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Abstract—To investigate the differential rotation of sunspot groups using the Greenwich data, we propose
an approach based on a statistical analysis of the histograms of particular longitudinal velocities in different
latitude intervals. The general statistical velocity distributions for all such intervals are shown to be
described by two rather than one normal distribution, so that two fundamental rotation modes exist
simultaneously: fast and slow. The differentiality of rotation for the modes is the same: the coefficient at sin2

in Faye’s law is 2.87–2.88 deg/day, while the equatorial rotation rates differ significantly, 0.27 deg/day. On
the other hand, an analysis of the longitudinal velocities for the previously revealed two differing populations
of sunspot groups has shown that small short-lived groups (SSGs) are associated with the fast rotation
mode, while large long-lived groups (LLGs) are associated with both fast and slow modes. The results
obtained not only suggest a real physical difference between the two populations of sunspots but also
give new empirical data for the development of a dynamo theory, in particular, for the theory of a spatially
distributed dynamo.
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1. INTRODUCTION

One of the main effects that play a role in the
solar dynamo mechanism is differential rotation:
mechanical shearing plasma motions lead to mag-
netic field variations. The dependence of the solar
rotation rate on the distance from the center has been
obtained through helioseismological studies, which
show the steepest gradient at the base of the con-
vection zone and in the subphotospheric layers. Two
populations of sunspots may be associated with these
two toroidal magnetic field accumulation regions
(Nagovitsyn et al. 2012, 2016, 2017; Nagovitsyn and
Pevtsov 2016).

A difference in rotation rates as a function of group
age (Newton and Nunn 1951), magnetic structure
(Balthasar et al. 1986), and size (Ward 1966) was
pointed out even in the classic studies of solar sur-
face differential rotation, where sunspot groups were
used as tracers. Howard et al. (1984) considered the
rotation of sunspot groups as a function of their area
and found that large groups >15 millionths of a solar
hemisphere (m.s.h.) rotate slower than small ones
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<5 m.s.h. by 2%. The phenomenological model of
the solar activity cycle by Gokhale (1979) associates
the activity with two clusters of magnetic flux tubes,
where small sunspot groups are generated by the
decay of deeply anchored flux tubes and their motion
to the surface. A more recent paper (Javaraiah and
Gokhale 1997) supports this interpretation, finding
that the initial depth of origin of sunspot groups goes
down into the Sun by 21 000 km per day, while the an-
choring depth rises at the same rate since their emer-
gence on the surface. The theory of Gokhale (1979)
was supported by the study of Gokhale and Sivara-
man (1981), where for eight solar cycles the distribu-
tion of sunspot groups with respect to their maximum
areas was shown to have two components behaving
differently in the solar cycle. Based on the boundary
area of 100 m.s.h. obtained by Gokhale and Sivara-
man (1981), Hiremath (2002) showed that for both
components the change in differential rotation rate
agrees with the change in solar angular velocity as a
function of radius. The rotation rate is believed to de-
crease as the sunspot groups age (Gokhale and Hire-
math 1984; Balthasar et al. 1982, 1986; Tuominen
and Virtanen 1987; Zappala and Zuccarello 1991;
Zuccarello 1993), tending to the rotation rate of the
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surrounding photospheric gas. Zappala and Zuc-
carello (1991) argue that the differences in sunspot
group rotation rates are evolutionary, with the key
lifetime parameter. However, after the separation of
sunspot groups in lifetime, Sivaraman et al. (2003),
on the contrary, find acceleration of the rotation with
time.

The two populations of sunspot groups to be dis-
cussed in this paper are also observed from the bi-
modality of the distribution of areas with an aver-
age boundary of ∼40 m.s.h., while Nagovitsyn and
Pevtsov (2016) proposed to use the lifetime as a sep-
aration parameter. Short- and long-lived groups can
be associated with the subsurface layers and the base
of the convection zone, respectively (Hiremath 2002;
Sivaraman et al. 2003). The differential rotation of
the two populations of sunspots can give important
information about the depths of origin of the magnetic
flux tubes responsible for the appearance of sunspots
(Gilman and Foukal 1979; Balthasar et al. 1986;
Hiremath 2002).

2. OBSERVATIONAL DATA AND METHODS
OF ANALYSIS

In this paper we used the Greenwich data on
the daily areas and coordinates of sunspot groups
from 1874 to 1976.

The velocities in both heliographic coordinates
were calculated from the coordinates of groups with
a lifetime of more than two days by the least-squares
method. For groups with a lifetime of two days the ve-
locities were determined as the difference in positions
on these days divided by the time interval between
their recordings. One-day groups were excluded from
consideration.

The regression method, where the curve for the
argument sinϕ ≡ SF was drawn through a cloud of
points, was used in the overwhelming majority of
studies of differential rotation (and meridional mo-
tions). In this case, naturally, the constructed curve
was assumed to be unique.

We took a different path or, more specifically, an-
alyzed the statistical distributions. The occurrence
histogram of velocities was calculated for each lati-
tude interval with a step ΔSF = 0.05. It was then fit-
ted and the maximum of the fitting distribution (with
an estimate of the confidence interval) was taken as
the values for a given latitude interval. Thereafter, we
considered the global distribution in SF. In our paper
we used the approximation of Faye’s law a+ b sin2 ϕ
for this purpose.

3. IS THE DIFFERENTIAL ROTATION OF
SUNSPOT GROUPS UNIMODAL?

First consider all sunspot groups of the sample
(more than 20 000 values). Let us construct the oc-
currence histograms of rotation rate residuals relative
to the Carrington oneω−ωC for various SF intervals.
Our initial hypothesis is that the residuals (including
those due to the random measurement errors) must
represent a random process similar to a Gaussian
one. Therefore, we fit the derived distributions for
each SF interval by one Gaussian (Fig. 1). The law of
sidereal differential rotation corresponding to Fig. 1 is

ω = (14.4508 ± 0.0080) (1)

− (2.717 ± 0.076) sin2 ϕ.

Here and below, the global law of angular velocity
is determined from the values of the mean for the
fitting distribution (Gaussian) by taking into account
its error for each SF.

It can be seen from Fig. 1 that for almost all
latitudes the observed statistical distribution has an
excess with respect to the fitting Gaussian. Let us
make a test for the asymmetry and excess of all Gaus-
sians in Fig. 1.

The asymmetry and excess are calculated as fol-
lows (Gmurman 1979):

A =
1

ns3

n∑

i=1

ni(xi − x)3, (2)

E =
1

ns4

n∑

i=1

ni(xi − x)4 − 3.

Their dispersions are

D(A) =
6(n − 1)

(n+ 1)(n + 3)
, (3)

D(E) =
24(n − 2)(n − 3)n

(n− 1)2(n+ 3)(n+ 5)
.

It is assumed that if

devA ≡ |A| − 3
√

D(A) ≤ 0, (4)

devE ≡ |E| − 5
√

D(E) ≤ 0,

then the data are consistent with the hypothesis that
the distribution is normal.

In fact, according to our data, (4) appear as pre-
sented in Fig. 2. It can be seen from this figure
that for all statistically significant histograms (N �
500), either devA or devE and, more often, both
these quantities are greater than zero, suggesting a
deviation from the normal distribution.

In general, the distribution of rotation rates in
Fig. 1 can be represented as an asymmetric but uni-
modal (single-component) one. However, it is not
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Fig. 1. (Color online) Occurrence histograms of rotation rates for all sunspot groups relative to the Carrington grid for various
sines of the heliographic latitude SF and their unimodal Gaussian fit.

very clear precisely what fitting function we must use.
Therefore, we will take a different path. We will adopt
the hypothesis that the above fact is explained by two
distributions of rotation rates (asymmetry) different in
half-width (excess). Let us perform a two-Gaussian
analysis (Fig. 3).

Obviously, for all latitudes there are two typical
Gaussian distributions of rotation rates that we wall
call T1 (wide, faster rotation) and T2 (narrow, slower
rotation).

Let us test the hypothesis that the distribution of
rotation rates is bimodal using the chi-square test
(Agekyan 1974). We calculate

U =
∑

i=1,k

(mi − npi)
2

npi
, (5)

where mi are the frequencies in the histograms and
npi are the “theoretical” frequencies in the fitting
distributions. To eliminate the influence of the error
at a small number of values in a histogram column,
we consider only those values for which npi > 5.

Substituting the experimental U and the number
of independent parameters ξ = k − l − 1 (ξ = 3 and

6 for one and two Gaussians, respectively) into the
right-hand side,

P (u, ξ) =
1

2ξ/2Γ( ξ2)

∞∫

u

tξ/2−1e−
1
2
tdt, (6)

we obtain P . According to Agekyan, the hypothesis
is rejected if P < 0.05 and the data are consistent
with the hypothesis if P > 0.05 (respectively, at a 5%
significance level).

The values of P obtained are illustrated by Fig. 4.
The result is: the hypothesis that the normal dis-
tribution of rotation rates is unimodal is rejected for
all SF, except for −0.5 and −0.45; on the whole,
however, it is still rejected. At the same time, the data
are consistent with the hypothesis about two existing
normal distributions (except for SF = 0.3) at a 5%
significance level.

In addition to the classical criteria, there are more
modern ones that allow us to choose the most proba-
ble one from two descriptions, unimodal and bimodal.

For example, the Akaike information criterion
(AIC), a criterion used to choose from several sta-
tistical models, is well known (Grasa 1989). Its value
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Fig. 2. The number of sunspot groups (top) and the variations of parameters (4) (bottom) for various sines of the heliographic
latitude.

is defined as
AIC = 2k − 2 lnL, (7)

where k is the number of model parameters and L
is the maximized likelihood function of the model.
The likelihood function for a model with several pa-
rameters for a discrete random variable is defined as
follows:

L(x1, x2, . . . , xn; Θ1, . . . ,Θk) (8)

= p(x1; Θ1, . . . ,Θk)

× p(x2; Θ1, . . . ,Θk) . . . p(xn; Θ1, . . . ,Θk),

where p is the probability that the quantity will take xi
as a result of the trial. The functions L and lnL reach
a maximum for the same set of parameters {Θi}ki=1.

There is an experimental sample yi =
count (ω ∈ [ωi, ωi+1]), where we have a graph of the
frequencies of occurrence of the differential sunspot
group rotation rates for 21 latitude intervals.

Denote xi = (ωi + ωi+1)/2 (the middle of the in-
terval). There are two models from which it is pro-
posed to choose the one that describes better the
experimental data. They can be described by one
Gaussian:

f1(x) =
A exp

[
−4 ln 2(x−xc)2

w2

]

w
√

π
4 ln 2

, k = 3, (9)

or two Gaussians:

f2(x) =
A1 exp

[
−4 ln 2(x−xc,1)2

w2
1

]

w1

√
π

4 ln 2

(10)

+
A2 exp

[
−4 ln 2(x−xc,2)2

w2
2

]

w2

√
π

4 ln 2

, k = 6.

The probability p(xi;A, xc, w) = f1(xi;A, xc, w)/n;
similarly for f2(xi;A1, xc,1, w1, A2, xc,2, w2).

We obtain lnL =
∑n

i=1 ln p(xi).
We know the model parameters and we can cal-

culate the likelihood function for both models for each
of the 21 samples; then we calculate the AIC. Plus
we will take into account the fact that for small-size
samples, where n/k < 40 (and this is precisely our
case), the corrected AIC is commonly assumed to be
more sensitive to an increase in the number of model
parameters:

AICc = AIC +
2k(k + 1)

n− k − 1
, (11)

where n is the sample size.
In addition, the Bayes (Schwarz) information cri-

terion (BIC) proposed as a modification of the AIC,
more sensitive to the number of model parameters, is

ASTRONOMY LETTERS Vol. 44 No. 3 2018



206 NAGOVITSYN et al.

−1

SF = −0.5 SF = −0.45 SF = −0.4 SF = −0.35 SF = −0.3 SF = −0.25 SF = −0.2

SF = −0.15 SF = −0.1 SF = −0.05 SF = 0 SF = 0.05 SF = 0.1 SF = 0.15

SF = 0.2 SF = 0.25 SF = 0.3 SF = 0.35 SF = 0.4 SF = 0.45 SF = 0.5

0

200

150

100

N

50

0
200

150

100

50

0
200

150

100

50

0
1 2 −1 0 1 2 −1 0 1 2 −1 0 1 2 −1 0 1 2 −1 0 1 2 −1

ω − ωC, deg day−1
0 1 2

Fig. 3. (Color online) Occurrence histograms of rotation rates for all sunspot groups relative to the Carrington grid for various
sines of the heliographic latitude SF and their bimodal Gaussian fit.

well known (Grasa 1989). (It is preferable to use the
BIC for samples with n � k):

BIC = k lnn− 2 lnL. (12)

AIC and BIC tend to give preference to models with
a larger and smaller number of parameters, respec-
tively.

The results obtained are illustrated by Table 1.
The first column in Table 1 shows the middle of the
interval of sines of the heliolatitude under consid-
eration Δsinϕ = 0.05 in width, the second column
shows the difference of the AIC values for the fits
of the sample by one and two Gaussians ΔAIC =
AIC1 −AIC2, the third column shows the analogous
difference of the corrected AIC values ΔAICc =
AIC1,c −AIC2,c, and the fourth column shows the
analogous difference of the BIC values ΔBIC =
BIC1 −BIC2. Since the information criteria are
smaller for the model that describes better the sample,
a positive value in the table suggests that the fit
by two Gaussians describes better the sample in
the latitude interval under consideration. Negative
values can be explained by the small sample size; the
corresponding latitudes are italicized in Table 1. The
observational data are better fitted by the sum of two

normal distributions in the overwhelming majority of
cases (>80%).

Thus, on the whole, the distribution of solar an-
gular velocities is described by a bimodal rather than
unimodal normal distribution for all latitudes.

4. TWO POPULATIONS OF SUNSPOT
GROUPS AND THEIR ROTATION

As we have already noted, the sunspot groups
were shown (Nagovitsyn et al. 2012, 2016, 2017;
Nagovitsyn and Pevtsov 2016) to be reliably sepa-
rated by their physical properties (areas, magnetic
fields, lifetimes) into two populations: small short-
lived (SSG) and large long-lived (LLG) ones.

Let us divide our data set into these populations
and construct the occurrence histograms of angular
velocities for them separately (Fig. 5). We see that the
SSG and LLG sunspots show unimodal and bimodal
distributions, respectively.

Let us check this conclusion using the chi-
square test at a significance level P = 0.05, as before
(Fig. 6). Apart from one latitude interval for LLGs
and two for SSGs, the data are consistent with the
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Fig. 4. Values of the parameter P from (6) for unimodal and bimodal fits of the rotation rates of all sunspot groups for various
sines of the heliographic latitude.

Table 1. Results of our calculations

sinϕ ΔAIC ΔAICс ΔBIC
–0.5 183 181 178
–0.45 26 24 21
–0.4 73 71 68
–0.35 15 13 10
–0.3 139 138 134
–0.25 151 149 145
–0.2 115 113 110
–0.15 145 143 140
–0.1 134 132 129
–0.05 183 181 177

0 –6 –8 –11
0.05 62 60 57
0.1 173 171 168
0.15 225 223 220
0.2 170 168 165
0.25 –107 –109 –112
0.3 –19 –21 –24
0.35 119 117 114
0.4 0 –1 –5
0.45 114 112 109
0.5 164 162 158

sinϕ is the middle of the latitude interval under consideration
(Δsinϕ = 0.05), ΔAIC is the difference of the AIC values for
the fits of the sample by one and two Gaussians, ΔAICc is the
analogous difference of the corrected AIC values, and ΔBIC is
the analogous difference of the BIC values. The latitude intervals
for which one or more criteria are less than zero and the negative
values of the criteria themselves are italicized.

hypotheses about two-Gaussian and one-Gaussian
distributions for LLGs and SSGs, respectively, at
the selected significance level. We will designate
the SSG rotation mode as S1, the fast LLG rotation
mode as L1, and the slow one as L2.

5. TWO SYSTEMS OF DIFFERENTIAL
ROTATION OF SUNSPOT GROUPS

Let us plot the data on the rotation of the S1, L1,
and L2 modes on the graphs together with the T1 and
T2 modes from Section 3. S1 and L1 coincide with
T1, L2 coincides with T2 (Fig. 7). Thus, two sunspot
group rotation modes exist on the Sun: “fast” T1 and
“slow” T2:

ω = (14.616 ± 0.013) − (2.88 ± 0.13) sin2 ϕ, (13)

ω = (14.3499 ± 0.0039) − (2.869 ± 0.043) sin2 ϕ.

For the modes (13) the rotation differentiality coeffi-
cients coincide with a high accuracy, the equatorial
rotation rates differ by tens of sigma.

6. RESULTS AND CONCLUSIONS

In contrast to the previous studies, the result ob-
tained here is based on an analysis of the statistical
distributions of angular velocities for various latitude
intervals. It is interpreted as the existence of two
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Fig. 5. (Color online) (a) Occurrence histograms of SSG rotation rates for various sines of the heliographic latitude SF and
their unimodal Gaussian fit; (b) the same for the LLG population and their bimodal fit by two Gaussians.

fundamental sunspot group rotation modes (compo-
nents) on the Sun with the same differentiality but
different equatorial rotation rates. Note in paren-
theses that the bimodality of rotation for higher lay-
ers of the solar atmosphere, the solar corona, was
detected by Badalyan and Sýkora (2005, 2006) and

Badalyan (2009). However, the pictures of rotation
differ significantly in the papers of these authors and
in our paper (the difference of the mode periods is
several days in the paper by Badalyan and Sýkora and
less than one day in our paper).

The conclusion that follows from Fig. 7 is that
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the rotation of SSGs is determined by the fast T1
mode, while that of LLGs is determined by both T1
and T2 (slow) modes. Indeed, if we consider the
mean differences in the rotation of the corresponding
populations with the fundamental modes, then we will
obtain

S1− T1 = −0.031 ± 0.075, (14)

L1− T1 = −0.020 ± 0.082,

L2− T2 = −0.010 ± 0.024,

i.e., the corresponding modes do coincide. Recall that
we identified the T1 and T2 rotation modes based on
the entire data set, without any separation into the
populations, and S1, L1, and L2 after the separation.

The fast and slow modes (13) differ significantly.
Let us ask the question: Can the existence of two
(fast and slow) synodic differential rotation modes
of sunspot groups (that underlies our observations
and calculations of the rotation rates) be due to the
slightly different velocities of the Earth around the
Sun at aphelion (summer season) and perihelion
(winter season)? Let us estimate this residual.

We will denote the yearly mean parameters and
those at perihelion and aphelion by the indices 0, 1,
and 2, respectively. According to https://nssdc.gsfc.

nasa.gov/planetary/factsheet/earthfact.html, the or-
bital velocity of the Earth is V0 = 29.78 km s−1, V1 =
30.29 km s−1, and V2 = 29.29 km s−1.

Due to the conservation of angular momentum
MV r, the distances from the Earth to the Sun will
be r0 = 1.496 × 108 km, r1 = r0V0/V1 = 1.471 ×
108 km, and r2 = r0V0/V2 = 1.521 × 108 km.

In one day the Earth will traverse the following dis-
tances in its orbit: l0 = 2.573× 106 km, l1 = 2.617 ×
106 km, and l2 = 2.531 × 106 km.

These will correspond to the angular velocity
residuals (sidereal minus synodic)

Δω0 = 2arctan (l0/(2r0)) (15)

= 0.9854 deg/day,

Δω1 = 1.019 deg/day,

Δω2 = 0.9534 deg/day.

The scatter of residuals at perihelion and aphelion
relative to the mean is 0.03 deg/day. Recall that we
constructed the histograms of rotation rates with a
step in rotation rate of 0.1 deg/day. So, the effects
related to the difference of the Earth’s velocities at
aphelion and perihelion are smaller than the accuracy
of constructing our histograms. On the other hand,
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Fig. 7. Differential rotation of sunspot groups (for a description of the legend, see the text).

they cannot be responsible for the two different dis-
tributions of rotation rates per se: their difference is
0.06 deg/day, while we obtained 0.27 deg/day.

The question also arises as to how to compare our
results with those of other authors, which are close to
but not always coincide with our results. Most of the
authors applied the regression methods insensitive
to the distribution of individual rotation rates when
constructing the rotation curves, while our statistical
method allows one to diagnose the distribution being
studied and to obtain the necessary parameter esti-
mates from it.

To summarize, the revealed fundamental solar ro-
tation modes are closely related to the existence of two
populations of sunspot groups (14), while the popu-
lations themselves differ not only in areas, magnetic
field, and lifetime (Nagovitsyn et al. 2012, 2016, 2017;
Nagovitsyn and Pevtsov 2016), but also in differential

rotation rate. All of this not only suggests a real phys-
ical difference between the two revealed populations
of sunspot groups but also gives new empirical data
for the development of a dynamo theory, in particular,
for the theory of a spatially distributed dynamo.
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