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Abstract—Based on an analysis of the observational data for solar cycles 12–23 (Royal Greenwich
Observatory—USAF/NOAA Sunspot Data), we have studied various parameters of the “Maunder butter-
flies.” Based on the observational data for cycles 16–23, we have found that BT/L and S depend linearly on
each other, where B is the mean magnetic field of the cycle, T is the cycle duration, S is the cycle strength,
and L is the mean sunspot latitude in the cycle (the arithmetic mean of the absolute values of the mean
latitudes in the north and south). The connection of the observed quantities with the α−ω-dynamo theory
is discussed.
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INTRODUCTION

At present, there exist a number of regularities
connecting various solar activity indices. These
primarily include the Gnevyshev–Ohl rule (GOR)
(Gnevyshev and Ohl 1948), according to which the
area under the curve of Wolf numbers for an even
cycle SR2N correlates with that for the succeeding
odd one SR2N+1, while SR2N−1 does not correlate
with SR2N , with the GOR in such a formulation
being valid for all cycles without exception (Nagovi-
tsyn et al. 2009). Its more popular but less accurate
formulation states that each odd cycle is larger in
amplitude than the preceding even one. Another
well-known regularity is the Waldmeier rule (effect)
(WR) that exists in two formulations: (a) the am-
plitude of the solar cycle correlates negatively with
the duration of the rise phase: a stronger cycle
corresponds to a shorter rise phase (according to
Karak and Choudhuri (2011), the “first Waldmeier
effect”); (b) the cycle amplitude correlates positively
with its rise rate: a stronger cycle corresponds to a
higher rise rate (the “second effect” or, according to
Komitov et al. (2010), the Waldmeier “rule”). Note
that the correlation coefficient in the second case
is much larger. The GOR and WR allow one to
successfully predict the activity of future cycles and
to reconstruct the activity of past ones. Cameron
and Schüssler (2007), Pipin and Kosovichev (2011),
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and Pipin et al. (2012) showed these rules to be
reproduced within the framework of a solar dynamo
model.

The magnetic field of a sunspot is responsible for
its emergence and is one of its main characteristics
(neither the GOR nor the WR use directly this pa-
rameter). Tlatov (2013) and Tlatova et al. (2013)
digitized the magnetic fields of sunspots based on ob-
servations at the Mount Wilson Observatory (MWO)
and revealed temporal regularities in the magnetic
fields of sunspots with various sizes for cycles 16–
23. Based on these data, here we derive a linear re-
lationship between four quantities that are among the
most important parameters characterizing the solar
cycle: the cycle strength S, the mean sunspot mag-
netic field strength B, the cycle duration T , and the
mean sunspot latitude L. Although the activity of the
current cycle cannot be predicted from its initial phase
based on the derived relationship (because all these
quantities can be calculated only after the cycle), the
correlation found can contribute to our understanding
of the solar dynamo theory and the existence of an
11-year solar activity cycle. In addition, the magnetic
activity in those years when the magnetic fields of
sunspots had not yet been measured directly can be
reconstructed using the correlation found.

As is well known, sunspots appear at the be-
ginning of the cycle in the region of mid-latitudes
and gradually approach the equator during approx-
imately eleven years. Such a latitude–time distri-
bution of sunspots is called a butterfly diagram or
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“Maunder butterflies.” According to the dynamo
theory, the appearance of the butterflies is associated
with the motion of the toroidal magnetic field com-
ponent (dynamo wave) from high latitudes toward
the equator in each hemisphere. The latitude–time
diagram of toroidal magnetic field isolines obtained
using even the simplest dynamo models qualitatively
reproduces the observational butterfly diagrams. The
characteristics of the theoretical butterfly diagrams
(the butterfly shape, the amplitude and period of the
magnetic field oscillations) for the Sun and other
stars depend significantly on the control parame-
ters in dynamo models (Brandenburg and Subrama-
nian 2005). In various works on the dynamo the-
ory (Brandenburg and Subramanian 2005; Dikpati
and Gilman 2001; Dikpati et al. 2006; Choudhuri
et al. 1995; Popova et al. 2008; Popova 2009; Muñoz-
Jaramillo et al. 2011), the influence of various model
parameters on the evolution of the magnetic field
was analyzed. For example, it was shown numer-
ically (Choudhuri et al. 1995; Dikpati et al. 2006;
Dikpati and Gilman 2001) and analytically (Popova
et al. 2008; Popova and Sokoloff 2008; Popova 2009)
that the meridional circulation directed oppositely to
the propagation of the dynamo wave could decel-
erate significantly its motion. In addition, intense
meridional circulation “blow away” the dynamo wave
toward the poles. Muñoz-Jaramillo et al. (2011)
showed the turbulent diffusivity to be also capable
of affecting the duration of the solar activity cycle.
In other works (see, e.g., Brandenburg and Sub-
ramanian 2005), the latitude profile of the α-effect
was shown to also affect the shape of the Maunder
butterfly.

An attempt to reproduce the observational
latitude–time distributions for the magnetic fields of
stars by choosing appropriate values of the control
parameters and their dependence on coordinates and
time can give information about the physics of the
process being studied. In this case, however, it should
be remembered that the physics of the process will
be restricted by the chosen model. On the other
hand, not all of the observed quantities enter into
the dynamo model. One can try to correlate some
of the solar cycle parameters with model quantities
only indirectly, and this correlation can be be rather
controversial in some cases. Therefore, an analysis of
various characteristics of the observational butterfly
diagrams may turn out to be useful for such a correla-
tion and for elucidating the physics of magnetic field
generation in celestial bodies.

The goal of this paper is to analyze the evolution of
various parameters of the butterfly diagrams obtained
from the observational data for solar cycles 12–
23 (Royal Greenwich Observatory—USAF/NOAA

Sunspot Data). We investigate the possible rela-
tionships of these parameters to one another and
compare the observational results with the dynamo
theory within the framework of such an analysis.

CHARACTERISTICS
OF THE OBSERVATIONAL BUTTERFLY

DIAGRAMS

In this paper, we used the RGO–NASA/Marshall
data on the monthly mean and daily sunspot activ-
ity indices and sunspot coordinates over the period
1878–2008, which completely spans solar activity
cycles 12–23, as well as for the cores over the period
1878–1976 (cycles 12–20, respectively). Based on
these data, we constructed the butterfly diagrams for
the northern and southern solar hemispheres for each
cycle. For each butterfly “wing,” both in the north
and in the south, we plotted the dependence of the
latitude on the monthly mean sunspot area and made
a linear fit.

There is a problem here: “sunspots from the pre-
ceding cycle,” i.e., those with low latitudes, continue
to go for some time at the beginning of the current
cycle. Similarly, “sunspots from the succeeding cy-
cle,” i.e., those with high latitudes, begin to appear
at the end of the current cycle. Although the relative
number of groups with such sunspots (with respect
to the total number of groups in the cycle) is small,
their presence would introduce a distortion into the
linear fit. Therefore, the sunspots belonging to the
“adjacent” cycles, i.e., the sunspots with low latitudes
at the beginning of the cycle and the sunspots with
high latitudes at the end of the cycle, were removed in
each wing.

Table 1 presents the cycle durations. The first
column gives the cycle numbers, the second col-
umn gives the total cycle durations (according to
the NGDC/NOAA data), the third column gives the
cycle durations for the northern hemisphere after the
removal of the groups belonging to the “adjacent”
cycles as well as the number of groups removed at the
beginning of the cycle (the first number in parenthe-
ses), the end of the cycle (the second number), and
the total number in the cycle (the third number), the
fourth columns gives the same data as those in the
third column but for the southern hemisphere.

As can be seen from Table 1, the number of re-
moved groups is very small in comparison with the
total number of groups in the cycle (of the order
of twenty thousand), so that their removal barely
changed the mean latitude of the cycle for each hemi-
sphere. It is also interesting to note that the northern
and southern wings of the butterflies “pass” to the
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Table 1. Cycle durations

Total Northern wings Southern wings

12 12.1878–02.1890 06.1879–01.1890 (4 + 1 = 5) 01.1879–01.1890 (2 + 2 = 4)

13 03.1890–01.1902 03.1890–08.1901 (0 + 2 = 2) 03.1890–01.1902 (0 + 0 = 0)

14 02.1902–07.1913 02.1902–06.1913 (0 + 6 = 6) 02.1902–07.1913 (0 + 0 = 0)

15 08.1913–07.1923 10.1913–07.1923 (3 + 0 = 3) 08.1913–06.1923 (0 + 2 = 2)

16 08.1923–08.1933 08.1923–08.1933 (0 + 0 = 0) 08.1923–08.1933 (0 + 0 = 0)

17 09.1933–01.1944 09.1933–01.1944 (3 + 0 = 3) 10.1933–12.1943 (7 + 17 = 24)

18 02.1944–03.1954 07.1944–03.1954 (19 + 0 = 19) 02.1944–03.1954 (1 + 0 = 1)

19 04.1954–09.1964 05.1954–09.1964 (1 + 0 = 1) 06.1954–09.1964 (6 + 0 = 6)

20 10.1964–05.1976 10.1964–05.1976 (0 + 0 = 0) 04.1965–05.1976 (37 + 0 = 37)

21 06.1976–08.1986 06.1976–08.1986 (13 + 0 = 13) 06.1976–08.1986 (0 + 0 = 0)

22 09.1986–04.1996 09.1986–04.1996 (5 + 0 = 5) 10.1986–04.1996 (12 + 0 = 12)

23 05.1996–12.2008 05.1996–09.2008 (0 + 24 = 24) 05.1996–12.2008 (17 + 0 = 17)

next cycle not simultaneously but independently. Us-
ing these data, we constructed the butterfly tilt angle
for each hemisphere in each cycle.

Based on the Origin software package, we calcu-
lated the mean latitude L for each wing as the sum of
pairwise products of the latitude by the area divided
by the sum of all sunspot areas. Then, we calculated
the strength of each cycle S as a mean of the monthly
mean sunspot (core) areas.

Analysis of the relationships between these quan-
tities showed the arithmetic mean of the tangents of
the butterfly wing tilt angles in the north and south
to be proportional to the cycle strength (the correla-
tion coefficient is R = 0.66) (Fig. 1a). For the cores
in cycles 12–20, such a relationship holds with the
correlation coefficient R = 0.69 (Fig. 1b). The mean
latitude of the wing in the southern hemisphere vir-
tually coincides with its mean latitude in the northern
hemisphere for each cycle (R = 0.89) (Fig. 2). Note
that this latitude changes from cycle to cycle, while no
clear periodicity has been detected in its change. On
the whole, cycles with a shorter duration have a larger
tilt angle. The ratio of the core area to the sunspot
area is directly proportional to the cycle strength; for
the groups in cycles 12–17, the increase in the ratio
of the areas with increasing strength is greater than
that for the groups in cycles 18–20.

Tlatov (2012) calculated the mean magnetic fields
of cycles based on the MWO data for sunspots with
an area of more than 100 msh (millionths of a solar
hemisphere) as an arithmetic mean of the sum of the
field strengths for such sunspots. Since the bulk
of the magnetic flux is contained in such sunspots,
neglecting small sunspots does not introduce a sig-
nificant error. Using these data for cycles 16–23, we
found BT/L and S to depend linearly on each other,
where B is the mean magnetic field of the cycle, T
is the cycle duration, S is the cycle strength, and L
is the mean sunspot latitude in the cycle (the arith-
metic mean of the absolute values of the mean lati-
tudes in the north and south). This dependence can
be described by the following equation: S = 2539 −
0.89BT/L, R = 0.87, the rems deviation is σ = 132
(Fig. 3a). The data are summarized in Table 2.

If the mean area of not the sunspots but the cores
is used as the cycle strength S, then the dependence
is even closer to a linear one. In this case, however, we
have only five cycles (16–20) for which both the core
area and the magnetic field were calculated (Fig. 3b).
In the case of cores, the dependence takes the form
S = 500 − 0.20BT/L, R = 0.95, σ = 16.

Let us analyze the result obtained. Other things
being equal, a larger cycle strength S corresponds
either to a smaller magnetic field B, or to a shorter
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Fig. 1. Tilt angle versus mean sunspot (a) and core (b) area.
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Fig. 2. Relationship between the mean sunspot latitudes in the north and south.
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cycle duration T , or to a higher latitude L. This sug-
gests that approximately the same magnetic energy is
spent on each cycle, but the ways of magnetic energy
realization in each cycle are different. For example, an
enhanced sunspot activity generally leads to the fact
that sunspots will be generated at higher latitudes,

but the field strength in sunspots will be small, while
the duration of the cycle itself will be short.

In fact, all four quantities change in combination,
because there is no relationship whatsoever between
any pair of individual quantities. The only exception
is the pair of quantities (S and L) for which a weak
dependence with the correlation coefficient R = 0.74
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Table 2. Basic cycle parameters

Cycle number S, msh (sunspots) S, msh (cores) B, G T , yr L, deg

16 707 129 2695 10.03 14.7

17 957 178 2400 10.41 15.3

18 1185 193 2555 10.14 15.4

19 1424 233 2190 10.47 17.3

20 846 129 2350 11.65 14.7

21 1242 – 2230 10.23 15.0

22 1174 – 2720 9.66 17.1

23 796 – 2520 12.60 14.9

is observed (Fig. 4a). However, this dependence
becomes much stronger if not the mean sunspot area
in the cycle but the relative fraction of groups contain-
ing very large sunspots is taken as the parameter S
(Otkidychev 2014; Otkidychev and Skorbezh 2014).
Figure 4b shows the relationship between the mean
sunspot latitude and the relative fraction of groups (in
comparison with the total number of groups in the
cycle) containing maximal sunspots with an area of
more than 800 msh. This suggests that the merid-
ional circulation responsible for the shift of the but-
terfly wings in latitude is associated with the total
magnetic energy.

The solid and dashed lines in Fig. 5 indicate, re-
spectively, the time dependence of the ratio of the
yearly mean core areas to the yearly mean sunspot
areas and the time dependence of the yearly mean
sunspot areas. It can be seen that the ratio of the core
areas to the sunspot areas in years tend to increase
at minima and to decrease at maxima. Thus, starting
from some value, the sunspots “grow” more rapidly
than do the cores in these sunspots, but no regularity
is observed. Starting from cycle 17, there is a clear
tendency for the ratio of the core areas to the sunspot
areas to decrease.

On the whole, the cycle strength is directly pro-
portional to the tangent of the butterfly tilt angle,
although no strict dependence is observed. No de-
pendence of the magnetic field amplitude on the cycle
duration, mean latitude, tangent of the tilt angle, and
cycle strength was found.

COMPARISON WITH THE DYNAMO
THEORY

We will compare the observational results ob-
tained with the simplest α−ω-dynamo model with
meridional circulation.

According to the dynamo theory, the 11-year
solar activity cycle is connected with the magnetic
dynamo action whose mechanism is based on the
joint operation of the α-effect and differential rotation
(Parker 1955). The solar magnetic field is assumed
to have two components: poloidal and toroidal. The
toroidal magnetic field is obtained from the poloidal
one under the action of differential rotation inside
the solar convective zone. The reverse process of
transformation of the toroidal magnetic field to the
poloidal one results from convection mirror symmetry
breaking in a rotating body. The action of the Coriolis
force on rising and expanding (sinking and contract-
ing) vortices leads to a predominance of right-handed
vortices in the northern hemisphere (left-handed ones
in the southern hemisphere). The electromotive force
resulting from the action of Faraday electromagnetic
induction after its averaging over the velocity pul-
sations acquires a component parallel to the mean
magnetic field. It closes the self-excitation circuit in
the Parker dynamo.

The Parker dynamo equations are derived from a
complete system of equations of mean-field electro-
dynamics (Krause and Rädler 1980) under the as-
sumption that the dynamo wave propagates in a thin
spherical shell. When these equations are derived,
the magnetic field is averaged along the radius within
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some spherical shell where the dynamo action takes
place, and the terms describing the curvature effects
near the pole are discarded. A formal procedure
for deriving the dynamo equations was described by
Sokoloff et al. (1995). Meridional flows can also
be taken into account in dynamo models. Popo-
va et al. (2008), Popova and Sokoloff (2008), and
Popova (2009) derived and investigated the dynamo
equations with meridional circulation:

∂A

∂t
= αB + β

∂2A

∂θ2
− V

∂A

∂θ
, (1)

∂B

∂t
= −D cos θ

∂A

∂θ
+ β

∂2B

∂θ2
− ∂(V B)

∂θ
. (2)

Here, B is the toroidal magnetic field (measured in
units of the equipartition field), A is proportional to
the toroidal component of the vector potential that
defines the poloidal magnetic field, θ is the latitude
measured from the equator, t is the time, V (−θ) =
−V (θ) is the meridional circulation, and β is the
turbulent diffusivity. The distances are measured in
units of the solar radius R, and the time is in units of
the diffusion time R2/β0, where β0 is the diffusivity
to which the normalization occurs. The factor cos θ
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corresponds to a decrease in the length of the parallel
near the pole (Kuzanyan and Sokoloff 1995). The
term αB describes the contribution of the α-effect.
The amplitudes of the angular velocity gradient Rω

and the α-effect Rα enter into the dynamo number D
as follows: D = RωRα. The small contribution of the
α-effect is discarded in the second equation, i.e., the
so-called αω-approximation is used. The curvature
effects are discarded in the diffusion terms. The radial
angular velocity gradient is assumed to be constant
as θ changes.

In this model, it is assumed that α =
α0(θ)(1 + ξ2B2)−1, where α0 is the helicity in an un-
magnetized medium, and B0 = ξ−1 is the magnetic
field at which the α-effect is suppressed significantly.

From symmetry considerations (α(−θ) = −α(θ)),
Eqs. (1) and (2) may be considered only for one
(northern) hemisphere with antisymmetry (dipole
symmetry) or symmetry (quadrupole symmetry) con-
ditions on the equator. In this paper, we restrict our
analysis to the dipole symmetry with the simplest
kinematic helicity in an unmagnetized medium, α0 =
sin θ. We use the conditions A(0) = B(0) = A(π) =
B(π) = 0 as the boundary conditions at the poles,
because here we are interested in the solutions with
the dipole symmetry.

Following Popova (2009), we consider the lati-
tude profile of meridional circulation V (θ) = v sin 2θ.
Since the latitude in the model is measured from the
equator, a value with the positive sign corresponds
to meridional circulation directed oppositely to the
dynamo-wave propagation.

Since the parameters of the Maunder butterflies
change from cycle to cycle, it seems quite likely that
the parameters responsible for their shape depend on
time. No periodic dependence of their change with
time was found.

According to this simplest dynamo theory, an in-
crease in the amplitude of meridional circulation di-
rected oppositely to the dynamo-wave propagation
vector leads to an increase in the cycle duration and a
shift of the Maunder butterflies to higher latitudes. If
the shifts of the butterflies on the solar surface are as-
sumed to be associated with the action of meridional
circulation, then, according to the data obtained, their
synchronous motion in latitude can be associated
with the fact that the meridional circulation is the
same in magnitude in both hemispheres.

As the turbulent diffusivity decreases, the cycle
duration grows, the field amplitude increases, and the
butterfly is not shifted in latitude.

The butterfly tilt angle is affected by both merid-
ional circulation and turbulent diffusivity. Thus, the
fact that cycles with a shorter duration have a larger
tilt angle can be reproduced in the model through

an increase in meridional circulation or a decrease in
turbulent diffusivity.

According to the data obtained, there is no clear
dependence of the mean butterfly latitude on the cycle
duration. According to the dynamo theory, if only the
amplitude of meridional circulation changed from cy-
cle to cycle, then the cycle duration would be directly
proportional to the mean latitude. It is possible that,
apart from the change in the amplitude of meridional
circulation, the turbulent diffusivity can also change
with time. Thus, the absence of any dependence
of the mean butterfly latitude on the cycle duration
stems from the fact that these parameters change in
combination on the Sun.

The mean latitude at which the butterfly wing is
located is about 15◦. The maximum deviation from
the mean latitude in the observed cycles is 18%. The
maximum deviation from the 11-year cycle duration
is about 11%; the deviation from the mean field am-
plitude of 2455 G is 13%.

We considered typical parameters for the Sun:
D ≈ −10 000, an amplitude of meridional circula-
tion ≈0.5 model units (≈2 m s−1), and β ≈ 1. At
such parameters, the 11-year cycle is reproduced in
model (1)–(2). We solved Eqs. (1)–(2) numeri-
cally using the Mathcad 11 package. Our numerical
analysis showed that the observed deviation from the
mean latitude could be reached when the amplitude
of meridional circulation changed by Δv ≈ 0.1 model
units (the deviation from the mean is 20%) or Δβ ≈
0.25 (the deviation from the mean is 25%). The ob-
served deviation from the mean cycle duration can be
reached when the amplitude of meridional circulation
changes by Δv ≈ 1.5 model units (the deviation from
the mean is 300%) or Δβ ≈ 0.05 (the deviation from
the mean is 5%). To obtain the observed deviation
from the mean amplitude of the toroidal magnetic
field, the dynamo number D (ΔD ≈ 2000 or 20%),
or the meridional circulation v (Δv ≈ 2.5 or 500%),
or the turbulent diffusivity β (Δβ ≈ 0.01 or 1%) must
change.

CONCLUSIONS

An increase in meridional circulation always leads
to a shift of the butterflies to higher latitudes and
an increase in cycle duration. However, the field
amplitude initially decreases and then increases with
a further increase in meridional circulation. As the
turbulent diffusivity decreases, the cycle duration in-
creases, the field amplitude grows, and the butterfly
is not shifted in latitude. It follows from the dynamo
theory that these parameters may change in combi-
nation in the observed cycles. Therefore, for example,
there is no clear dependence of the mean butterfly
latitude on the cycle duration, because, according to
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the dynamo theory, if only the meridional circulation
changed, then the cycle duration would be directly
proportional to the mean latitude.

The linear dependence f((BT/L), S) from cycle to
cycle may be realized, because the same amount of
energy is spent on each cycle, but it is redistributed
differently in each cycle; therefore, a change in other
cycle characteristics is observed. The dynamo num-
ber is responsible for the intensity of the generation
of magnetic fields in dynamo models. It is then quite
likely that it does not change from cycle to cycle.

The changes in cycle characteristics inferred from
observations are not that large, and, therefore, it
seems highly likely that the changes in control pa-
rameters with time are small and random in nature.

REFERENCES
1. A. Brandenburg and K. Subramanian, Phys. Rep.

417, 1 (2005).
2. R. Cameron and M. Schüssler, Astrophys. J. 659, 801

(2007).
3. A. R. Choudhuri, M. Schüssler, and M. Dikpati, As-

tron. Astrophys. 303, 29 (1995).
4. M. Dikpati and P. A. Gilman, Astrophys. J. 559, 428

(2001).
5. M. Dikpati, G. Toma, and P. A. Gilman, Geophys.

Res. Lett. 33, L05102 (2006).
6. M. N. Gnevyshev and A. I. Ohl, Astron. Zh. 25, 18

(1948).
7. B. B. Karak and A. R. Choudhuri, Mon. Not. R. As-

tron. Soc. 410, 1503 (2011).
8. B. Komitov, P. Duchlev, K. Stoychev, M. Dechev, and

K. Koleva, arXiv: 1008.0375v1 (2010).

9. F. Krause and K.-H. Rädler, Mean-Field Magneto-
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