajectories of its fall to the central body. The
topology of motions in the averaged circular three-
body problem (inner problem) was studied numeri-
cally in the remarkable paper by Vashkov’yak (1981).

Note also that the averaging method is effi-
ciently used in problems of the rotational motions
of satellites in evolving orbits as well: averaging is
used in Tikhonov et al. (2017) and Aleksandrov and
Tikhonov (2020) to investigate the stability of the
programmed rotational motion of a satellite around
its center of mass in an evolving orbit. The method of
Lyapunov functions in combination with the method
of averaging the equations of rotational motion for a
satellite was efficiently used to justify the asymptotic
stability of the motion being stabilized (Aleksandrov
and Tikhonov 2020). Amelkin (2019) determined the
mean displacement of Mercury’s perihelion in a plane
planetary problem by the averaging method.

Previously, we investigated the three-body prob-
lem with light pressure in the plane elliptical three-
body problem (Dobroslavskiy and Krasilnikov 2018).
Unfortunately, when writing the light pressure force
function, we made a mistake 1 and, as a consequence,
the superfluous equilibria e = const and ω = π/2 ap-
peared; the remaining results changed little. In the
next paper (Dobroslavskiy and Krasilnikov 2020) de-
voted already to the four-body (Earth–Moon–Sun–
Earth satellite) problem including the light pressure,
we constructed the phase portraits of the oscillations
in Keplerian orbital elements and studied the rear-
rangement of the phase portraits at various values
of the light pressure coefficient. In these papers the
effect of entry into the Earth’s shadow was neglected,
because at a semimajor axis of the elliptical satellite
orbit comparable to or exceeding that for the Moon
the mean time of the satellite’s stay in the shadow is
∼0.62% in one revolution (Dobroslavskiy 2020).

The goal of this paper is to investigate the evo-
lution of the spatial orbits of a close stellar satellite
(solar probe) by taking into account the perturbations
from an outer planet (Jupiter) and solar light pressure.

STATEMENT OF THE PROBLEM

Consider a circular spatial restricted three-body
problem with light pressure forces Fλ. Suppose that
a massless body (satellite) P , having a large surface
area-to-mass ratio, is in the gravitational field of two
massive bodies moving relative to each other in a
circular orbit of radius rJ ; the central body S (Sun)
has a mass mS and acts on the satellite with a force
FS , the second body J (Jupiter) of mass mJ exerts a
perturbing effect with a force FJ . We assume that the
unperturbed trajectory of the satellite is a Keplerian
ellipse with its focus at S whose plane Π forms an
angle i with the plane of motion Π0 of the attractive
bodies (Fig. 1).

Note that in the classical case, where the light
pressure on the satellite is negligible, the problem was
studied in detail in the paper by Vashkov’yak (1981).
The goal of our paper is to describe the new effects in
the averaged motion of the satellite produced by the
light pressure.

Let us introduce a heliocentric coordinate system
with the center at S. We will direct the Sx axis to
the point of vernal equinox, SN is the line of nodes of
the satellite orbit, the remaining axes forming a right-
handed coordinate system are not specified in Fig. 1.
Let r be the radius vector of body P and rJ be the
radius vector of body J .

Let Ω be the longitude of the ascending node of the
unperturbed satellite orbit in plane Π0, e and ω be the

1Prof. N.I. Amelkin kindly pointed to it.
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Fig. 1. Unperturbed trajectories of celestial bodies. Angular variables.

eccentricity and argument of pericenter of this orbit,
λJ is the longitude of body J , and λ is the longitude of
body P in plane Π0.

Consider the “inner” version of the three-body
problem, where body P moves inside a sphere of
radius rJ :

a(1 + e) < rJ .

Here, a is the semimajor axis of the unperturbed
satellite orbit.

Let us write the expression for the perturbed force
function of the problem:

R = RJ +RS . (1)

Here, RJ is the force function of the gravitational
effect from body J , which is

RJ = fmJ

(
1

Δ
− (rJ , r)

r3J

)
, (2)

Δ = rJ

√
1− 2

(
r

rJ

)
cos γ +

(
r

rJ

)2

,

where f is the gravitational constant, γ is the angle
between rJ and r,

cos γ = cos (λJ − Ω) cos (ω + ν) (3)

+ sin (λJ − Ω) sin (ω + ν) cos i,

ν is the true anomaly in the motion of the satellite
along the unperturbed orbit.

The function (2) can be expanded into a series
in Legendre polynomials to terms independent of the
coordinates of body P :

RJ =
fmJ

rJ

∞∑
n=2

(
r

rJ

)n

Pn(cos γ).

The force function of the light pressure on a spher-
ical satellite in a circular orbit can be represented as

RS = −δr20
r

.

Here, δ > 0 is the light pressure coefficient (Ak-
senov 1977)

δ =
κπρ2E0

mc
, (4)

ρ is the satellite’s surface radius, m is its mass, κ

is the reflection coefficient of the satellite’s surface,
which is 1 for total absorption and 1.44 for diffuse
scattering. E0 is the solar constant defined as the
light flux at distance r0 (1 AU) from the Sun (approx-
imately 1367 W m−2), and c is the speed of light in a
vacuum.

Then, given the expressions for RJ and RS , the
force function of the problem takes the form

R = −δr20
r

+
fmJ

rJ

∞∑
n=2

(
r

rJ

)n

Pn(cos γ). (5)
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AVERAGING THE FORCE FUNCTION

The longitude λ of body P in the ecliptic plane
is known to be described by the formulas (Ak-
senov 1967)

cos λ =
cos (ν + ω)√

1− sin2 i sin2 (ν + ω)
,

sinλ =
sin (ν + ω) cos i√

1− sin2 i sin2 (ν + ω)
.

Then, (3) can be rewritten as

cos γ = cos (λJ − Ω− λ) (6)

×
√

1− sin2 i sin2 (ν + ω).

To transform Eq. (5) to a form convenient for aver-
aging, we will use the addition theorem for Legendre
polynomials. Given (6), we will have

Pn(cos γ) = Pn(0)Pn [sin i sin(ν + ω)] (7)

+ 2

n∑
k=1

(n− k)!

(n+ k)!
P (k)
n (0)P (k)

n [sin i sin(ν + ω)]

× cos k (λJ − Ω− λ).

Here, P
(k)
n are associated Legendre functions,

which can be represented at zero as

P (k)
n (0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(n−k)/2 (n+ k)!

2n
(
n−k
2

)
!
(
n+k
2

)
!
,

n− k = 2m, m ∈ Z

0, n− k = 2m+ 1, m ∈ Z.

Next, we assume that the frequency λ̇J does not
resonate with the frequency n of the unperturbed
satellite motion. Averaging (5) over the longitude
λJ of body J , we will obtain, given (3), (7), and
the equality P2n+1(0) = 0, the once-averaged force
function R∗ of the problem:

R∗ =
1

2π
(8)

×
2π∫
0

[
−δr20

r
+

fmJ

rJ

∞∑
n=2

(
r

rJ

)n

Pn(cos γ)

]
dλJ

= −δr20
r

+
fmJ

rJ

∞∑
n=1

(
r

rJ

)2n

× P2n (0)P2n [sin i sin (ν + ω)] .

Expression (8) coincides, to within the light pres-
sure term, with the force function of a Gaussian ring
(Duboshin 1961), which was first established in Ak-
senov (1967).

Let us now average the derived expression (8) over
the true anomaly ν of body P . This requires writing
the expression for r via the true anomaly ν using
the formulas for unperturbed motion and substituting
it into (8). Our calculations show that the func-
tion R∗ contains a product of two functions periodic
in ν under the summation sign: (1 + e cos ν)−2n and
P2n(sin i cos θ), where θ = ν + ω − π/2. The main
technical problem of any studies is to calculate the
mean of this product. Modern software packages,
such as Wolfram Mathematica and Maple, do not
cope with this problem. For this purpose, we will use
Parseval’s formula (Gradshteyn and Ryzhik 1963)
describing the principal (secular) term of the product
of two Fourier series:

1

2π

2π∫
0

(1 + e cos ν)−2n (9)

× P2n (sin i cos θ)dν

=
a0α0

4
+

1

2

∞∑
m=1

(amαm + bmβm) .

Here, {a0, am, bm} are the coefficients of the
Fourier function (1 + e cos ν)−2n and {α0, αm, βm}
are the coefficients of the Fourier function
P2n(sin i cos θ). The expressions for these coefficients
are

a0 =
1

π

2π∫
0

(1 + e cos ν)−2ndν (10)

=
2

(1− e)2n
F2,1

(
1

2
, 2n; 1;

2e

e− 1

)
,

am =
2

(1− e)2n

× F
reg
3,2

(
1

2
, 1, 2n; 1 −m, 1 +m;

2e

e− 1

)
,

bm = 0,

α0 =
1

π

2π∫
0

P2n(sin i cos θ)dν (11)

= 2P2n(0)P2n(cos i),

αm =

⎧⎪⎪⎨
⎪⎪⎩
2 cos

(mπ

2
−mω

) (2n −m)!

(2n +m)!

× P
(m)
2n (0)P

(m)
2n (cos i), m ≤ 2n

0, m > 2n,

βm = 0.
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As a result, the twice-averaged perturbed force
function takes the form

R∗∗ =
1

2π

2π∫
0

R∗dν = − δr20
a(1− e2)

(12)

+
fmJ

rJ

∞∑
n=1

[
a(1− e2)

rJ

]2n

× P2n (0) I2n(i, e, ω).

Here,

I2n(i, e, ω) =
1

2π

2π∫
0

(1 + e cos ν)−2n (13)

× P2n (sin i cos θ) dν =
1

(1− e)2n

×
[
P2n(0)P2n(cos i)F2,1

(
1

2
, 2n; 1;

2e

e− 1

)

+ 2

2n∑
m=1

F
reg
3,2

(
1

2
, 1, 2n; 1 −m, 1 +m;

2e

e− 1

)

× cos
(mπ

2
−mω

) (2n −m)!

(2n +m)!
P

(m)
2n (0)P

(m)
2n (cos i)

]
,

F2,1 is a hypergeometric function and F
reg
3,2 is a gener-

alized regularized hypergeometric function,

F
reg
3,2 (α1, α2, α3;β1, β2; z)

=

∞∑
k=0

(α1)k (α2)k (α3)k
Γ (β1 + k) Γ (β2 + k)

zk

k!
,

where Γ(a) is the gamma function and (x)k is the
Pochhammer symbol:

(x)k =
Γ(x+ k)

Γ(x)
.

Formula (13) was validated numerically—the re-
sults of our calculations of the left and right parts of
the formula coincide in all significant figures for the
following Cartesian product of the parameters: e from
0 to 1 with a 0.1 step, ω from 0 to 2π with a π/6 step,
i from −π/2 to π/2 with a π/6 step, and n from 1 to
15 with a 1 step.

Expressions (12) and (13) for the averaged force
function can be expanded into a Fourier series in ω.
Our calculations show that this series is

R∗∗ = − δr20
a(1− e2)

(14)

+
fmJ

rJ

∞∑
n=1

[
B2n(e)P2n(0)P2n(cos i)

× F2,1

(
1

2
, 2n; 1;

2e

e− 1

)

+ (−1)n

( ∞∑
k=n

B2k(e)A
(2k)
2n (e, cos i)

)
cos 2nω

]
.

Here,

B2k(e) =
a2k(1 + e)2k

r2kJ
P2k(0),

A
(2k)
2n (e, cos i)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2F
reg
3,2

(
1

2
, 1, 2k; 1 − 2n, 1 + 2n;

2e

e− 1

)

×(2k − 2n)!

(2k + 2n)!
P

(2n)
2k (0)P

(2n)
2k (cos i),

1 ≤ n ≤ k

0, n > k.

When deriving Eq. (14), we used the well-known

equality P
(2n+1)
2k (0) = 0 nulling the terms containing

sin 2nω.
Here, it should be noted that an analytical repre-

sentation of the twice-averaged force function for the
problem in the form of a Fourier series in ω was first
derived by Aksenov (1967). This author expressed the
coefficients of this series via some unknown special
functions in the form of quadratures. Unfortunately,
the quadratures were not expanded into convergent
series; the author restricted himself to the descrip-
tion of the recurrence relations for the quadratures.
Therefore, it is very difficult to use the results from
Aksenov’s paper in analytical studies.

AVERAGED EQUATIONS OF MOTION

The averaged equations in osculating variables
(Lagrange equations) are (Duboshin 1968)

da

dt
= 0, (15)

de

dt
= −

√
1− e2

na2e

∂R∗∗

∂ω
,

di

dt
=

cot i

na2
√
1− e2

∂R∗∗

∂ω
,

dΩ

dt
=

csc i

na2
√
1− e2

∂R∗∗

∂i
,

dω

dt
=

√
1− e2

na2e

∂R∗∗

∂e
− cot i

na2
√
1− e2

∂R∗∗

∂i
.

The first integrals of the system are described by the
equalities

a = c0, (1− e2) cos2 i = c1, R∗∗ = c2.
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The second of these integrals is commonly called the
Lidov–Kozai integral. Note that the integral was first
derived by von Zeipel (1910) and, subsequently, by
Moiseev (1945). Using it, we eliminate the angle i,

i = arccos

(
±
√

c1
1− e2

)

from the averaged force function R∗∗ and derive a
reduced system of equations with one degree of free-
dom:

de

dt
= −

√
1− e2

na2e

∂R̂

∂ω
,

dω

dt
=

√
1− e2

na2e

∂R̂

∂e
. (16)

The force function R̂ = R̂ (e, ω) is the result of elimi-
nating the angle i. Obviously, the energy integrals in
Eqs. (16) is R̂ (e, ω) = const.

A constraint on the range of variation of the os-
culating orbital eccentricity follows from the Lidov–
Kozai integral: 0 ≤ e ≤

√
1− c1.

QUALITATIVE ANALYSIS

To perform a qualitative analysis, first of all note
that the manifolds e = 0 and

√
1− c1 are integral in

the reduced system of equations (16). Indeed, the
derivative of R̂ with respect to ω is

∂R̂

∂ω
= −fmJ

rJ

∞∑
n=1

(−1)n

× 2n

( ∞∑
k=n

B2k(e)A
(2k)
2n (e, cos i)

)
sin 2nω.

It becomes zero at e =
√
1− c1, because, in this case,

cos i = ±1 and A
(2k)
2n (e,±1) = 0. The integrality of

the manifold e = 0 follows from the expansion of this
derivative into a series in e:

∂R̂

∂ω
= −fmJ

rJ

∞∑
n=1

(−1)n

× 4n

{ ∞∑
k=n

(
a

rJ

)2k (2k − 2n)!

(2k + 2n)!

× P2k(0)P
(2n)
2k (0)P

(2n)
2k (cos i)

×
[

1

Γ(1− 2n)Γ(1 + 2n)
+

(
2k

Γ(1− 2n)Γ(1 + 2n)

− 2k

Γ(2− 2n)Γ(2 + 2n)

)
e+O(e2)

]}
sin 2nω.

Indeed, the coefficients at e0 and e1 become zero, be-
cause the integers m = 0,−1,−2, . . . are first-order
poles of the gamma function Γ(z). As a consequence,
the derivative is equal to zero at e = 0.

Hence we get

∂R̂

∂ω
∼ e2 sin 2ω.

Note that this relation was previously derived by
Ziglin (1976) using a special transformation of the
averaged force function without an explicit descrip-
tion in a finite form and represented as a quadrature
in mean longitude of point P .

Let us expand the reduced function R̂ (e, ω) into
a series in (a/rJ) and retain the terms to the second
order inclusive:

R̂(2) = − δr20
a (1− e2)

− fmJa
2

8r3J
(17)

× 1√
1− e2

{[
6
(
1− e2

)3/2
+ 9e2 − 6

]

×
(
c1 − 1

e2
+ 1

)
cos 2ω − 3c1 − e2 + 1

}
.

The equations of stationary points written to terms
of the fifth order of smallness in e are then brought to
the form

∂R̂(2)

∂e
=

{
− 2δ

a
(18)

+
a2fmJ

8r3J

[
− 9

2
(c1 − 1) cos 2ω + 3c1 + 1

]}
e

+

{
− 4δ

a
− a2fmJ

16r3J
[6(2c1 + 1) cos 2ω

− 9c1 − 1]

}
e3 + · · · = 0,

∂R̂(2)

∂ω
=

3a2fmJ

16r3J
[3(c1 − 1)e2

+ (2c1 + 1)e4 + . . . ] sin 2ω = 0.

The set of stationary solutions is e = e(δ, ω, c1)
and ω = {0, π/2}. The following results take place for
the parameters a and e from the ranges 0 � a/rJ �
0.5 and 0 � e < 1. The e(δ, ω, c1) equilibrium curves
were constructed at different values of ω and fixed
c1 (Fig. 2) for the Sun–Jupiter–satellite system,
when a/rJ = 0.384, mJ = 0.00095, rJ = 5.204 AU,
c1 = 0.3, 0 ≤ e ≤ 1, and 0 ≤ δ ≤ 6× 10−9. Some
reference points Aj with coordinates (δj , ej) are spec-
ified in this figure: A1 = (0, 0.3998), A2 = (0.054 ×
10−9, 0.83666), A3 = (1.15 × 10−9, 0.6432), A4 =

(1.274 × 10−9, 0.83666), A5 = (1.365 × 10−9,
0.7683), and A6 = (5.102 × 10−9, 0).
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Fig. 2. Diagram of equilibria at c1 = 0.3.
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Retaining more e terms in (18) changes little the
picture: we numerically compared the results ob-
tained with the results of our calculations of Eqs. (18)
containing the terms up to the seventh order of small-
ness in e inclusive and showed that the equilibrium
curves in Fig. 2 slightly shifted in the direction of
increasing eccentricity e.

For stationary values of e and ω the longitude of
the ascending node Ω is found by the quadrature from

the corresponding equation of system (16). It can be
seen that

Ω = Ω0 −
2
√
c1

na2
sgn(cos i)

∂R̂

∂c1
t.

Thus, the elliptical orbits with their focus in the
main attractive body having a constant inclination i
with respect to the plane of motion of the main bodies
precessing slowly and uniformly around the normal to
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Fig. 4. Phase portrait at δ = 0.5× 10−9.

this plane correspond to the stationary solutions of
Eqs. (16). At the same time, the orbital semimajor
axis coincides with the line of nodes SN (ω = 0) in
the entire time of motions or is perpendicular to it
(ω = π/2).

A saddle–node bifurcation corresponds to point
A5, the unstable equilibria are highlighted by the
dashed line. The real equilibria disappear at pointsA2,
A4, and A6, because the equilibrium curves go to the
imaginary regions e >

√
1− c1 or e < 0 (the entire

equilibrium curve at ω = π/2 containing the pieces
belonging to the the imaginary region e >

√
1− c1 of

possible motions is shown in Fig. 2). Two identical
precessing elliptical orbits with their focus in the Sun,
but with different arguments of pericenter correspond
to point A3. The equilibrium of the classical three-
body problem, when δ = 0, corresponds to point A1.

It follows from Fig. 2 that in the small inter-
val (δ1, δ2) = (0, 0.054 × 10−9) we have one stable
equilibrium position (ω = π/2). In the interval
δ ∈ (δ2, δ4) = (0.054× 10−9, 1.274× 10−9) a second
stable equilibrium position appears for ω = 0. In the
interval δ ∈ (δ4, δ5) = (1.274 × 10−9, 1.365 × 10−9)
another unstable equilibrium appears on the ω = π/2
curve. At the bifurcation point A5 the two equilibria
on the ω = π/2 curve merge into one and then vanish.
So, only one stable equilibrium belonging to the
ω = 0 curve remains in the interval δ ∈ (δ5, δ6) =

(1.365 × 10−9, 5.102 × 10−9), while at δ ∈ (δ6,+∞)
the equilibrium positions disappear completely.

For all of the listed δ intervals we constructed the
phase portraits of the oscillations shown in Figs. 3–9
by numerically integrating Eqs. (16). The results of
our numerical integration were confirmed by the con-
struction of level lines for the integral R̂(2). Since the
Fourier series for R̂ contains only the even harmonics
cos 2nω, the integral R̂ = h curves are symmetric
relative to ω = π/2. The phase portrait in Fig. 3 was
constructed for the parameters c1 = 0.3, a = 2 AU,
and δ = 0 and qualitatively coincides with the phase
portrait in Vashkov’yak (1981). This picture is qual-
itatively retained for any δ from the interval (δ1, δ2).
Here, we can see a center-type stationary point with
coordinates e = 0.2472 and ω = π/2. In region A
we observe librational motions of the line of apsides,
while in region B the line of apsides executes a ro-
tational motion in the direction of increasing argu-
ment of pericenter. Two integral manifolds, e = 0 and√
1− c1, bounding the region of possible motions are

shown on the phase portrait. These integral manifolds
are also specified on other phase portraits.

Two center-type stationary points for ω = 0 and
π/2 are present on the phase portrait in Fig. 4 con-
structed for the parameters c1 = 0.3, a = 2 AU, and
δ = 0.5 × 10−9 ∈ (δ2, δ4). In the neighborhood of
the stationary points we have librational motions; in
region B we have rotational motions in the direction
of increasing argument of pericenter. As δ increases,
we observe a vertical upward elongation of region A
until the upper point of this region touches the up-
per manifold e =

√
1− c1. The point of tangency,
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Fig. 5. Phase portrait at δ = 1.0352 × 10−9.
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Fig. 6. Phase portrait at δ = 1.1497 × 10−9.

which is an equilibrium on this manifold, bifurcates
as the parameter δ increases further and two separa-
trices (heteroclinic trajectories) correcting the lower
equilibria with the upper ones appear (Fig. 5). The
parameter δ = 1.0352 × 10−9 (see Fig. 5) is bifurca-
tional, because it leads to separatrix splitting. Each
of the two separatrices splits into a pair of curves
in such a way that the two newly appeared curves
from region A approach asymptotically (as t → ±∞)

the upper equilibria, forming a single curve bounding
the new libration region B (Fig. 6). The pair of the
extreme curves that appeared leftward and rightward
of region A in Fig. 5 retain the asymptotic approach
to the lower equilibria as t → ±∞, asymptotically
approaching the manifold e =

√
1− c1 (Fig. 6).

The described splitting of the separatrices gives
rise to an initially narrow and subsequently expanding
region of rotational motions when the argument of
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Fig. 7. Phase portrait at δ = 1.3× 10−9.
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Fig. 8. Phase portrait at δ = 2.88× 10−9.

pericenter ω decreases monotonically. Along these
trajectories the satellite orbit slowly rotates in its os-
culating plane in a direction opposite to the case of
δ = 0.

An additional unstable stationary point D located
near the integral manifold e =

√
1− c1 appears on

the phase portrait in Fig. 7 corresponding to δ =
1.3 × 10−9 ∈ (δ4, δ5). A further increase in δ leads to
the merging of the stable and unstable points at δ =

1.365 × 10−9 and their subsequent disappearance,
with the stationary point being retained on the second
equilibrium branch ω = 0 (Fig. 8, δ ∈ (δ5, δ6)).

For δ > δ6 the phase portrait of the oscillations is
shown in Fig. 9. It contains no stationary points;
we have a secular drift of the line of apsides in the
direction of decreasing argument of pericenter.

We showed that the terms of the fourth and sixth
orders of smallness in a/rJ in the reduced force func-
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Fig. 9. Phase portrait at δ = 5.5× 10−9.

tion R̂ have virtually no effect on the phase portrait
of the oscillations, slightly shifting the equilibrium
points along a vertical straight line and changing little
the bifurcation values of δ.

CONCLUSIONS

We considered the osculating elliptical motions of
an asteroid (solar probe) with an infinitesimal mass
around a star (Sun) under the action of two pertur-
bations: the gravitational attraction from an outer
planet (Jupiter) and the solar light pressure. We
used Gauss’s scheme for twice averaging the per-
turbed force function of the problem over the planet’s
longitude and the true anomaly of the satellite’s un-
perturbed motion. For the first time we have de-
rived an explicit analytical expression for the aver-
aged force function in the form of a Fourier series
whose coefficients are expressed via known special
functions. The analytical expression for the averaged
force function allows one to obtain any approximation
of the function in small parameter a/rJ quickly and
efficiently and to easily prove the integrality of some
manifolds, in particular, the integrality of the manifold
e =

√
1− c1 in the reduced system, which is also a

new result in the classical three-body problem.
An analysis of evolutionary motions showed that

the influence of solar light pressure is very signifi-
cant even at low values of the light pressure coef-
ficient, when δ ∼ 10−9: in the ranges 0 � a/rJ �
0.5 and 0 � e < 1 an additional branch of the family
of stationary motions e(δ) = const, ω = 0 appears, a

saddle–node bifurcation of equilibria is observed on
the branch for the traditional case of ω = π/2, the
real equilibria disappear when the family of stationary
points goes beyond the region of possible motions.

The phase portrait of the oscillations is compli-
cated significantly in comparison with the phase por-
trait of osculating motions in the classical circular
three-body problem. For instance, saddle points
appear near the manifold e =

√
1− c1 in the region

(δ4, δ5), separatrix splitting is observed for δ from the
interval (δ2, δ4), reversing the direction of evolution of
the argument of pericenter ω in the case of rotational
motions.

The specified values of the parameter δ are typical,
in order of magnitude, for the Parker Solar Probe.
Thus, the results obtained can be used to estimate
the parameters of motion when the light pressure on
a given probe is taken into account.
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