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Abstract—The elliptic case of restricted four-body problem with variable mass of infinitesimal body is
studied here. The three primary bodies which are placed at the vertices of an equilateral triangle and moving
in the elliptical orbits around their common center of mass. Out of these primaries we have considered that
one massive body is having radiating effect and other two bodies are oblate in shapes. The fourth body
which have infinitesimal mass, are varying its mass according to Jeans law. We derive the equations of
motion of the infinitesimal body under the generalized sense in the elliptic restricted four-body problem by
using the Meshcherskii-space time transformations. Further we numerically study about the equilibrium
points, Poincaré surfaces of section, regions of possible motion and basins of the attracting domain by
considering the variation of parameters used. Further more we examine the stability of these equilibrium
points and found them unstable.
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1. INTRODUCTION

In the present age to write a research article is a
serious problem because of the plagiarism. We have
to be straight forward towards our aim and goal for
the research. Here our field is celestial mechanics and
dynamical astronomy which lies in the field of applied
mathematics and is branch of mechanics. This study
is related to the celestial bodies and behaviour of their
motions. During last decades, researchers focused on
the study of motion of a small body (in general satel-
lite) under the influence of two, three or four massive
bodies but small body is not influencing them. Ac-
cordingly they have considered their configurations
while these bodies are moving either in circular or
elliptical orbits with many other perturbations.

Some of them are as follows: By supposing
the bigger primary as oblate spheroid, Sharma and
SubbaRao (1976) studied the stationary solutions
and their characteristic exponents in the circular
restricted 3-body problem. Kalvouridis (1997) in-
vestigated the equilibrium points and permissible
regions of motion of the minor bodies under the
effect of radiated oblate primaries. Douskos (2010)
revealed the basins of attraction in the generalized
Hill’s problem.

Baltagiannis et al. (2011) studied the stability
of the equilibrium points of the infinitesimal body
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which is moving under the influence of the three pri-
maries. These primaries are situated at the vertices
of an equilateral triangle, moving in circular orbits
around their common center of mass to which they
consider as origin. Further they have studied the
zero-velocity surfaces and corresponding equipoten-
tial curves. They also found that collinear equilibrium
points does not exist when all three-masses are not
equal. Furthermore they have illustrated the basins
of attraction for the present dynamical model. Ku-
mari and Kushvah (2013, 2014) have illustrated the
equilibrium points, their stability, zero-velocity curves
as well as the basins of attraction in the restricted
four-body problem under the effect of solar drag and
oblateness.

Singh and Vincent (2016) studied the motion of
infinitesimal body in the generalized restricted three-
body problem. Generalized in the sense that both
the primaries are radiating, oblate bodies, together
with the effect of the gravitational potential from the
belt and they found seven equilibrium points instead
of five equilibrium points in the classical restricted
three-body problem. They also found that collinear
points are always unstable while triangular points
are stable for some interval of mass ratio. Zotos
(2017) performed the basins of attraction in the planar
equilateral restricted four-body problem.

Abouelmagd and Ansari (2019) studied numer-
ically the bicircular Sun perturbed Earth-Moon-
satellite system and illustrated the equilibrium points,
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Poincaré surfaces sections and basins of attracting
domain. Chakraborty and Narayan (2019a, 2019b)
studied the new version of restricted four-body prob-
lem when the primaries are moving in elliptical or
circular orbits. And illustrated the zero-velocity
curves and basins of attraction for the systems.

In general, we suppose that the masses of celes-
tial bodies do not vary with time during the motion.
But really many celestial bodies vary their masses
with time continuously such as the isotropic radiation
or absorption in stars makes their masses variable.
Which is an interesting topic in the celestial mechan-
ics and dynamical astronomy, studied by many re-
searchers in the restricted problem (two-body, three-
body, four-body and five-body).

Ansari (2017a, 2017b, 2018) and Ansari et al.
(2018, 2019a, 2019d) studied the model of restricted
problem in three-body, four-body and five-body by
considering the variable of mass of the small body.
Abouelmagd and Mostafa (2015) investigated the
out-of-plane equilibrium points and the regions of
possible and forbidden motions of the infinitesimal
body which changes the mass according to Jean’s
law (Jeans 1928) in the frame of restricted three-body
problem. Zhang et al. (2012) investigated the trian-
gular equilibrium points in the restricted three-body
problem when both the primaries are radiating and
infinitesimal body varies its mass according to Jean’s
law. They used Meshcherskii space time inverse
transformation (Meshcherskii 1949) for testing the
linear stability of these equilibrium points. Lukyanov
(2009) and Singh and Ishwar (1985) investigated
the effect of variable mass in the frame of circular
restricted three-body problem.

From influencing the previous literatures, we de-
cided to study this problem with equilateral config-
uration of the primaries with their elliptical motion
and variable mass of the small body according to
the Jean’s law. This article is organised in various
sections and subsections which are as follows: The
literature review is presented in Section 1. The eval-
uation of equations of motion are given in Section 2
while Section 3 performed the numerical works with
Subsections 3.1, 3.2, 3.3, and 3.4. Section 4 ex-
amines the stability of equilibrium points numerically.
Finally the paper concluded in Section 5.

2. DETERMINATION OF EQUATIONS OF
MOTION

Let m1, m2, m3, and m be the masses of three
primaries and infinitesimal body, out of which m1 has
the solar radiation pressure (q) and m2 = m3 have the
oblate shapes with oblatenes factors A2 and A3, these
three bodies are moving in elliptical orbits around
their common center of mass which is taken as origin.

In the synodic coordinate system xyz, the line joining
the origin to the primary m1 is taken as x-axis while
the line perpendicular to this line is considered as y-
axis. The mean motion n of the system is considered
around z-axis which is perpendicular to the orbital
plane of the primaries. The fourth infinitesimal vari-
able mass body is moving under the influence of the
primaries while it is not influencing them. It is also
assumed that the distances from infinitesimal body
to the primaries m1, m2, and m3 are r1, r2, and r3,
respectively. The coordinates of the infinitesimal body
and the primaries are (x, y, z) and (xi, yi, zi), (i =
1, 2, 3) respectively. Following the procedure given by
Ansari et al. (2019c) and Dewangan et al. (2020), we
can write the equations of motion of the infinitesimal
variable mass body with non-dimensional variables
where the variation of mass of the test particle orig-
inates from one point and have zero momenta as:

ṁ

m
(ẋ− y) + (ẍ− 2ẏ) = Wx,

ṁ

m
(ẏ + x) + (ÿ + 2ẋ) = Wy,

ṁ

m
ż + z̈ = Wy, (1)

where (.) denotes the differentiation with respect to f

and
df

dt
=

n(1 + e cos f)2

(1− e2)3/2
,
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1
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2
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+
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}
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with
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√
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√
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1

2
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+ z2,

n2 =
(1 + e2)3/2

a3(1− e2)
[1 +

3

2
(A2 +A3)].

We will use Jean’s law and Meshcherskii space
time transformations to preserve the dimension of the
space and time as,

m = m0e
−ε1t, dt = dτ,

x = ε
−1/2
2 α, ẋ = ε

−1/2
2

(
α̇+

ε1
2ε3

α

)
,
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ẍ = ε
−1/2
2

(
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ε1
ε3
α̇+
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4ε3
α

)
,

y = ε
−1/2
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,
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,
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(
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4ε3
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, (3)

where ε1 is constant coefficient, ε2 =
m

m0
, ε3 =

df

dt
,

ε4 =
d2f

dt2
and m0 is the initial mass.

After using Eq. (3) in the Eq. (1), we get

α̈− 2β̇ =
∂U

∂α
,

β̈ + 2α̇ =
∂U

∂β
,

γ̈ =
∂U

∂γ
, (4)

where

U =
1

(1 + e cos f)

[{
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8
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1

2
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+

ε
3/2
2
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+
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(5)

with

ε5 =
4ε1ε4 + ε21

4ε23

ρ21 =
(
α−

√
3ε2μ

)2
+ β2 + γ2,

ρ22 =

(
α+

√
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2

)2

+

(
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ε2
2

)2
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(
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√
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2
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ε2
2
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Initially i.e., t = 0 and f = f0, the Jacobian can be
written as

α̇2 + β̇2 + γ̇2 = 2U − C, (7)

where left hand side of Eq. (7) represents the veloc-
ity of the infinitesimal body and C is the conserved
Jacobian constant for the system. The regions of
motion are restricted for the given values of energy,
where it can move i.e., 2U ≥ C, and all other places
are prohibited. In general shaded regions are the
prohibited regions.

3. NUMERICAL STUDIES

3.1. Positions of Equilibrium Points

Positions of equilibrium points can be obtained in
α−β-plane after solving the right hand sides of the
system (4), i.e., Uα = 0 and Uβ = 0, and hence

α
(
1 +

ε5
4

)
− ε

3/2
2

n2

{
q(1− 2μ)(α−

√
3ε2μ)

ρ31

+
μ(α+

√
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+
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√
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√
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ρ33

+
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√
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2ρ53

}
= 0, (8)

β
(
1 +

ε5
4

)
− ε

3/2
2

n2

{
q(1− 2μ)β

ρ31
+

μ(β −√
ε2/2)

ρ32

+
3A2ε2μ(β −√

ε2/2)

2ρ52
+

μ(β +
√
ε2/2)

ρ33

+
3A3ε2μ(β +

√
ε2/2)

2ρ53

}
= 0. (9)

After numerically solving Eqs. (8) and (9) for the
variations of the parameters used with the help of
well known software Mathematica, we perform these
graphs in Figs. 1–3. Figure 1 represents the variation
of the value in eccentricity e (0.15 (Fig. 1a), 0.35
(Fig. 1b), 0.65 (Fig. 1c)). Figures 1a–1c present
eight, eight, and four equilibrium points with black,
blue, and red dots, respectively. From these figures,
we observed that as increasing the value of e, some
equilibrium points are extinct (as in Fig. 1c), equilib-
rium points L5, L6, L7, and L8 are not present. In this
way e has the reduction effect.

Figure 2 shows the variation of variation param-
eter ε2 (0.4 (Fig. 2a), 0.8 (Fig. 2b), 1.2 (Fig. 2c)).
Figure 2d shows the combination of the Figs. 2a–2c).
From Fig. 2 we noted that as increasing the value of ε2
all the equilibrium points are moving away. Therefore
ε2 has expanding effect.
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Fig. 1. Positions of equilibrium points in α−β-plane at ε1 = 0.2, f = 0, a = 0.75, ε2 = 0.4, μ = 0.1, q = 0.9, A2 = A3 =
0.05.
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Fig. 2. Positions of equilibrium points in α−β-plane at ε1 = 0.2, e = 0.15, f = 0, a = 0.75, μ = 0.1, q = 0.9, A2 = A3 =
0.05.
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Fig. 3. Positions of equilibrium points in α−β-plane at ε1 = 0.2, f = 0, a = 0.75, ε2 = 0.4, μ = 0.1.

Figure 3 presents the variations of solar radia-
tion pressure q (0.5 (Black), 0.7 (Blue), 0.9 (Red)
(Fig. 3a)) and oblateness of the primaries (0 (Black),
0.05 (Blue), 0.1 (Red) (Fig. 3b)). From Fig. 3a,
we pointed out that increasing the value of q, the
equilibrium points L3 and L4 are unchanged in their
positions while all other six equilibrium points L1,
L2, L5, L6, L7, and L8 are moving away from their
previous positions. From Fig. 3b, we found that as
we increase the value of oblateness, the equilibrium
points L3 and L4 are moving away while all other six
equilibrium points L1, L2, L5, L6, L7, and L8 are
moving towards the origin. In this way, solar radiation
factor has expanding effect while oblateness has both
expanding and shrinking effects.

3.2. Poincaré Surfaces of Section

To examine the chaotic or regular behavior of
the path of the test particle, we have to plot the
Poincaré surfaces of section. For which we must
find the position and velocity of the infinitesimal
body in phase space. The graph between α and
α′ (differentiation with respect to time t) should be
plotted when β = 0, whenever the orbit intersects the
plane at β′ ≥ 0. Here plotted the Poincaré surfaces
of section and given in Figs. 4–7. We observed
from Fig. 4 that as increase the value of ε2, the
surfaces of section changes into more and more
regular and smooth. Figure 5 represent the Poincaré
surfaces of section the variation of true anomaly
(f = 0, π/6, π/3, π/2, π, and 3π/2) with constant
mass (i.e., ε1 = 0 and ε2 = 1). From Figs. 4–7 we
observed that there are no chaos i.e., smooth for
f = 0, π/6, π/3, π/2, π but for f = 3π/2, there is
zigzag surfaces which is chaos. Figure 6 represent

the Poincaré surfaces of section with the variation
of true anomaly (f = 0, π/6, π/3, π/2, π, and 3π/2)
with variable mass (i.e., ε1 = 0.2 and ε2 = 0.4). From
these figures we noted that all surfaces are smooth
except for f = 3π/2 where chaos is appear. Figure 7
represent the Poincaré surfaces of section with the
variation of eccentricity (e = 0.15, 0.35, and 0.65)
with variable mass (i.e., ε1 = 0.2 and ε2 = 0.4). From
these figures we observed that as increase the value of
e the smoothness of the curves reduces. In this way
the parameters used have excellent effect on Poincaré
surfaces of section.

3.3. Regions of Possible Motion

To reveal the regions of possible or forbidden mo-
tion, we follow the procedure and terminology used by
Ansari et al. (2019b) and Dewangan et al. (2020).
Accordingly, we have determined the each value of
Jacobian constant corresponding to the each equilib-
rium point and then drawn the regions of forbidden
motion with the help of Eq. (7) and performed purple
shaded regions as the forbidden regions which are
shown in Fig. 8. This figure suggests very important
dynamical properties of the motion of the infinitesimal
body. Figure 8a represents the region corresponding
to the equilibrium point L1 and shows that infinites-
imal body can move near all the primaries except the
purple color shaded region i.e., it can not move near
L2, L5, L6, L7, and L8. It can move freely around m2

and m3 while around m1, it can move only in circular
region by entering from L1 which is a gateway for
the circular region. Figure 8b represents the region
corresponding to the equilibrium points L2 and shows
that the small particle can move freely except near the
equilibrium points L7, L8. Figure 8c represents the
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Fig. 5. Poincaré surfaces of section in α−α′-plane at ε1 = 0, ε2 = 1, e = 0.15, a = 0.75, μ = 0.1, q = 0.9, A2 = A3 = 0.05.

region corresponding to the equilibrium points L3,4

and shows that the small particle can move only near
the three primaries m1, m2, and m3 in circular regions
where L3 and L4 are gateway for the regions near m2

and m3 and it can not move in purple shaded region

i.e., near the equilibrium points L2, L5, L6, L7, and
L8. Figure 8d represents the region corresponding
to the equilibrium points L5, L6 and shows that the
small particle can move freely near the primaries while
it can not move near the equilibrium points L2, L7,
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and L8. Figure 8e represents the region correspond-
ing to the equilibrium points L7, L8 and shows that
the small particle can move freely except near the
equilibrium points L2, L7, and L8. Black points are
showing the positions of the equilibrium points while
red circles and star are presenting the locations of the
primaries.

3.4. Basins of Attracting Domain

To reveal the basins of attractive domain for the in-
finitesimal body, we use very simple iterative method
known as Newton–Raphson iterative method. The
attracting domains which are the most important
qualitative behaviour of the dynamical systems and
are composed by all the initial values that tend to a

specific attracting point which is one of the equilib-
rium points. Using the above iterative method, we
have illustrated the attracting domain in α−β-plane
for the parameters used. The algorithm of the problem
is given as:

αn+1 = αn −
(

UαUββ − UβUαβ

UααUββ − UαβUβα

)
(αn,βn)

, (10)

βn+1 = βn −
(

UβUαα − UαUβα

UααUββ − UαβUβα

)
(αn,βn)

, (11)

where αn, βn are the values of α and β coordinates
of the nth step of the Newton–Raphson iterative
process. If the initial point converges rapidly to one
of the equilibrium points then this point (α, β) will
be a member of the attracting domain. This process
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Fig. 8. Regions of possible motion in α−β-plane at ε1 = 0.2, ε2 = 0.4, f = 0, a = 0.75, μ = 0.1, q = 0.9, A2 = A3 = 0.05.

stops when the successive approximation converges
to an equilibrium point. We also need to clear that
the attracting domain is not related with the classical
attracting domain in dissipative system. For the clas-
sification of different equilibrium points on the plane,
we used a color code. We have plotted the attracting
domain for eccentricity e = −0.15 in α−β-plane and
given in Fig. 9a. Figure 9b represents the zoomed
part of Fig. 9a near the configuration of the primaries,
from here we observed that there are eight attracting
points L1, L2, L3, L4, L5, L6, L7, and L8. From
the Fig. 9b, we found that L1, L2 corresponds to the
light blue color region, L3, L5 corresponds to the red
color region, L4, L8 corresponds to the yellow color
region, L5 corresponds to the blue color region and
L6 corresponds to the green color region, all these
regions extended to infinity.

Also we have plotted the attracting domain for e =
0.65 in α−β-plane and given in Fig. 9c. The zoomed
part of Fig. 9c is Fig. 9d, we found four attracting
points L1, L2, L3, and L4. We observed from this

figure that L1, L2 corresponds to the light green color
regions which is extended to infinity, L3 corresponds
to the blue color region, L4 correspond to the green
color region, all these regions are extended to infin-
ity. In all the figures black dots are representing the
locations of the attracting points.

4. STABILITY OF EQUILIBRIUM POINTS
To reveal the stability of equilibrium points of

the infinitesimal variable mass in its vicinity (α0 +
α1, β0 + β1) under the effect of the oblate radiating
primaries. Where (α1, β1) are small displacements
from the equilibrium points (α0, β0).

In the phase space, the system (4) can be rewritten
as

α′
1 = ε3α2,

β′
1 = ε3β2,

α′
2 = −ε4

ε3
α2 + 2β2 +

U0
αα

ε3
α1 +

U0
αβ

ε3
β1,

ASTRONOMY LETTERS Vol. 46 No. 4 2020



GENERALIZED ELLIPTIC RESTRICTED 283

−5

−10

0β

5

−5 0

(a)  Value of e = 0.15

α
5 10

−1.0
−1.0

−0.5

0

0.5

1.0

β

−0.5 0 0.5 1.0

(b) Zoomed figure of (a) near geometrical
configuration of the primaries

α

−5

−10

0β

5

−5 0

(c)  Value of e = 0.65

α
5 10

−0.6

0.6

−0.4

−0.2

0

0.2

0.4

0.6
β

0.40.20−0.2−0.4−0.6

(d) Zoomed figure of (c) near geometrical
configuration of the primaries

α

L1

L1L2

L4

L3

L2

L3

L4

L5

L6

L7

L8

Fig. 9. Basins of Attracting domain in α−β-plane at ε1 = 0.2, f = 0, a = 0.75, ε2 = 0.4, μ = 0.1, q = 0.9, A2 = A3 = 0.05.

β′
2 = −ε4

ε3
β2 − 2α2 +

U0
βα

ε3
α1 +

U0
ββ

ε3
β1, (12)

where the superscript 0 denotes the value at the cor-
responding equilibrium point.

Due to variation in the mass and distance of the
small particle, we use Meshcherskii space-time in-
verse transformations to examine the stability of the
equilibrium points.

α3 = ε
−1/2
2 α1, β3 = ε

−1/2
2 β1,

α4 = ε
−1/2
2 α2, β4 = ε

−1/2
2 β2. (13)

With the help of Eq. (12), the system (13) can be
written as follows:

Z′ = M Z, (14)

where

Z′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

α′
3

β′
3

α′
4

β′
4

⎞
⎟⎟⎟⎟⎟⎟⎠

, Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

α3

β3

α4

β4

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

and

M=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
ε1 0 ε3 0

0
1

2
ε1 0 ε3

U0
αα

ε3

U0
αβ

ε3

(
ε1
2

− ε4
ε3

)
2

U0
βα

ε3

U0
ββ

ε3
−2

(
ε1
2

− ε4
ε3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)
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Table 1. The nature of equilibrium points at f = 0, q = 0.9, A2 = A3 = 0.05, a = 0.75, μ = 0.1, ε1 = 0.2, ε2 = 0.4

Equilibrium point
Roots Nature

e α-Co β-Co

0.15 0.5192068365 0.0000000000 0.1000000000± 1.2555742261i Unstable

0.7353184364

−0.5353184364

−0.3368997735 0.0000000000 −0.7818462262± 0.9956472643i Unstable

0.9818462262± 0.9956472643i

−0.5931143451 ±0.4255075646 0.0999999999± 1.7235222930i Unstable

±2.5697014680

−0.0577875673 ±0.4191556178 −0.4090586590± 0.9215456777i Unstable

0.6090586590± 0.9215456777i

−0.2187095570 ±0.2002343086 0.1000000000± 1.5530836905i Unstable

1.8751301053

−1.6751301053

0.35 0.4836445044 0.0000000000 0.0999999999± 1.3618577961i Unstable

−0.4314916798

0.6314916798

−0.3045934436 0.0000000000 −0.4704939751± 0.9731132762i Unstable

0.6704939751± 0.9731132762i

−0.5795768410 ±0.4164988058 0.1000000000± 1.7170447754i Unstable

−2.2936977578

2.4936977578

−0.0862030276 ±0.3629651023 −0.1649224210± 0.9186656773i Unstable

0.3649224210± 0.9186656773i

−0.2003803512 ±0.2086528558 0.1000000000± 1.3922596495i Unstable

1.2321348043

−1.0321348043

0.65 0.3905452636 0.0000000000 0.1000000000± 1.4789916747i Unstable

−0.3858539748

0.5858539748

−0.2267764684 0.0000000000 0.1000000000± 0.4687643427i Unstable

0.0999999999± 1.3908705028i

−0.5472692772 ±0.3943513985 0.1000000000± 1.7990658690i Unstable

−2.5146826257

2.7146826257
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Table 2. The nature of equilibrium points at f = 0, q = 0.9, A2 = A3 = 0.05, a = 0.75, μ = 0.1, ε1 = 0.2, e = 0.15

Equilibrium point
Roots Nature

ε2 α-Co β-Co

0.80 0.7329068365 0.0000000000 0.1000000000± 1.2584428959i Unstable

0.7469110225

−0.5469110225

−0.4764482288 0.0000000000 −0.7818462262± 0.9956472643i Unstable

0.981846226292± 0.9956472643i

−0.3093020217 ±0.2831740749 0.0999999999± 1.5530836905i Unstable

1.8751301053

−1.6751301053

−0.8387903508 ±0.6017585688 0.1000000000± 1.7235222930i Unstable

2.5697014680

−2.3697014680

−0.0817239615 ±0.5927755594 −0.4090586590± 0.9215456777i Unstable

0.6090586590± 0.9215456777i

1.2 0.9136445044 0.0000000000 0.1000000000± 1.0746320376i Unstable

0.1000000000± 0.7672020493i

−0.5835275247 0.0000000000 −0.7181530525± 0.9688286891i Unstable

0.9181530525± 0.9688286891i

−0.3788160648 ±0.3468159960 0.1000000000± 1.9508653141i Unstable

−2.7831628987

2.9831628987

−1.0273041804 ±0.7370007209 −0.0587092569± 0.9543910748i Unstable

0.2587092569± 0.9543910748i

−0.1000910027 ±0.7259988263 −0.3130124638± 0.9793242943i Unstable

0.5130124638± 0.979324294307i

The characteristic equation for the matrix M is

λ4 +B3λ
3 +B2λ

2 +B1λ+B0 = 0, (17)

where

B0 =
1

16
ε41 +

1

4
ε21

(
4− Uαα − Uββ +

ε24
ε23

− ε1ε4
ε3

)

+ (UααUββ − U2
αβ) +

ε1ε4
2ε3

(Uαα + Uββ),

B1 = ε1

(
− 4 + Uαα + Uββ − ε21

2
+

3ε1ε4
2ε3

− ε24
ε23

)

− ε4
ε3
(Uαα + Uββ),

B2 = 4− Uαα − Uββ +
3ε21
2

− 3ε1ε4
ε3

+
ε24
ε23
,

B3 = −2ε1 +
2ε4
ε3

. (18)
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Table 3. The nature of equilibrium points at f = 0, e = 0.15, A2 = A3 = 0.05, a = 0.75, μ = 0.1, ε1 = 0.2, ε2 = 0.4

Equilibrium point
Roots Nature

q α-Co β-Co

0.5 0.4428325638 0.0000000000 0.1000000000± 1.2683314085i Unstable

0.7894415203

−0.5894415203

−0.2505255446 0.0000000000 −0.6150858991± 0.9298592577i Unstable

0.8150858991± 0.9298592577i

−0.1707503483 ±0.1836823541 0.10000000000± 1.3180544970i Unstable

1.2828821336

−1.0828821336

−0.5898644151 ±0.4213054143 0.1000000000± 1.7919781496i Unstable

2.7367106283

−2.5367106283

−0.0437661060 ±0.3338939695 −0.3675802800± 0.8913827867i Unstable

0.5675802800± 0.8913827867i

0.70 0.4856445044 0.0000000000 0.0999999999± 1.2597605252i Unstable

−0.5538417703

0.7538417703

−0.2958676114 0.0000000000 −0.7191993843± 0.9731331379i Unstable

0.9191993843± 0.9731331379i

−0.1988983404 ±0.1924567432 0.0999999999± 1.4362377527i Unstable

−1.3925152111

1.5925152111

−0.5914732499 ±0.4233460490 0.1000000000± 1.7574615139i Unstable

−2.4529832784

2.6529832784

−0.0487667986 ±0.3818961192 −0.3972280056± 0.9123511370i Unstable

0.5972280056± 0.9123511370i

After numerically solving Eq. (17) for the different
values of parameters used and evaluated the char-
acteristic roots corresponding to each equilibrium
points which are given in Tables 1–4. From these
tables we concluded that all the equilibrium points
are unstable because at-least one characteristic root

is either positive real number or positive real part of
the complex characteristic root. While Dewangan
et al. (2020) have shown that all equilibrium points
are stable without variable of mass. Therefore, the
variation parameters have great impact on the stabil-
ity of equilibrium points.
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Table 4. The nature of equilibrium points at f = 0, e = 0.15, q = 0.9, a = 0.75, μ = 0.1, ε1 = 0.2, ε2 = 0.4

Equilibrium point
Roots Nature

A1 = A2 α-Co β-Co

0.0 0.5404586875 0.0000000000 0.0999999999± 1.2514476805i Unstable

0.7169888788

−0.5169888788

−0.3668278224 0.0000000000 −0.6708729108± 0.9955344712i Unstable

0.8708729108± 0.9955344712i

−0.2403690612 ±0.2117754044 0.09999999999± 1.6038997602i Unstable

1.7292039542

−1.5292039542

−0.5679802751 ±0.4076186271 0.1000000000± 1.8821740449i Unstable

2.1992822307

−1.9992822307

−0.0685298470 ±0.4396918348 −0.3595884008± 0.9153677703i Unstable

0.5595884008± 0.9153677703i

0.10 0.5014059128 0.0000000000 0.0999999999± 1.2593139893i Unstable

−0.5516056437

0.7516056437

−0.3134559329 0.0000000000 −0.8315979025± 0.9918988849i Unstable

1.0315979025± 0.9918988849i

−0.2041890691 ±0.1935248093 0.1000000000± 1.5091344970i Unstable

−1.6712553549

1.8712553549

−0.6030521443 ±0.4326318450 0.0999999999± 1.6851964874i Unstable

−2.4786922935

2.6786922935

−0.0508327967 ±0.4011246287 −0.4392166036± 0.9238817029i Unstable

0.6392166036± 0.9238817029i

5. CONCLUSIONS

The effects of generalized parameters are studied
in the restricted elliptic four-body problem where in-
finitesimal body varies its mass according to Jean’s
law and one of the primaries is radiating as well as
another two are oblate in shapes. The equations of

motion are evaluated by using Meshcherskii-space
time transformations where the variation parameters
(ε1 and ε2) are clearly visible with excellent role for this
problem. We numerically studied as well as plotted
the equilibrium points, Poincaré surfaces of section,
regions of possible motion and basins of attracting
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domain with the variation of parameters used. Here at
most eight equilibrium points are found, out of which
two are collinear (L1 and L2) and other six are non-
collinear (L3, L4, L5, L6, L7, and L8) (Figs. 1–3).
To study the dynamical behaviour of the infinitesi-
mal body, we have plotted the Poincaré surfaces of
section and found most of the cases regular while in
some cases chaotic (Figs. 4–7). Further we have
evaluated the value of Jacobi-constant corresponding
to each equilibrium points and drawn the prohibited
and allowed regions. In this case the purple shaded
regions are the forbidden regions (Fig. 8). Further
more we have drawn the basins of attracting domain
for the variation of eccentricity of the elliptic path
of the primaries and shown in Fig. 9. The different
attracting domains present different color regions.
Finally we examined the stability of equilibrium points
numerically. The numerical values are given in the
Tables 1–4. These tables represent the roots of the
characteristic polynomial which show that at least
one of the roots having either positive real part of
the complex roots or only positive real root, which
confirm that all the equilibrium points are unstable.
This result is different from the result obtained by
Dewangan et al. (2020), where they have shown
that all the equilibrium points are stable. Therefore
these variation parameters have great impact on the
dynamical behaviour of the motion of the infinitesimal
body.

REFERENCES
1. E. I. Abouelmagd and A. A. Ansari, New Astron. 73,

101282 (2019).
https://doi.org/10.1016/j.newast.2019.101282

2. E. I. Abouelmagd and A. Mostafa, Astrophys. Space
Sci. 357, 58 (2015).
https://doi.org/10.1007/s10509-015-2294-7

3. A. A. Ansari, Ital. J. Pure Appl. Math. 38, 581
(2017a).

4. A. A. Ansari, Appl. Math. Nonlin. Sci. 2, 529 (2017b).
5. A. A. Ansari, Appl. Appl. Math.: Int. J. 13, 818

(2018).
6. A. A. Ansari, Z. A. Alhussain, and P. Sadanand,

J. Astrophys. Astron. 39, 57 (2018).

7. A. A. Ansari, J. Singh, Z. Alhussain, and
H. Belmabrouk, New Astron. 73, 101280 (2019a).
https://doi.org/10.1016/j.newast.2019.101280

8. A. A. Ansari et al., J. Taibah Univ. Sci. 13, 670
(2019b).

9. A. A. Ansari et al., Punjab Univ. J. Math. 51 (5), 107
(2019c).

10. A. A. Ansari, A. Ali, M. Alam, and R. Kellil, Appl.
Appl. Math.: Int. J. 14, 985 (2019d).

11. A. Baltagiannis and K. E. Papadakis, Int. J. Bifurcat.
Chaos 21, 2179 (2011).
doi 10.1142/S0218127411029707

12. A. Chakraborty and A. Narayan, Few Body Syst. 60
(7) (2019a).
https://doi.org/10.1007/s00601-018-1472

13. A. Chakraborty and A. Narayan, New Astron. 70, 43
(2019b).
https://doi.org/10.1016/j.newast.2019.02.002

14. R. R. Dewangan, A. Chakraborty, and A. Narayan,
New Astron. 78 (2020, in press).
https://doi.org/10.1016/j.newast.2020.101358

15. C. N. Douskos, Astrophys. Space Sci. 326, 263
(2010).

16. J. H. Jeans, Astronomy and Cosmogony (Cam-
bridge Univ. Press, Cambridge, 1928).

17. T. J. Kalvouridis, Astrophys. Space Sci. 246, 219
(1997).

18. R. Kumari and B. S. Kushvah, Astrophys. Space Sci.
344, 347 (2013).

19. R. Kumari and B. S. Kushvah, Astrophys. Space Sci.
349, 693 (2014).

20. L. G. Lukyanov, Astron. Lett. 35, 349 (2009).
21. I. V. Meshcherskii, Works on the Mechanics of Bod-

ies of Variable Mass (GITTL, Moscow, 1949) [in
Russian].

22. R. K. Sharma and P. V. SubbaRao, Celest. Mech. 13,
137 (1976). http://dx.doi.org/10.1007/BF01232721

23. J. Singh and B. Ishwar, Celest. Mech. 35, 201 (1985).
24. J. Singh and A. E. Vincent, British J. Math. Comput.

Sci. 19 (5), 1 (2016).
25. M. J. Zhang, C. Y. Zhao, and Y. Q. Xiong, Astrophys.

Space Sci. 337, 107 (2012). doi 10.1007/s10509-
011-0821-8

26. E. E. Zotos, Astrophys. Space Sci. 362 (2) (2017).

ASTRONOMY LETTERS Vol. 46 No. 4 2020


		2020-09-04T21:44:52+0300
	Preflight Ticket Signature




