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Abstract—In the early Universe up to hydrogen recombination in the Universe, the radiation pressure
was much greater than the pressure of baryons and electrons. Moreover, the energy density of cosmic
microwave background (CMB) photons was greater than or close to the energy density contained in the
rest mass of baryonic matter, i.e., the primordial plasma was a radiated-dominated one and the adiabatic
index was close to 4/3. The small density perturbations from which the observed galaxies have grown
grew as long as the characteristic perturbation scales exceeded the horizon of the Universe сt at that time.
On smaller scales, the density perturbations were standing sound waves. Radiative viscosity and heat
conduction must have led to the damping of sound waves on very small scales. After the discovery of
the cosmic microwave background, J. Silk calculated the scales of this damping, which is now called Silk
damping, knowing the CMB temperature and assuming the density of baryons and electrons. Observations
with the South Pole Telescope, the Atacama Cosmology Telescope, and the Planck satellite have revealed
the predicted damping of acoustic peaks in the CMB power spectrum and confirmed one important
prediction of the theory. In 1970, R.A. Sunyaev and Ya.B. Zeldovich showed that such energy release in
the early Universe should lead to characteristic deviations of the CMB spectrum from the Planck one. The
development of the technology of cryogenic detectors of submillimeter and millimeter wavelength radiation
has made it possible to measure the CMB spectral distortions at 10−8 of its total intensity (PIXIE). This
has sharply increased the interest of theoretical cosmologists in the problem of energy release when small-
scale sound waves are damped. We have derived a relativistic formula for the energy of a standing sound
wave in a photon–baryon–electron plasma from simple hydrodynamic and thermodynamic relations. This
formula is applicable for an arbitrary relation between the energy density of photons and the rest energy
density of baryons and their thermal energy density. It continuously describes the transition between the
two extreme cases. We obtain the expression for a radiation-dominated plasma in one limit and return to the
expression for a gas of classical massive particles in the other limit. We have derived the relations that relate
the amplitudes of velocity, baryon number density, and temperature perturbations in a radiation-dominated
plasma of photons, baryons, and electrons.
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INTRODUCTION

The matter density perturbations at the radiation-
dominated expansion phase of the Universe on sub-
horizon scales are standing sound waves (Lifshitz
1946). At redshifts z > 103, not only the radiation
pressure er/3 exceeded the matter pressure ≈2NT
but also the radiation energy density er was greater
than Nmc2, the energy density of baryonic matter.

*E-mail: nailinogamov@gmail.com

Recall that the number density of CMB photons ex-
ceeds the mean number density of protons or elec-
trons in the Universe by a factor of 109. The main
photon–electron interaction mechanism was Thom-
son scattering. The photon mean free path

l = 1/(σTNe) = 1031/(1 + z)3

= 1013(106/z)3 [cm]

was much smaller than the wavelength of sound
waves λ on the scales of interest for observational
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cosmology:

λ = 5 × 1017(Mb/(107M�)1/3(106/z) [cm],

where σT is the Thomson cross section, and Mb in the
mass of the baryons in the volume λ3. In this problem,
the pressure in the wave and its kinetic and internal
energies are completely determined by radiation. The
presence of electrons (and the Coulomb attraction
of protons and helium nuclei associated with them)
allows the photon gas to be treated as a collisional gas
where sound waves can exist. The presence of dark
matter interacting with the baryon and photon gases
only via gravity has virtually no effect whatsoever on
the properties of sound waves in the photon gas.

Lifshitz (1946) pointed out that the sound waves
in the early Universe should be damped due to ra-
diative viscosity. Lifshitz and Khalatnikov (1963)
drew attention to the role of radiative heat conduction.
Silk (1968) was the first to calculate the redshift de-
pendence of the damping scale using the CMB tem-
perature measured by that time. Sunyaev and Zel-
dovich (1970a, 1970b) noted that constraints on the
spectrum of primordial density perturbations could be
obtained by measuring the CMB spectral distortions
resulting from the dissipation of small-scale sound
waves and the release of their energy (and primar-
ily the presence of μ-distortions) (see also Hu and
White 1996); the μ-distortions are associated with
the deviation of the Bose–Einstein spectrum from a
blackbody one.

In recent years, the development of the technology
of cryogenic submillimetric and millimetric detectors
has made it possible to measure the spectral distor-
tions at 10−8 of the total CMB energy density (see
Fixsen and Mather (2002), and Kogut et al. (2010) for
a description of the proposed PIXIE space project).
This has increased sharply the interest of theoret-
ical cosmologists in the problem of energy release
when small-scale sound waves are damped at red-
shifts z ∼ 105–2 × 106 (Chluba et al. 2012; Khatri
et al. 2012a, 2012b; Pajer and Zaldarriaga 2013).
Unfortunately, we cannot obtain information about
the earlier times due to the existence of a blackbody
photosphere of the Universe at z ∼ 2 × 106 (Sun-
yaev and Zeldovich 1970b; Danese and Zotti 1982;
Khatri and Sunyaev 2013). Before this time, the
production of photons by double Compton scattering
and bremsstrahlung allows Comptonization to form
a blackbody spectrum and causes all spectral distor-
tions to be nulled.

For the subsequent consideration, it is important
that the sound waves in the early Universe were
standing ones. This fact was pointed out by Sunyaev
and Zeldovich (1970c). It follows directly from the
solution of Lifshitz (1946) for the amplitude of the

growing mode of density perturbations, which trans-
form into sound waves when crossing the horizon,
i.e., when the perturbation wavelength becomes less
than the horizon.

Standing waves with different wavelengths arrive
with different phases by the time of hydrogen re-
combination in the Universe. As a result, a char-
acteristic dependence of the amplitude on the an-
gular scale, the so-called acoustic peaks (predicted
by Sunyaev and Zeldovich (1970c) and Peebles and
Yu (1970) and detected by the instruments on the
high-altitude BOOMERanG and Maxima balloons
and the WMAP and Planck satellites), is observed
in the power spectrum of angular CMB fluctuations.
This fact is the most important observational con-
sequence of the theory of evolution of the matter
density fluctuations in the Universe. It confirms the
existence of standing sound waves in the Universe at
the radiation-dominated phase.

A standing sound wave has a very elegant prop-
erty. At two phases of its period in time, the wave, as
it were, is damped—the matter velocities in the wave
are zero in the entire space. This means that the entire
wave energy at these instants of time is concentrated
in the internal energy. This remarkable fact allows the
calculation of the energy density of standing sound
waves in the photon gas in the early Universe to be
simplified. Below, we calculate the energy density
using, in particular, this fact. Note that this prob-
lem important for cosmology was solved by Chluba
et al. (2012) (see also Khatri et al. 2012a, 2012b;
Pajer and Zaldarriaga 2013) using the Boltzmann
equation. These authors showed that the formula
for the energy release during the dissipation of sound
waves used by Sunyaev and Zeldovich (1970a), Hu
and White (1996), and subsequent authors underes-
timates the energy release by a factor of 2.25. For a
complete picture, we provide a solution to the problem
of the energy of sound waves in an ordinary plasma,
where 2NT � er/3 and Nmc2 � er. Under these
conditions, the solution coincides with the classical
result presented, for example, in the book by Landau
and Lifshitz (1986). Below, we also provide a general
formula describing the energy density in a standing
sound wave for an arbitrary relation between the con-
tributions of the radiation, the baryon rest energy, and
the thermal energy. We also derive a general formula
for the sound speed.

It is well known that the formulas for the growth
of density perturbations in the Universe in the case
where the perturbation scale is much less than the
horizon can be derived by using the Newtonian ap-
proximation and by disregarding the general relativity
effects. We will work in the same approximation.
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FORMULATION OF THE PROBLEM AND
RESULTS

For a gas of massive nonrelativistic particles, the
local instantaneous energy density (erg cm−3) of a
standing wave is

mN0

2
u2 +

mN0c
2
s

2
n2

N2
0

, (1)

where m is the mass of the particles, N0 is the un-
perturbed particle number density, u is the particle
fluid velocity in the standing-wave oscillations, n is
the number density perturbation, and cs is the sound
speed. The sound speed in Eq. (1) is taken in the
unperturbed state cs|0; the index zero refers to the
unperturbed state. Formula (1) gives a small cor-
rection to the energy density of any gas element that
moves with a low (|u| � cs) velocity u and in which
the number density is changed by n compared to
the equilibrium number density N0; |n| � N0. The
derivation of Eq. (1) for a nonrelativistic medium with
an arbitrary equation of thermodynamic state can be
found in the textbook of Landau and Lifshitz (1986).
In the case of a standing wave, the kinetic energy (the
first term in (1)) and internal energy (the second term
in (1)) of matter averaged over the spatial and tempo-
ral periods 〈 〉xt are equal to each other. Therefore, the
total energy of the standing wave Ew is

Ew = mN0〈u2〉xt = mN0c
2
s

〈n2〉xt

N2
0

. (2)

The previous estimates of the wave energy in a
photon gas were based on the hydrodynamic expres-
sions (2). The following substitutions were made:

the mass density mN0 → ρr = er/c
2, er = aT 4, and

the sound speed cs → c/
√

3. In addition, the density
perturbation was substituted as follows: mn → δρr .
As a result, it was found that

Ew 
 er

c2
〈u2〉xt =

1
3
er
〈n2〉xt

N2
0

, (3)

Ew 
 1
3
er〈δ2〉xt,

where

δ ≡ δρr

ρr
.

In new papers (Khatri et al. 2012a, 2012b; Chluba
et al. 2012), the Boltzmann equation for CMB pho-
tons is solved. In particular, the coefficient in Eq. (3)
was calculated using this equation:

Ew =
3
4
er〈δ2〉xt, (4)

which differs from the estimate (3) by a factor of 9/4.
In this paper, we neglect the primordial abundance of
helium by assuming this correction to be small at the
radiation-dominated phase of the Universe expansion
considered here.

The calculations presented here confirm the co-
efficient 3/4 in Eq. (4). Our calculations are based
on the thermodynamics of a photon–electron–baryon
gas and the hydrodynamic equations valid for a small
(compared to λw) photon mean free path; λw is the
wavelength of the standing wave. The following uni-
versal formula was derived:

Ew =
3er

23

211 + 5 × 3 × 29ε + 29 × 32 × 25ε2 + 17 × 23 × 33ε3 + 5 × 34ε4

(22 + 3ε)3
〈t2〉xt

T 2
0

, (5)

which is applicable for any relation between the
contributions of photons and massive particles to
the wave energy. Here, er = aT 4

0 , ε = ppl/er , ppl =
2N0T0 is the thermal pressure of the fully ionized hy-
drogen plasma, N is the baryon number density equal
to the electron number density (electrical neutral-
ity), T is the temperature of the single-temperature
photon–electron–baryon plasma, T0 is the unper-
turbed, spatially uniform temperature, and t is the
temperature perturbation, T = T0 + t. The universal
formula (5) is reduced to Eq. (4) in the radiation-
dominated limit, when ε → 0. Indeed, in this limit
we have: Ew → 12er〈t2〉xt/T

2
0 ; ρr = er/c

2, δρr =

4(er/c
2)t/T0, t/T0 = (1/4)δ, δ = δρr/ρr; therefore,

Ew = (3/4)er〈δ2〉xt.

THE WAVE EQUATION AND A WAVE

The problem is considered in the approximation of
tight coupling between CMB photons and electrons,
because in the early Universe the Compton mean free
path of a photon is small compared to the acoustic
perturbation wavelength. Since ions are coupled with
electrons by Coulomb forces, a mixture of photons
and plasma forms an elastic medium that oscillates
with a single fluid velocity �u(�r, τ). We assume that
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the damping effects are negligible on time scales of
the order of several wave periods.

Let, for simplicity, the fully ionized plasma consist
of protons and electrons and N be the proton num-
ber density (note that the cosmological abundance of
helium is easy to take into account). At the evolu-
tionary phase of the Universe under consideration, the
number of particles is conserved. The particle number
consideration equation in the case of one-dimensional
motion is

∂(ΓN)
∂t

+
∂(ΓNu)

∂x
= 0, (6)

Γ =
(

1 − u2

c2

)−1/2

.

Equation (6) is written in the laboratory frame of co-
ordinates x and t, in which the nodes and antinodes of
the standing wave are at rest. The local instantaneous
fluid velocity of particles in the wave in the laboratory
frame is denoted by u(x, t). In (6) N is the proton
number density in the rest frame, and Γ is the Lorentz
factor. In the rest frame, the fluid velocity of protons
is zero. In the laboratory frame, the number density is
ΓN . The number density is the number of protons
per unit volume. The factor Γ that appears when
passing from the rest frame to the laboratory frame,
N → ΓN , is related to the Lorentz contraction of a
unit volume in the laboratory frame compared to the
rest frame.

We consider small-amplitude waves:

N = N0 + n, T = T0 + t, (7)

|n| � N0, |t| � T0.

The notation (7) is adopted to remove notation like
δ, δn,Δ, n(1) , . . . from the formulas. In unperturbed
equilibrium, the thermodynamic parameters are N0

and T0; the velocity is zero.

Let us rewrite Eq. (6) for the number density in
a form linear in wave amplitude. Substituting (7)
into (6), using the spatial uniformity of the unper-
turbed number density N0 and the smallness of the
fluid velocity, u � c, we will obtain the linearized
equation

nt + N0ux = 0, nt ≡ ∂n/∂t, (8)

ux ≡ ∂u/∂x.

The factor Γ in this equation is equal to one in the
linear (in u) approximation.

The energy–momentum tensor Tαβ = T βα for the
photon–baryon–electron plasma in the laboratory

frame is

Γ2h − p Γ2hu/c 0 0

Γ2hu/c Γ2hu2/c2 + p 0 0

0 0 p 0

0 0 0 p

h = e + p = mc2N + 5NT +
4
3
aT 4, (9)

where h is the relativistic enthalpy per unit volume in
the rest frame, e and p are the volume energy density
and pressure in the rest frame; the indices α and β
run 0, 1, 2, 3. The matrix Tαβ in the laboratory frame
in reduced form is obtained from the diagonal matrix
Tαβ

rest (diagonal e, p, p, p) in the rest frame using the
Fourier transformation.

The relativistic momentum conservation law is
given by the equation

1
c

∂[Γ2(e + p)u/c]
∂t

(10)

+
∂[Γ2(e + p)u2/c2 + p]

∂x
= 0.

This equation corresponds to the second row from
top in the matrix Tαβ . Equation (10) states: the
change in the volume momentum density is equal to
the divergence of the momentum flux. In the case of
an adiabatic small-amplitude acoustic wave, Eq. (10)
after linearization takes the form

h0ut + c2px = 0, (11)

ut + c2
s(nx/N0) = 0, h0 = e0 + p0,

where e0 and p0 are the unperturbed quantities, and
cs is the sound speed:

c2
s = c2pN |s

N0

h0
=

pN |s
m̃

, (12)

pN |s ≡
dp

dN
|s.

Since the wave is adiabatic, the entropy s of the
photon–baryon–electron plasma is conserved at
compression and rarefaction in the wave. The symbol
|s reminds of this. Let us explain the meaning of the
important mass m̃ in Eq. (12) for the sound speed.

For a nonrelativistic gas of massive particles (of
one type and without photons), the adiabatic sound
speed is

c2
s =

dp

mdN
|s, (13)

where m is the mass of the massive particle. In
our case (provided that the radiation contribution is

ASTRONOMY LETTERS Vol. 41 No. 12 2015



ENERGY DENSITY OF STANDING SOUND WAVES 697

negligible), this is the proton rest mass; we neglect
the electron mass. In the photon–baryon–electron
plasma, the following quantity acts as the mass in
Eq. (12) for the sound speed:

m̃ = (h0/c
2)N−1

0 = m +
5T0

c2
+

4
3

aT 4
0

c2
N−1

0 , (14)

where N−1
0 is the volume per proton,

h0 = mc2N0 + 5N0T0 +
4
3
aT 4

0

is the unperturbed (background) relativistic enthalpy
per unit volume in the laboratory frame. For an
unperturbed background at rest, the laboratory and
rest frames coincide. The quantity m̃ in Eq. (14) is the
proton mass together with the mass of the photons
accounted for by this proton plus the mass related to
the enthalpy 5NT of the plasma proper. It can be
seen that when this mass is introduced, the form of
Eqs. (12) and (13) for the sound speed becomes the
same in the relativistic case and in the nonrelativistic
limit.

The linearized particle (8) and momentum (11)
conservation laws can be easily reduced to the wave
equation

ntt − c2
snxx = 0, utt − c2

suxx = 0. (15)

The harmonic standing wave

n = nm cos kcst sin kx, (16)

u = −um sin kcst cos kx

is a solution of the wave equation (15). The expres-
sion

nm/N0 = um/cs (17)

relates the amplitudes of the standing wave (16).
Equation (17) follows from Eqs. (8) or (11) after the
substitution of solutions (16) into them.

The origin x = 0, t = 0 in (16) is chosen in such
a way that, first, the center x = 0 is half way between
the fixed walls u(x = ±π/2k, t) ≡ 0 and, second, the
phases t = 0 and π/2kcs correspond to the instants
the motion stops (u ≡ 0) and the conversion of the
entire wave energy into kinetic energy (the time of
the greatest matter acceleration). At t = π/2kcs, the
profile of the particle number density N0 + n levels off,
n ≡ 0, where n is the deviation of the number density
from its equilibrium value N0 (see (7)). Thus, the
phases t = 0 and π/2kcs refer to the maxima of the
potential and kinetic energies (see the figure).

THE SOUND SPEED, A UNIVERSAL
FORMULA

Let us calculate the sound speed (12). The fluid
velocities of plasma particles in a standing wave are
small compared to the speed of light, u � c. We
will restrict ourselves to the case of T < mec

2, where
me is the electron mass. Accordingly, the thermody-
namic characteristics of the plasma are described by
the formulas for a nonrelativistic ideal gas of massive
particles. The volume energy density, pressure, and
entropy are

e = 3NT + aT 4, (18)

p = 2NT + aT 4/3, (19)

s = 2 ln
T 3/2

N
+

4
3

aT 3

N
, (20)

where m is the proton mass, a is the radiation con-
stant, and er = aT 4 is the blackbody radiation energy
density. Formula (20) for the entropy is written per
proton, because the entropy of a variable volume with
a fixed number of protons is conserved in an adiabatic
flow.

Let us expand the isentropic condition

s(N,T ) ≡ s0 = s(N0, T0) (21)

near the unperturbed solution (7). We will obtain

sNn + sT t = 0, t = −(sN/sT )n, (22)

where the derivatives sN = ∂s/∂N |T and sT =
∂s/∂T |N are taken at point N0, T0. Condition (21)
specifies a curve emerging from point N0, T0 on
the N,T plane. This is the curve of the isentrope.
Equation (22) defines the tangent to this curve at
point N0, T0.

Let us expand the pressure p(N,T ) = p0 + pNn +
pT t at point N0, T0; here, pN = ∂p/∂N |T and pT =
∂p/∂T |N . Let us eliminate the temperature incre-
ment t (7) using Eq. (22). Thus, we find

pN |s =
p(N,T ) − p0

n
= pN − pT

sN

sT
.

Calculating the partial derivatives in accordance with
the formulas for pressure (19) and entropy (20) and
using Eq. (12), we arrive at the formula for the sound
speed

c2
s

c2
=

2
3

32e2
r + 120erppl + 45p2

pl

(8er + 6mc2N0 + 15ppl)(8er + 3ppl)
, (23)

er = aT 4
0 , ppl = 2N0T0,

c2
s

c2
=

2
3

32 + 120ε + 45ε2

(8 + 3ε)(8 + 15ε + 6mc2N0/er)
, ε =

ppl

er
.
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Alternation of the phases of stopping t = 0 and fastest motion t = Tper/4 in the standing wave whose profiles are specified by
Eqs. (16); the wave period is Tper = 2π/kcs = λ/cs; nm and um are the amplitudes of the proton number density and velocity
perturbations. They correspond to the greatest perturbations in the one-dimensional plane wave (16).

Into (23) we substituted the unperturbed relativistic
enthalpy

h0 = e0 + p0 = mc2N0 + 5N0T0 (24)

+
4
3
aT 4

0 =
er

6

(
8 + 15ε + 6

mc2N0

er

)
,

which enters into Eqs. (11), (12), and (14). The
derived expression takes into account all of the con-
tributions associated with the radiation and the rest
energy of baryons together with the thermal contri-
bution of the plasma. This allows both the radiation-

dominated and nonrelativistic cases to be described in
a unified way.

Hence at ppl � er and ppl � mc2N we obtain
the well-known formula for the radiative sound speed
with baryon loading

c2
s

c2
=

1/3
1 + (3/4)mc2N/er

. (25)

In the intermediate region er ∼ ppl � mc2N , from (23)
we obtain a formula,

c2
s = (2/3)(32e2

r + 120erppl + 45p2
pl)/[(8er + 3ppl)6mN ],

similar to that given in problem 2 to Section 64 in
the textbook of Landau and Lifshitz (1986). For a
nonrelativistic plasma with a low photon pressure,
er � ppl � mc2N , the speed of light c cancels out,
and Eq. (23) tends to the formula for the hydrody-
namic sound speed

c2
s → 10

3
T

m
.

It can be seen that Eq. (23) is universal in the sense
that it encompasses all limiting cases.

THE POTENTIAL AND TOTAL ENERGIES
OF A STANDING WAVE

Whereas we expanded the adiabat s(N0 + n, T0 +
t) (21) up to terms of the first order of n, t in deviation
from the equilibrium point (7) when calculating the
sound speed (23), (25), the curvature of adiabat (21)
at the equilibrium point N0, T0 should be estimated
when calculating the standing-wave energy. Indeed,

the average of the linear deviation is zero. That is why
the curvature needs to be estimated, i.e., the expan-
sion should be brought to terms of the second order
inclusive. The expansion of curve (21) at point (7) is

s(N,T ) − s(N0, T0) = sNn + sT t (26)

+
1
2
sNNn2 + sNT nt +

1
2
sTT t2 = 0,

where the first-order derivatives were determined
above, and the second-order derivatives are

sNN =
∂2s

∂N2
, sNT =

∂2s

∂N∂T
, sTT =

∂2s

∂T 2
.

Consider expansion (26) together with the isen-
tropicity condition s − s0 = 0 as an equation for the
deviation t. Solving this equation, we find

t|s = −sN

sT
n +

(
−sNN

2sT
(27)

+
sNsNT

s2
T

− s2
NsTT

2s3
T

)
n2.
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An additional (compared to tangent (22)) term that
defines the curvature appears in (27).

If Eq. (26) is solved for n, then we will obtain

n|s = − sT

sN
t (28)

− sNNs2
T − 2sNsNT sT + s2

NsTT

2s3
N

t2.

Let us expand Eq. (18) for the energy density
per unit volume up to the second-order perturbations
near the equilibrium state:

e = e0 + eNn + eT t +
1
2
eNNn2 + eNT nt (29)

+
1
2
eTT t2;

here again the subscripts N and T at energy e de-
note differentiation. Let us related the increments in
number density n and temperature t by requiring that
the shift on the N , T plane described by them remain
on the adiabat. To find this relation between the
differentials n and t, we will substitute parabola (27)
into expansion (29) of the energy e. As a result, we
obtain a formula that expresses the adiabatic energy
perturbation in terms of the density perturbation:

(e − e0)|s =
8er + 15ppl

6
n

N0
(30)

+
1
18

32e2
r + 120erppl + 45p2

pl

8er + 3ppl

n2

N2
0

.

The calculations of the derivatives, the power expan-
sions, and the calculations of the coefficients were
performed with the Mathematica program of symbolic
transformations. The adopted notation er and ppl is
presented above in (23).

The second-order correction is of interest, be-
cause the first-order correction becomes zero when
averaged over the harmonic oscillations (16). Let
us express the second-order correction (e − e0)2|s
in Eq. (30) in terms of the ratio of the thermal and
radiation energies ε = ppl/er . We have

(e − e0)2|s =
32 + 120ε + 45ε2

18(8 + 3ε)
n2

N2
0

er, (31)

where n and N0 refer to the proton number den-
sity, with n being the correction to the unperturbed
number density N0. The correction n results from
the wave perturbation of the homogeneous back-
ground. In the limit ε � 1 (the dominance of pho-
tons), from (31) we obtain

(e − e0)2|s →
2
9
er

(
n

N0

)2

.

The factors in the formulas for the sound speed (23)
and for the correction (e − e0)2|s to the energy due
to the presence of wave perturbations (30), (31) are
similar. Factoring out the sound speed, we bring the
formula for the perturbation (e − e0)2|s to the form

(e − e0)2|s (32)

=
c2
s

c2

8 + (6mc2N0/er) + 15ε
12

er
n2

N2
0

= m̃
c2
s

2
n2

N0
.

The effective mass m̃ (14) was substituted for the
relativistic enthalpy in (32).

For a nonrelativistic plasma dominated by the
thermal pressure of particles, er � ppl � mc2N ,
Eqs. (31) and (32) take the form

(e − e0)2|s = m
c2
s

2
n2

N0
. (33)

It coincides with Eq. (65.1) from the book of Landau
and Lifshitz (1986) for the second-order correction
(n/N0)2 to the internal energy of gas compression
(rarefaction) at a low degree of compression (rarefac-
tion), |n|/N0 � 1. The answer (33) is also given on
page 21 in the book of Zel’dovich and Raizer (1966).
We will emphasize that Eqs. (32) for the general
situation and (33) for the special one are identical in
appearance if the mass and the sound speed are used
in the formula for the compression energy.

The total energy Ew of the standing wave (16)
can be easily found from the above formulas. At the
instant the motion stops t = 0 (see Eqs. (16) and
the figure), the entire energy of the standing wave
is converted into potential energy. Substituting the
number density distribution (16) at t = 0 into Eq. (31)
or (32) for n, integrating Eq. (31) over the period∫ λ
0 dx, and dividing the integral by the wavelength∫ λ
0 dx/λ, we arrive at the formula for the total energy

of the standing wave

Ew =
32 + 120ε + 45ε2

36(8 + 3ε)
n2

m

N2
0

er (34)

= m̃
c2
s

4
n2

m

N0
.

These formulas are derived from (31) or (32) when
n2

m/2 is substituted for n2, where nm is the amplitude
of baryon number density oscillations in the plane
wave (16) (see the figure). The coefficient 1/2 is equal
to the mean value of the sine squared, 〈(sin kx)2〉.
Note that the parameters er, N0, ε, and cs in the above
formulas refer to the unperturbed uniform values and
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do not depend on time and coordinate. In the limit
ε � 1 (the radiation-dominated case), we have

Ew → 1
9
er

n2
m

N2
0

. (35)

We will emphasize that Eq. (35) is applicable at
mc2N ∼ er . The term with the baryon rest energy
(baryon loading) remaining in the sound speed (25)
drops out of (35) even in the case of mc2N > er .

TEMPERATURE OSCILLATIONS
AND THE POTENTIAL ENERGY OF A WAVE

Let us calculate the energy perturbation via the
correction t/T0 to the temperature. For this purpose,
we will substitute parabola (28) into expansion (29)
of the energy. As a result, we find the first two terms
of the expansion of the perturbation of the internal
energy (18) in powers of t/T0 along the curve of
constant entropy (20):

(e − e0)|s =
er

4
(8 + 3ε)(8 + 15ε)

4 + 3ε
t

T0
(36)

+
3er

16
2048 + 7680ε + 8352ε2 + 3672ε3 + 405ε4

(4 + 3ε)3
t2

T 2
0

,

where, as before, er = aT 4
0 and ε = ppl/er. If the

parabola t|s = t(n) = an + bn2 (27) is substituted
into the expansion (e − e0)|s = At + Bt2 (36) for the
perturbation t, then expansion (36) transforms back
to the formula (e − e0)|s = Cn + Dn2 (30). We will
emphasize that, in this case, the coefficient B trans-
forms to the coefficient D not according to the rule
D = Ba2! The correct expression is D = Ba2 + Ab.
The additional term Ab originates from the linear term
At in Eq. (36).

From (36) at er � ppl = 2NT � mc2N (a non-
relativistic plasma without radiation) we obtain

(e − e0)|s =
15ppl

4
t

T0
+

45ppl

16
t2

T 2
0

. (37)

We arrive at the same expression by expanding the
energy of an ideal gas e|s = e0(T/T0)γ/(γ−1) with a
constant adiabatic index γ at γ = 5/3 on the isen-
trope s ≡ s0. Indeed,

e|s = e0

(
T0 + t

T0

)γ/(γ−1)

= e0 (38)

×
[
1 +

γ

γ − 1

(
t

T0

)
+

γ

2(γ − 1)2

(
t

T0

)2

+ . . .

]
.

At γ = 5/3 for a fully ionized hydrogen plasma, we
have e0 = 3N0T0. Substituting γ and e0 into (38)

and taking into account the fact that epl = 3ppl/2, we
obtain Eq. (37).

Let us compare the quadratic terms in temperature
Bt2 = (45/8)(N0/T0)t2 in (33) and in number den-
sity Dn2 = (5/3)(T0/N0)n2 in (33). We will relate
the increments n and t by the entropy constancy
condition. The following relation holds on the adiabat
of a classical gas: (T0 + t)/T0 = [(N0 + n)/N0]γ−1.
Consequently,

t

T0
=

[
(γ − 1)

n

N0

+
1
2
(γ − 1)(γ − 2)

(
n

N0

)2 ]∣∣∣∣
γ=5/3

=
2
3

n

N0
− 1

9

(
n

N0

)2

.

The incorrect value of D′ = Ba2 mentioned above is
equal to D′ = (5/2)(T0/N0), while the correct value
of D consistent with (33) is a factor of 1.5 smaller:
D = Ba2 + Ab = (5/3)(T0/N0).

In the case of radiation dominance, ε � 1 (i.e.,
er � ppl), Eq. (36) for the second-order correction
(at an arbitrary ratio between er and mc2N) takes
the form

(e − e0)2|s = 6er(t/T0)2. (39)

From (36) and (39) we obtain the general and asymp-
totic (ε � 1) expressions for the total energy of the
standing wave Ew

Ew =
3er

32
(40)

× 2048 + 7680ε + 8352ε2 + 3672ε3 + 405ε4

(4 + 3ε)3
t2m
T 2

0

,

Ew = 3er(tm/T0)2, (41)

because 2048 = 211. The quantity tm in Eqs. (40)
and (41) is the amplitude of harmonic temperature
oscillations in the standing wave (16), er = aT 4

0 , and
ε = ppl/er = 2N/aT 3

0 .

THE KINETIC ENERGY OF A WAVE

Consider the kinetic energy of a standing sound
wave in the photon–baryon–electron plasma. The
energy is given by the first component

T 00 = Γ2h − p (42)

of the energy–momentum tensor Tαβ ; here, Γ2 =
(1 − u2/c2)−1, h = e + p. The wave energy at a
space-time point x, t in the laboratory frame is

T 00(n, u) − T 00(0, 0),
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where n and u are the perturbations of the proton
number density and proton fluid velocity at this point.

Consider the instant of time t4 = (1/4)λ/cs (see
the figure) when the profile of the standing wave (16)
is homogeneous in number density, n(x, t4) ≡ 0. At
instant t4 the entire energy of the wave is concen-
trated in the kinetic energy. In this case, the kinetic
energy at a point with coordinates x and t in the
laboratory frame is

T 00(0, u) − T 00(0, 0). (43)

The quantities h and p in the energy (42) are taken
in the rest frame. They do not depend on the velocity u
and change only when the number density N0 + n
changes. Since n(x, t4) ≡ 0 at instant t4, the values
of h and p at this instant are equal to the unperturbed
ones:

h|t=t4 = h0, p|t=t4 = p0. (44)

In view of condition (44), the difference (43) giving
the kinetic energy at instant t4 takes the form

(Γ2 − 1)h0 = Γ2h0 − h0 = Γ(Γh0) − h0, (45)

because T 00(0, u) = Γ2h0 − p0 and T 00(0, 0) =
h0 − p0.

The wave amplitude is small; accordingly, it is
appropriate to pass to the nonrelativistic limit. The
quantities e, p, and h have the dimensions of energy
per unit volume. When passing from the rest frame
to the laboratory frame, the Lorentz dilation of a unit
volume takes place. Therefore, the energy, pressure,
and enthalpy in the rest frame are e, p, and h, while
these quantities in the laboratory frame are elab =
Γe, plab = Γp, and hlab = Γh. In the nonrelativistic
limit, instead of two frames, the laboratory and rest
ones, we have one frame, the laboratory one. Accord-
ingly, the enthalpy in the laboratory frame at instant
t4 is Γh0.

Let us expand (45) in small u2/c2. We have

hlab|t4 = Γh0 ≈ h0, (46)

(Γ2 − 1)h0 = Γ(Γh0) − h0 (47)

≈
(

1 +
1
2

u2

c2

)
h0 − h0 =

h0/c
2

2
u2.

Hence it follows that the quantity h0/c
2 acts as the

mass density for a small-amplitude standing wave in
the photon–baryon–electron plasma. Accordingly,
the kinetic energy takes the form

m̃N0

2
u2, (48)

where the effective mass m̃ was defined above by
Eq. (14). We see that this formula for the mass enters
into the sound speed (12), the internal energy (32),

and the kinetic energy (48) and everywhere makes
the formulas for the photon–baryon–electron plasma
and a gas of classical massive particles similar in
appearance.

COMPARISON OF THE KINETIC
AND POTENTIAL ENERGIES, THE TOTAL

WAVE ENERGY

Let us compare the kinetic and potential (internal)
energies. The total energy of the wave Ew is equal
to its total kinetic energy at instant t4. Integrating
(according to the rule Ew =

∫ λ
0 dx/λ) Eq. (48) for the

local kinetic energy at point x, t4, we will obtain

Ew =
m̃N0

4
u2

m, (49)

where um is the amplitude of the wave (16); the
harmonic wave form (16) is used in this integration.

Let us compare (49) with the total wave energy at
the instant the motion stops t = 0. At this instant,
the entire wave energy is stored in the total internal
energy (34) of the photon–baryon–electron plasma.
Let us substitute the amplitude of the change in pro-
ton number density nm for the velocity amplitude um

in Eq. (49). This substitution is made according to
Eq. (17), which relates the amplitudes in the standing
wave: um = (nm/N0)cs. It can be seen that after
substitution (17) Eq. (49) transforms to Eq. (34).
Thus, the total kinetic energy of the standing wave
at instant t4 is equal to the total potential energy at
instant t = 0.

At an arbitrary instant of time, the total energy Ew

is the sum of the potential and kinetic contributions.
The first of these contributions is

Epot = (1/4)(m̃c2
s)(nm/N0)2 cos2(kcst)

= (1/4)m̃u2
m cos2(kcst).

This expression is obtained by the integration
∫ λ
0 dx/λ

of Eq. (32), into which Eq. (16) for the field of number
densities n in the standing wave was substituted for
the local instantaneous value of n(x, t). The second
contribution (kinetic energy) is

Ekin = (1/4)m̃u2
m sin2(kcst).

The sum of the first and second contributions is equal
to Еw (the energy conservation law).

In Eqs. (34) and (49) for the total energy Ew, we
may write the means 〈n2〉x,t and 〈u2〉x,t instead of
the amplitudes squared n2

m and u2
m. The averaging

should be performed in a rectangle (see the figure)
over the spatial, λ, and temporal, λ/cs, wave periods.
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The subscript x, t in 〈〉x,t denote a spatiotemporal
averaging. According to this definition, we have

〈n2〉x,t =
cs

λ2

λ∫
0

dx (50)

×
λ/cs∫
0

[n(x, t)]2dt =
n2

m

4
.

Similarly, 〈u2〉x,t = u2
m/4. When integrating (50), we

used Eq. (16) for a plane standing wave. Thus, the
mean square is equal to a quarter of the amplitude
squared. One factor (1/2) is formed when averaging
cos2(kcst) over the time; the other factor is formed
when averaging sin2(kx) over the coordinate x. The
total energy of the standing wave

Ew =
m̃c2

s〈n2〉x,t

2N0
+

m̃N0〈u2〉x,t

2
(51)

= m̃N0〈u2〉x,t =
m̃c2

s〈n2〉x,t

N0

is the sum of the averaged energies (32) and (48). The
terms in this sum are equal to each other. Whereas
the local instantaneous potential energy is equal to
the local instantaneous kinetic energy in the case of
a traveling wave (see below), this equality of the po-
tential and kinetic energies holds only for the means
〈 〉x,t in the case of a standing wave.

THE TOTAL ENERGY AND TEMPERATURE
OSCILLATIONS

Formula (51) expresses the total energy Ew in
terms of the corrections to the proton number den-
sity n and the velocity u. Consider the coefficient
with which the energy Ew is expressed in terms of
the correction t to the temperature. We will neglect
the thermal contribution of the plasma ∼N0T0. The
energy Ew is then given by Eq. (41) at an arbitrary
ratio between the rest energy of massive particles
mc2N0 and the radiation energy er = aT 4

0 . Let us
substitute the mean 〈t2〉x,t for the amplitude squared
t2m in (41) just as was done in Eqs. (51).

The variability of the correction to the temperature
t(x, t) obeys Eq. (16) for a standing wave, because the
variability of t(x, t) is proportional to the variability
of the number density n(x, t). Consequently, the
following relations hold:

t = tm cos kcst sin kx, (52)

t2m = 4〈t2〉x,t. (53)

Let us write

ρr =
aT 4

c2
, (δρr) = 4

aT 3
0

c2
t, (54)

〈(δρr)2〉x,t

(ρr|0)2
= 16

〈t2〉x,t

T 2
0

,

where ρr|0 = aT 4
0 /c2, the subscript r denotes radia-

tion. Substituting Eqs. (53) and (54) into (41) and
transforming, we will obtain

Ew =
3
4
er〈δ2〉x,t, δ =

(δρr)
ρr|0

. (55)

Formula (55) remains valid at an arbitrary ratio
mc2N0/er.

The answer (55) is easy to obtain. Let the ra-
diation energy er dominate the rest energy mc2N
and the thermal energy 3NT , i.e., the massive parti-
cles are insignificant dynamically and thermally. The
electron–baryon component is involved only in the
Compton restriction of the photon mean free path lph:
lph � λ, where λ is the acoustic perturbation wave-
length; as a result, the problem becomes hydrody-
namic. In such a situation, the energy of the photon–
electron–baryon system with perturbation (7) is

aT 4 = a(T0 + t)4 (56)

= er

(
1 + 4

t

T0
+ 6

t2

T 2
0

)
, er = aT 4

0 .

Compare (56) with (36) at ε = 0. In this case, the
perturbation in (56) may be even not isentropic.

Substituting the wave field of the standing
wave (52) into (56), we return to the formula Ew/er =
3(tm/T0)2 (41). Recall that this requires the inte-

gration
∫ λ
0 dx/λ of the correction to the energy (56)

at the instant the motion stops t = 0. Finally, from
the formula Ew/er = 3(tm/T0)2 we easily arrive at
Eq. (55) using the simple substitutions (53) and (54).
Formula (55) was derived in Chluba et al. (2012)
in this way. See also the description of previous
attempts to calculate the numerical coefficient in
Eq. (55) in the above paper, which, for example, led to
a factor of 9/4 smaller coefficient.

It is important to note that Chluba et al. (2012)
showed that 2/3 of the energy released through the
dissipation of standing sound waves in the early Uni-
verse goes into increasing the mean CMB blackbody
temperature and only 1/3 of this energy goes into the
distortions of the CMB spectrum.

The approach applied here allows one, first, to es-
tablish the role of baryon loading (the ratio mc2N/er)
and, second, to describe the continuous transitions
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in sound speed and wave energy from the radiation-
dominated case to a classical plasma of massive par-
ticles. This transition occurs when varying the ratio
ε = ppl/er from zero (the photons dominate) to infin-
ity (the massive particles dominate).
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