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Abstract—Interstellar dust (ISD) penetrates into the heliosphere due to the relative motion of the Sun
and the local interstellar medium (LISM). Inside the heliosphere and at the boundaries, where solar wind
interacts with the LISM, distribution of ISD is modified due to the action of the electromagnetic forces, the
solar gravitation and the radiation pressure. These forces make the distribution of the ISD particles in the
heliosphere inhomogeneous. In previous work we demonstrated the existence of singularities in the ISD
density distribution at 0.03–10 AU north and south with respect to the heliospheric current sheet. In this
paper we show that dispersion in the ISD velocity distribution strongly affects the singularities. Even small
values of dispersion have the drastic impact on the density distribution and smooth the high density layers
discovered previously.
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INTRODUCTION

The local interstellar medium (LISM) moves rel-
ative to the Sun with the speed ∼26 km/s (Witte
2004; McComas 2015). Besides the plasma and
neutral components, the LISM also contains dust
component (Mann 2010). Unlike the plasma parti-
cles, the neutral and dust particles can penetrate into
the heliosphere due to the relative motion. For ex-
ample, the mean free path of neutral hydrogen due to
charge exchange is ∼50−100 AU (Izmodenov et al.
2000), comparable with the characteristic size of the
heliosphere.

The first evidence for the existence of interstellar
particles in the heliosphere was the Lyman-α emis-
sion of interstellar neutrals (Bertaux and Blamont
1971). Direct measurements of the interstellar helium
atoms were obtained by the Ulysses/GAS instru-
ment (Witte 1992), and since the mean free path
of interstellar helium is much larger than the size
of the heliosphere, one can derive the macroscopic
parameters of the LISM from these measurements.
Nowadays, direct measurements of interstellar neu-
trals (hydrogen, oxygen and helium) are performed on
IBEX using the IBEX-Lo instrument (e.g., Moebius
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et al. 2009; Katushkina et al. 2015; Baliukin et al.
2017). On the spacecraft SOHO (SWAN instru-
ment) measurements of intensity and spectral char-
acteristics of the Lyman-α emission are continuing
(e.g., Quémerais et al. 2013). Various models of
the heliosphere are employed for the analysis of the
experimental data (e.g., Izmodenov and Alexashov
2015, 2020; Pogorelov et al. 2011; Zirnstein et al.
2016).

The ISD grains are solid grains with characteris-
tic sizes in the range of hundreds of nanometers to
microns (Mathis et al. 1977). Chemical composition
of ISD is carbonaceous materials and astronomical
silicates (Draine 2009). The mass fraction of ISD in
the LISM is about 1% (Mann 2010). The ISD grains
are charged positively as net effect of different phys-
ical processes such as photoelectron and secondary
electron emissions. The presence of nonzero electric
charge makes the trajectories of ISD more complex
than of interstellar neutrals (not taking charge ex-
change with protons into account).

It is difficult to detect ISD in the heliopshere be-
cause of presence of the interplanetary dust, which
is emitted from asteroids, comets and other large
objects in the Solar system. It is generally supposed
that in the undisturbed LISM the interstellar dust is
comoving with other components. This assumption
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was used in order to detect the ISD grains on Ulysses
(Grün et al. 1994). Moreover, the trajectory of
Ulysses went significantly out of the ecliptic plane
and thus it gave the opportunity to relatively easily
separate interstellar dust from interplanetary dust,
which is located principally in the ecliptic plane (e.g.,
zodiacal dust). Presence of ISD was also confirmed
in the measurements on board the Galileo (Altobelli
et al. 2005) and Cassini (Altobelli et al. 2007)
spacecraft.

The first models of the ISD distribution in the he-
liosphere were made by Bertaux and Blamont (1976)
and Levy and Jokipii (1976). They studied the dis-
tinct influence of the gravitational and electromag-
netic forces on the motion of the dust particles in
the heliosphere. The next wave of interest in the
ISD studying was associated with the Ulysses mea-
surements. Landgraf et al. (2000, 2003) analyzed
these measurements using the Monte-Carlo model-
ing. They considered the combined influence of the
gravitational, radiation pressure and electromagnetic
forces on the particles in presence of time-dependent
solar magnetic field. The ISD distribution and filtra-
tion of the dust grains by the magnetic field at the
heliospheric boundaries were explored by Czechowski
and Mann (2003), Alexashov et al. (2016). Slavin
et al. (2012) have built 3D model of the ISD distribu-
tion for two opposite phases of the heliospheric mag-
netic field (focusing and defocusing). It is also taken
account of the turbulence of the interstellar magnetic
field and dependence of the surface charge potential
on the heliocentric distance. Nowadays, the Monte-
Carlo method is often used for theoretical studies of
ISD. The descriptions and results of the modeling are
shown in Sterken at al. (2012, 2019), Strub et al.
(2015, 2019). These models are developed from the
earlier model of Landgraf et al. (2000) using advanced
numerical techniques and taking into account of the
newer measurements. Mishchenko et al. (2020)
applied a Lagrangian method (see Osiptsov 2000) to
discover singularities in the distribution of ISD in the
heliosphere. In the simplified stationary case when
the heliospheric current sheet is a plane coinciding
with the solar equatorial plane they demonstrated the
existence of density singularities where the number
density is infinite. They showed that the singular-
ities form several dense dust layers for each size of
the ISD particles on both sides of the current sheet.
These singularities have never been observed in the
previous papers studying the dust distribution in the
heliosphere by Monte-Carlo simulations because it
requires a computational grid with an extremely high
spatial resolution. In this paper we use a computa-
tional grid with cell size of 10−3 AU and for studying
local effects near density peculiarities—of 10−6 AU.

Mishchenko et al. (2020) used the assumption
that the ISD particles have identical velocities in the
LISM. Due to the fact that the ISD particles have
nonzero electric charge, they interact with the inter-
stellar magnetic field. Fluctuations of the magnetic
field lead to acceleration of the charged dust particles
(Hoang et al. 2012), that breaks the uniformity in
the ISD velocity distribution in the LISM and adds
some rather small dispersion. The goal of this paper
is to study the influence of dispersion in the velocity
distribution of ISD in the LISM on the emergence
of the density singularities in the heliosphere. Slavin
et al. (2012) also explore dispersion in the undis-
turbed LISM, but they do not study its influence on
the singularities, since the computational grid used is
quite coarse (5 AU for each direction).

DESCRIPTION OF THE MODEL

Mathematical Formulation of the Problem

For the description of the ISD motion in the he-
liosphere we use a kinetic approach. In this way
we should calculate the ISD distribution function
fd(t, r,v). The kinetic equation for fd(t, r,v) is:

∂fd
∂t

+ v · ∂fd
∂r

+ F · ∂fd
∂v

= 0, (1)

where F is the sum of forces acting on the dust
particles. On the right hand side of (1) we have zero,
because in the heliosphere one can neglect collisions
between dust grains and their interaction with plasma
protons and electrons (Gustafson 1994). In this ar-
ticle we consider the stationary model of the solar
magnetic field in the focusing phase, that is why the

kinetic equation solution is also stationary,
∂fd
∂t

= 0:

v · ∂fd
∂r

+ F · ∂fd
∂v

= 0. (2)

Equation (2) requires boundary conditions to ob-
tain a solution. In order to understand how the ISD
distribution is modified inside the region of supersonic
solar wind, we assume the ISD flow is undisturbed
out of the termination shock (TS)—the shock wave
that delimits the region of supersonic solar wind in the
model of interaction between solar wind and interstel-
lar medium. This helps to understand the modifica-
tion of the ISD distribution inside the TS as opposed
to that in the heliospheric interface (Alexashov et al.
2016). We consider the TS as a sphere with radius
rTS and formulate the boundary condition as:

fd(r,v)|r=rTS,v·en>0 = fTS(v), (3)

where fTS(v) is the ISD distribution function at the
TS and en is the interior unit normal to the sphere.
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Fig. 1. The coordinate system. The Sun is located at
O, the velocity of the LISM vISM is collinear to the Oy
axis. The Oz axis coincides with the solar rotation axis.
Spherical coordinates are introduced in the standard way.

Below we discuss the form of function fTS(v) in more
detail.

To complete the correct mathematical formulation
of the problem we should also set the boundary con-
dition in the velocity space:

fd(r,v)|v→∞ = 0. (4)

Note that each specific problem described by the
formulation (2)–(4) is determined by a specific ex-
pression for the force term F(r,v) and for the bound-
ary condition function fTS(v).

Force Analysis

Consider the Cartesian coordinate system as
shown in Fig. 1. Katushkina and Izmodenov (2019)
provided the analysis of forces acting on the ISD
particles. Four main forces act on the particles:
the gravitational force Fgrav, the radiation pressure
force Frad, the drag force Fdrag due to the interaction
of dust grains with protons, electrons and neutrals
and the electromagnetic force Fel. Estimates show
(Gustafson 1994) that in the heliosphere we can
neglect the drag force.

The expression for the gravitational force Fgrav is:

Fgrav = −GM�
r2

er, (5)

where G is the gravitational constant, M� is the mass
of the Sun.

rTS

Oz

y

Fig. 2. Computational domain is a square with the side

2r̂TS = 2
rTS

L1
described around the circumference of ra-

dius r̂ = r̂TS in the x̂ = 0 plane, where rTS is the distance
from the Sun to the TS. The cells of the computational
domain are rectangles Δŷ ×Δẑ.

Since Fgrav is parallel Frad and both are propor-
tional to r−2 it is convenient to introduce the param-
eter β:

β =
|Frad|
|Fgrav|

. (6)

In this paper for the sake of simplicity we consider
spherical particles. In this case β depends only on
the star characteristics and particle mass m (see e.g.,
Katushkina and Izmodenov 2019). Here we use the
β = β(m) curve from Sterken et al. (2012) (green
solid line in Fig. 14). The resulting expression for the
radiation pressure force is:

Frad = β
GM�
r2

er. (7)

The magnetic field lines are frozen in the solar
wind, that is why if we consider the reference frame
related to the solar wind, one can derive the ex-
pression for the electromagnetic force using relative
(with respect to the solar wind) velocity vrel of dust
particles:

Fel =
q

c0md
(vrel ×B) , (8)

where vrel = v − vp is the dust particle velocity with
respect to the solar wind, q is the particle charge, c0 is
the speed of light, md is the dust grain mass, vp is the
solar wind velocity, B is the solar magnetic field. The
particle charge is expressed through the surface po-
tential Ud and the radius a: q = Uda, and we consider
Ud as constant in the supersonic solar wind (Fig. 2
from Alexashov et al. 2016, Fig. 2 from Slavin et al.
2012). Out of the region of the supersonic solar wind
one should take account of the changes in value of
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surface potential, but it is beyond the scope of the

present work. The dust grain mass md =
4

3
ρdπa

3,

where ρd is the mass density of dust (here we consider
astronomical silicates). We further assume uniform
spherically symmetric solar wind: vp = vswer, and for
the solar magnetic field we use Parker’s model:

Br = ±BE

(rE
r

)2
,

Bφ = ∓BEΩrE

vsw

(rE

r

)
sin θ,

Bθ = 0, (9)

where BE is the averaged solar magnetic field magni-
tude at the Earth’s orbit, rE is the astronomical unit,
Ω is the angular velocity of solar rotation. The sign
± denotes the change in the polarity of the magnetic
field across the heliospheric current sheet (HCS).
Here for simplicity we assume a planar shape of the
HCS (plane Oxy in Fig. 1). In reality there is a non-
zero angle between the solar rotation axis and the
magnetic axis, so the HCS has the “ballerina skirt”
shape. Here we also assume that the heliospheric
magnetic field is stationary: that is, the HCS plane
is at rest and in the region z > 0 magnetic field com-
ponents Br < 0, Rϕ > 0 and vice versa. That is, we
ignore the 22-year solar cycle that leads to polarity
changes every 11 years, accompanied by changes in
the geometry of the HCS. In future we plan to expand
our model to the time-dependent magnetic field case.

Thus, the expression for F(r,v) is:

F(r,v) = (β − 1)GMs ·
er
r2

+
q

c0md
((v − vp)×B). (10)

Boundary Condition

Let us assume that in the LISM there is a flux
of the ISD particles with the average velocity vISM
and dispersion of the vz velocity component. The
interstellar magnetic field has spatial and temporal

inhomogeneties which act as sources for the accel-
eration of ISD particles (Hoang et al. 2012). This
acceleration is the reason for the variations in the
velocities of individual dust particles and, therefore,
appearance of dispersion in the ISD velocity distri-
bution. Below we demonstrate that relatively small
values of dispersion just of the vz velocity component
significantly influence the results. Then the expres-
sion for fTS(v) is:

fTS(v) = nISMδ(vx)δ(vy + vISM)

× 1

σz
√
2π

exp

(
− v2z
2σ2

z

)
, (11)

where δ is the Dirac delta-function, σz is the disper-
sion of the vz velocity component. For σz → 0 the
expression (11) degenerates into the singular distri-
bution function for the case when all dust particles
have the identical velocity vISM:

fTS(v) = nISMδ(vx)δ(vy + vISM)δ(vz), (12)

and the formulation of the problem is identical to the
one given by Mishchenko et al. (2020).

Slavin et al. (2012) take account of the dispersion
by addition of the supplementary velocity component,
lying in the plane, perpendicular to the direction of the
interstellar magnetic field. This supplementary veloc-
ity component has constant absolute value (3 km/s)
and random direction in the mentioned plane. In the
present work we just model the dispersion of the vz
velocity component using the normal distribution.

Dimensionless Formulation of the Problem

As a characteristic distance we consider L1 =
GM�
v2ISM

and as a characteristic velocity—vISM. Since

the problem is linear and homogeneous in fd(r,v)

we can substitute fd → fd

nISM
and eliminate nISM in

(11). Dimensionless formulation of the problem (2)–
(4), (10), (11) is:

⎧
⎪⎪⎨
⎪⎪⎩

v̂ · ∂f̂d
∂r̂ + F̂ · ∂f̂d

∂v̂ = 0

f̂d(r̂, v̂)|r̂=r̂TS, v̂·en>0 = δ(v̂x)δ(v̂y + 1) 1
σ̂z

√
2π

exp
(
− v̂2z

2σ̂2
z

)

f̂d(r̂, v̂)|v̂→∞ = 0,

(13)

where r̂ =
r

L1
, v̂ =

v

vISM
, f̂d =

fd

v3ISM

, F̂ =
FL1

v2ISM

, σ̂z =
σz
vISM

, r̂TS =
rTS

L1
. The expression for the sum of forces

(10) in the dimensionless form is:

F̂ = (β − 1)
er
r̂2

+ sgn(ẑ)
v2em

v2ISM

(
vISM

vsw
v̂ − er

)(
−LΩ

L1

er
r̂2

+
sin θ

r̂
eϕ

)
, (14)
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with LΩ =
vsw

Ω
, v2em =

qBEΩr
2
E

c0md
. The dimensionless

formulation of the problem contains five dimension-
less parameters:

σ̂z, β, ε =
v2em

v2ISM

=
3UdBER

2
EΩ

4πc0ρda2v
2
ISM

,
vISM

vsw
,
LΩ

L1
. (15)

Trajectories in the Plane of Symmetry

Let us consider the projection of the force F̂ on the
x-axis:

F̂x = (β − 1)
x̂

r̂3
+ sgn(ẑ)ε

x̂ẑ

r̂3

+ sgn(ẑ)ε
vISM

vsw

(
−LΩ

L1

v̂y ẑ − v̂z ŷ

r̂3
− v̂zx̂

r̂2

)
. (16)

Since
vISM

vsw
≈ 0.05 � 1, one can neglect the cor-

responding term, and the expression for F̂x in simpli-
fied form is:

F̂x = (β − 1)
x̂

r̂3
+ sgn(ẑ)ε

x̂ẑ

r̂3
. (17)

Therefore, dust particles with initial parameters:

x̂|TS = 0, v̂x|TS = 0 (18)

cannot leave the plane x̂ = 0 under the action of
the force (17) according to Picard’s existence and
uniqueness theorem. In this article for simplicity we
consider only such trajectories.

Monte-Carlo Approach

To solve the kinetic equation we use the Monte-
Carlo method. The computational domain is divided
into rectangular cells Δŷ ×Δẑ (Fig. 2) and Δẑ �
Δŷ, because the singular layers found in Mishchenko
et al. (2020) are oriented horizontally. Moreover,
since their thickness approaches zero one should de-
crease Δẑ in order to detect these peculiarities by
Monte-Carlo modeling.

For a dust particle we generate randomly its ini-
tial velocity and position on the sphere with radius
r = rTS according to the distribution function fTS(v)
from (13). During the particle motion in the helio-
sphere we record the time ti, which the particle held in
the computational domain cells (ti = 0 if particle does
not cross the corresponding cell). Then, by kinetic

definition of the distribution function and density, and
law of large numbers we have:

F̂0

N

N∑
i=1

ti
Δr̂cΔv̂c

→ fd(r̂c, v̂c), (19)

F̂0

N

N∑
i=1

ti
Δr̂c

→ nd(r̂c), (20)

where N is the number of simulated particles,
r̂c, v̂c are the coordinates of the cell center in the
phase space, Δr̂c is the cell volume in the physical
space, ΔrcΔvc is the cell volume in the phase space,
F̂0 is the flux of the dust particles through the outer
surface per unit of time in dimensionless form:

F̂0 =

π
2∫

−π
2

⎛
⎜⎝

∫

(v̂·en)>0

(v̂ · en) f̂TS(v̂)dv̂

⎞
⎟⎠

× r̂TSdϕ = 2r̂TS (21)

Technical Characteristics

In this paper we consider particles with the radius
a = 0.37 μm. For these particles β = 1 and conse-
quently the gravitational and radiation pressure forces
cancel out in (14).

For computations we use the following values of
the parameters: rTS = 100 AU, vISM = 26.4 km/s,
M� = 2× 1030 kg, vsw = 400 km/s, Ω = 2.9 ×
10−6 1/s, Ud = +3 V, BE = 30 μG, RE = 1 AU,
ρd = 2500 kg/m3.

For all pictures with results in this paper, unless
otherwise specified, the cell size inside the compu-
tational domain is 0.1× 0.001 AU in the Oy and Oz
directions respectively. To solve the system of ODEs
for a particle’s trajectory the fourth order Runge–
Kutta method was used.

Note that selected fixed location of the HCS cor-
responds to the case all ISD particles attract to the
HCS (focusing phase). In order to understand it let
us consider the z-axis projection of (14):

F̂z = (β − 1)
ẑ

r̂3
+ sgn(ẑ)ε

(
− x̂2 + ŷ2

r̂3

+
vISM

vsw

(
− LΩ

L1

v̂xŷ − v̂yx̂

r̂3

+
v̂xx̂+ v̂yŷ

r̂2

))
, (22)
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Fig. 3. Map of the density distribution in the plane x = 0 in the case without dispersion. Yellow color envelopes correspond to
caustics. Relative statistical error is limited by 2–3% at each point. Number of trajectories N = 2 000 000. For the sake of
comparison, the panel at the right bottom presents the results of Mishchenko et al. (2020) obtained for the same conditions.
Radius of particles is 0.37 μm.
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Fig. 4. Distribution of ISD density along line (x = 0, y = 2). The cell size is 0.1× 0.001 AU. Relative statistical error is limited
by 2–3% at each point. Number of trajectories N = 2000 000. Radius of particles is 0.37 μm.

where again
vISM

vsw
≈ 0.05 � 1, that is why at the

large heliospheric distances the lead term is:

−sgn(ẑ)ε
x̂2 + ŷ2

r̂3
. (23)

It is seen, that in the case ẑ > 0 the z-axis re-
sult force component F̂z < 0, so the ISD particles
are attracted to the HCS. In the case ẑ < 0 here is
F̂z > 0.

RESULTS

Singularities in Density

It was shown by Mishchenko et al. (2020) that
in the case of zero dispersion the ISD trajectories
form caustics at which the number density of the
interstellar dust is infinite. Caustic is the envelope of
the ISD trajectories. By its definition, every segment
of caustic is tangent to an infinite number of the ISD
trajectories, that is the reason of density singulari-
ties origin. The distribution of the dust density has
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Fig. 5. The ISD density distribution along the same line as in Fig. 4. Four lines of different colour correspond to the different
cell size in z-direction (Δy = 0.1 AU, Δz = {0.05, 0.01, 0.005, and 0.001 AU}). Relative statistical error is limited by 2–3%
at each point. Number of trajectories N = 2000 000. Radius of particles is 0.37 μm.
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Fig. 6. Tube of trajectories from a small region at the outer boundary. The tube is compressed up to a thousand times at small
heliocentric distances. The point of minimal width corresponds to a point on the caustic. Small boxes demonstrate trajectories
view at a large scale. Box sizes are 0.6 × 0.025 AU Radius of particles is 0.37 μm.

multiple singularities. This result was obtained by
a Lagrangian approach. In this Section we demon-
strate that the singularities can be also obtained by
the Monte-Carlo approach (although, perhaps, at the
cost of computational efficiency).

Figure 3 shows the map of the ISD density dis-
tribution as well as the ISD streamlines. The map
shows the region in the vicinity of the HCS. Symmet-
rical yellow lines in Fig. 3 are the above-mentioned
caustics. In the case of Monte-Carlo simulation
they represent the thin regions where a sharp density
peak is found (Fig. 4). Inside the area delimited by
the caustics there is a complex structure of the ISD
density distribution with many local peaks.

Since the computational domain consists of finite
size cells, high spatial resolution of the numerical
grid is required to detect the density singularities with
high precision by Monte-Carlo simulations. Figure 5
shows how the ISD density distribution along the line
(x = 0, y = 2) changes with variation of cell size Δz.
The ISD density in cells containing caustic points
increases with decreasing of Δz and, therefore, the
ISD density singularities located in these cells.

The simple explanation for the formation of the
caustics is as follows. Let us look at the particles
originating from a small region on the boundary of
the computational domain (Fig. 6). This flux tube is
compressed with decreasing heliocentric distance and
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0.04. The structure of density distribution changes drastically with variation of dispersion. Relative statistical error is limited
by 2–3% at each point. Number of trajectories N = 2000 000. Radius of particles is 0.37 μm.

reaches its minimal width (approaching zero) exactly
at the caustic points. From the mass conservation
law

n1v1Σ1 = n2v2Σ2

the density n reaches its maximum value at the point
where the width Σ is minimal, because v (the velocity
component along the y axis) is virtually constant
along the trajectory.

Effects of Velocity Dispersion

In this paper we consider mainly the dispersion
of the vz velocity component. We do not consider
the dispersion of the vx velocity component at all
because we only study the plane of symmetry x = 0,
and Fig. 11 shows that dispersion of the vy velocity
component has less impact on the density distribution
than dispersion of the vz velocity component.

To explore the effect of velocity dispersion we
performed the calculations for the set of σ̂z values:
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Fig. 9. Trajectories of particles originating from a small region on the boundary of the computational domain for different values
of σ̂z . For non-zero dispersion particle trajectories are scattered, and no singularities appear. Radius of particles is 0.37 μm.
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the convergence in cell size, Runge–Kutta integration steps and number of simulated particles. The maximal value of fluxes
is approximately inversely proportional to the dispersion σ̂z . For the computation without dispersion the cell size in the z-axis
direction is 10−6 (AU). Relative statistical error is limited by 5% at each point. Radius of particles is 0.37 μm.

0, 0.01, 0.02, 0.04. Figure 7 presents the density maps
obtained for the four values of σ̂z . With increasing σ̂z
the density maxima are smeared and their singular-
ities disappear. The regions of overdensity remain
only in the vicinity of the HCS. This clumping up of
dust particles is associated with an increase in the
magnitude of the Lorentz force at small heliocentric
distances, that leads to decrease of the particle
oscillations around the HCS amplitude. Then, the
gross tendency is for the ISD to converge to the HCS
plane and so the regions of overdensity appear. In

Fig. 8 we can see how density at cells containing
caustic points changes quantitatively with variation
of σ̂z = 0. The small values of the dispersion of 4% in
the boundary velocity distribution change the density
distribution in the heliosphere drastically.

The reason for the disappearance of the singular-
ities is clearly seen from Figs. 9, 10. Figure 9 shows
trajectories of particles originating from a small re-
gion on the outer boundary of the computational do-
main for different σ̂z values. As it was mentioned
above, singularities appear where the width of the
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flux tube approaches zero. For non-zero dispersion
particle trajectories are scattered, and therefore no
singularities appear. Density flux distributions in
the vicinity of the point corresponding to the caus-
tic at σ̂z = 0 by particles originating from a small
region on the outer boundary are demonstrated on
Fig. 10 for different σ̂z values. One can appreciate
that the maxima of these density flux distributions are
approximately inversely proportional to the value of
dispersion σ̂z. Thus even extremely small values of
dispersion drastically influence the ISD distribution
inside the heliosphere.

In order to study the influence of dispersion of the
vy velocity component on the density distribution we
should use instead of the expression (11) the following
boundary condition function:

fTS(v) = nISMδ(vx)
1

σy
√
2π

× exp

(
−(vy + vISM)2

2σ2
y

)
δ(vz), (24)

which in the dimensionless form is:

fTS(v̂) = δ(v̂x)
1

σ̂y
√
2π

× exp

(
−(v̂y + 1)2

2σ̂2
y

)
δ(v̂z). (25)

Figure 11 shows the comparison of density distri-
butions for the cases with different values of disper-
sion σ̂y of the vy velocity component

(σ̂y : 0, 0.01, 0.02, 0.04). We can see that the shape
of the overdensity region has remained virtually
unchanged for the selected dispersion values. Since
the same dispersion values were used previously for
the vz velocity component, one can conclude that the
dispersion of the vz velocity component has a greater
impact on the density distribution than the dispersion
of the vy velocity component. This is because the
regions of overdensity are stretched along Oy-axis
and, therefore, in the stationary case small variations
in the vy velocity component cannot significantly
affect the ISD density distribution.

CONCLUSIONS

In this paper we demonstrated that the singular-
ities of the ISD density in the heliosphere, discov-
ered using a Lagrangian approach in Mishchenko
et al. (2020), can also be found by Monte-Carlo
simulations. It requires super-small computational
cells. In our calculations the required size of cell (in
z-direction ) is 10−3 AU Having such size of the cells
in all domain computationally unrealistic. Weaker
resolution (i.e., larger cells) does not allow the caus-
tics to be found.

Dispersion was introduced as a normal distribu-
tion of one of the velocity component. It was shown
that the density singularities are smeared due to the
dispersion. The regions of overdensity are smoothed
and remain only in the vicinity of the heliospheric cur-
rent sheet. It is known (Hoang et al. 2012) that the
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velocity dispersion can reach values of approximately
15% due to spatial and temporal inhomogeneities in
the interstellar magnetic field. Significant qualitative
and quantitative changes in the density distribution
emerge even with 5% dispersion as it was shown.
Thus, the velocity dispersion is an extremely impor-
tant effect that strongly influences the ISD density
distribution inside the heliosphere.

In the future we plan to develop our model to
the case of a time-dependent solar magnetic field in
accordance with the 22-year solar cycle (in this article
we consider the solar magnetic field just in one focus-
ing phase (Mann 2010) all the time). Certainly this is
a highly important effect that has a major impact on
the ISD density inside the heliosphere and which is
necessary to take into consideration.
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