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Abstract—The magnetohydrostatic theory of a twisted magnetic flux tube (rope) immersed in a realistic
solar atmosphere is presented in a closed analytical form for the first time. General formulas that allow
the equilibrium plasma density, pressure, and temperature distributions inside an axisymmetric vertical flux
tube to be calculated from its magnetic structure, which is assumed to be known (fixed), have been derived.
An analytical model of the external hydrostatic medium free of a magnetic field, the solar atmosphere, where
the temperature profile of the semi-empirical tabulated Avrett–Loeser model is used, has been constructed.
The distribution of plasma parameters in a twisted magnetic flux tube at small deviations of its internal
magnetic structure from the force-free one has been calculated as an example of applying the general
theoretical formulas. Since the tube cross section does not change with height, the constructed model
can be applied to describe the vertical parts of coronal loops. It has been found that the plasma density in
the magnetic flux tube rises when the field twisting exceeds the force-free level and falls with decreasing field
twisting compared to the force-free level. This property of a twisted magnetic flux tube is of fundamental
importance for justifying the mechanism of flare energy release in magnetic flux ropes. A model of a flare in
a ring chromospheric configuration is considered.
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1. INTRODUCTION

Many manifestations of solar activity on the
surface of the Sun are associated with long-lived
magnetic structures whose lifetime exceeds consid-
erably the characteristic time it takes for a magne-
tohydrodynamic equilibrium to be established in the
system. These include, for example, sunspots, quies-
cent prominences, chromospheric filaments, coronal
loops, coronal holes, etc. The magnetohydrostatic
approximation can be used with good reason to
describe such structures (Parker 1979; Priest 1982;
Low 1975, 1980, 1982, 1985; Tsinganos 1981;
Obridko and Solov’ev 2011; Solov’ev and Kirichek
2011, 2014; etc.). Interestingly, even in such a
relatively fast process as the solar flare, the flare
filament (unless it flies out immediately into the
corona and interplanetary space in the form of a
coronal mass ejection, CME) may be considered as
a quasi-static structure. Indeed, a flare typically
lasts 10–20 min and occasionally much longer (up to
several hours), while the characteristic time it takes
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for an equilibrium to be established in the system
(along the cross section and the radius of curvature)
is τa ≈ aV −1

A and τR ≈ RV −1
A , respectively, where

a is the cross-sectional radius of the magnetic flux
rope, R is the radius of curvature of its magnetic
axis, and VA is the Alfvén speed. Typical estimates
for these quantities can be a ≈ 0.5 × 109 cm and
R ≈ 1 × 1010 cm, while VA will be several units
×108 cm s−1 if we take the mean gas density in
the filament to be equal to the chromospheric one
at the level of the transition region (≈10−13 g cm−3)
and the magnetic field in the flare chromospheric
filament to have a strength no less than 300 G (to
provide sufficient energetics of the entire flare). Then,
τa ≈ aV −1

A < 5 s and τR ≈ RV −1
A < 100 s, which is

much shorter than the flare duration. In particular,
this means that the flare magnetic filament both in its
initial state and during the violent energy release in
it may be considered on the whole as a quasi-static
object, i.e., it may be assumed that evolving relatively
rapidly with time due to large Ohmic losses, the
system nevertheless passes a continuous sequence
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of equilibrium states, because the characteristic time
of change in its physical parameters in the flare
process is appreciably longer than the characteristic
Alfvén time (Solov’ev 2012, 2013; Solov’ev and
Murawski 2014).

In addition, the outward appearance of many long-
lived solar structures often allows quite a justified
assumption about the presence of a shift (transla-
tional) or axial symmetry in them to be made. In
these cases, the problem of describing the equilib-
rium of such systems is simplified sharply, although
it by no means becomes trivial in view of the non-
linearity of the magnetic force. In spite of the fact
that an enormous number of works are devoted to
investigating the magnetostatic equilibrium of solar
magnetic structures, many unsolved problems still
remain. Thus, for example, the fact that the long-
lived coronal loops (especially their side branches or
“feet”) do not change noticeably their cross-sectional
radius all the way from the footpoints almost to the
loop tops located high in the corona is a puzzle.
Recently, Gent et al. (2014) has presented a model of
a vertical magnetic flux tube where the magnetic field
distribution obeys a scaling law as a considerable step
forward in the theory of coronal loops. The specific
model proposed by the authors is not an equilibrium
one; there is no balance of forces (the pressure gradi-
ent, the magnetic force, and the gravity force) in the
chromospheric part of such a tube. The authors see
a way out of the situation in the fact that alluding
to the complex structure of chromospheric layers,
they admit the existence of some additional forces of
an unknown physical nature that allegedly provide
an equilibrium of the configuration they constructed.
Such an approach flatly contradicts the basic laws of
physics and is of no scientific interest. The problem of
the magnetostatic theory of coronal magnetic loops
remains an unsolved and very topical problem of solar
physics.

In this paper, we propose a closed analytical theory
of the equilibrium of a vertical magnetic flux tube with
axial symmetry, derive general formulas that allow the
pressure and density in such a configuration to be
calculated from a specified magnetic structure, and
consider specific examples of their application.

The paper has the following structure. In Sec-
tion 2, we provide the basic equations and formulate
the problem. The formulas for the plasma pressure
and density in an equilibrium axisymmetric configu-
ration are derived in Section 3. An analytical model of
the external medium, a hydrostatic solar atmosphere,
is presented in Section 4. A specific example of a
magnetic structure with a field distribution close to
the force-free state is considered in Section 5. The
mechanism of energy release in twisted magnetic flux
tubes (ropes) is analyzed in Section 6. A model of

a ring flare filament is presented in Section 7. The
boundary conditions are analyzed in Section 8. Our
conclusions are briefly formulated in the Conclusions.

2. THE MAGNETOHYDROSTATIC
EQUATIONS AND FORMULATION OF THE

PROBLEM

Consider the magnetohydrostatic problem of cal-
culating the structure of the magnetic field and
plasma for a straight vertical axisymmetric magnetic
flux tube in a plane-parallel equilibrium atmosphere in
the presence of a uniform gravity field g. Axial sym-
metry suggests invariance with respect to arbitrary
rotations of the system around the filament axis. Let
this be the vertical z axis in cylindrical coordinates r,
ϕ, and z; we will measure the distances along this
axis upward from the photospheric level. The gravity
force is expressed as Fg = −ρg(z)ez , where ρ is the
gas density, and the system of magnetohydrostatic
equations will take the form

∇P + (4π)−1[curl B× B] − ρg(z)ez = 0, (1)

div B = 0, (2)

P = ρ�Tμ−1. (3)

The notation is traditional: B is the magnetic field
strength, P and T are the gas pressure and tempera-
ture, respectively, and μ is the mean molar mass of the
gas. Equations (1), (2), and (3) describe, respectively,
the balance of forces in the equilibrium system, the
solenoidal nature of the magnetic field, and the state
of an ideal gas. System (1)–(3) is incomplete: there
is no energy transfer equation in it; therefore, some
of the dependences should be specified additionally
in magnetohydrostatics. In the presence of axial
symmetry, system (1)–(3) is reduced to the following
triplet of equations (Low 1975):

∂2A(r, z)
∂r2

− 1
r

∂A

∂r
+

∂2A(r, z)
∂z2

(4)

= −1
2

dΩ2(A)
dA

− 4πr2 ∂P (A, z)
∂A

,

ρ(r, z)g(z) = −∂P (A, z)
∂z

, (5)

T (r, z) =
μ

�
P (r, z)
ρ(r, z)

. (6)

Here, A(r, z) =
∫ r
0 Bz(r, z)rdr is the flux of the

vertical magnetic field through a horizontal cir-
cle of radius r (without the factor 2π), Ω(r, z) =
4π
c

∫ r
0 jzrdr = rBϕ(r, z) is the vertical electric cur-

rent through the same horizontal circle. The geomet-
ric shape of the magnetic field lines in projection onto
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the (r, z) plane is given by the condition A(r, z) =
const. Equation (5) describes the hydrostatic equi-
librium of the gas along a magnetic field line. The
poloidal field components are defined via the function
А by the relations

Bz =
1
r

∂A

∂r
, Br = −1

r

∂A

∂z
, (7)

which automatically ensure the fulfilment of condi-
tion (2), while the electric current Ω in the pres-
ence of axial symmetry depends only on the magnetic
flux A(r, z): Ω = Ω(A) = rBϕ. Thus, the magnetic
structure of the equilibrium configuration is defined to
a crucial extent by the flux function A(r, z). Owing
to the presence of a potential external field g, the gas
pressure on the right-hand side of Eq. (4), in con-
trast to the well-known Grad–Shafranov equation
(Shafranov 1957; Grad 1960), depends not only on
the magnetic flux A but also on the coordinate z. This
important fact allows us to integrate Eq. (4) over the
variable A and to express the gas pressure in terms of
the functions A, Ω(A), and their derivatives and then
to find the gas density and temperature from Eqs. (5)
and (6), respectively. Thus, based on the known
magnetic structure of the equilibrium configuration,
we can completely calculate the plasma distribution
in it. Low (1980, 1982) was the first to come up with
this idea. As an example, he considered only one very
simple specific case where the above integration is
performed easily, but he derived no general formulas
for P (r, z) and ρ(r, z) and, subsequently, did not
return to this problem. Shapovalov and Shapovalo-
va (2003) solved the problem of obtaining the equilib-
rium plasma distributions in a magnetic configuration
immersed in a specified external potential field and ad-
mitting some one-parameter group of motions of 3D
Euclidean space in the most general covariant form.
Explicit expressions for the gas pressure and density
in equilibrium systems with translational, axial, or
helical symmetry, respectively, can be derived from the
formulas given in this paper using the Killing vector.
In the case under consideration, we will restrict our
analysis only to axisymmetric configurations and will
derive a formula for the pressure by directly integrat-
ing Eq. (4), find the density as the corresponding
partial derivative of the pressure according to Eq. (5)
and the temperature from Eq. (6). For horizontal fila-
ments of an arbitrary cross section with translational
symmetry, general formulas for P (r, z) and ρ(r, z)
were derived and used to construct the prominence
model in Solov’ev (2010).

3. THE PLASMA PRESSURE AND DENSITY
IN AN AXISYMMETRIC MAGNETIC FLUX

TUBE
Let us integrate Eq. (4) with respect to the func-

tion A by considering z as a fixed parameter. We will
begin the integration from some point r∗ located far
from the axis of our system to some arbitrarily cho-
sen point inside the configuration where A = A(r, z).
The magnetic field at the remote point r∗ is com-
pletely absent (or is an external potential field), while
P (r∗, z) ≡ Pex(z) is the hydrostatic gas pressure dis-
tribution in the external medium free of the magnetic
field (this can also be the vertical pressure profile in
a potential magnetic field that does not disturb the
hydrostatic equilibrium). Integrating the equilibrium
equation (4) by taking into account the fact that dA =
∂A

∂r
dr +

∂A

∂z
dz =

∂A

∂r
dr because dz = 0, we obtain

−4π(P (r, z) − Pex(z)) =

A∫

A∗

(
∂2A

r2∂r2
− ∂A

r3∂r

+
∂2A

r2∂z2
+

1
2r2

dΩ2(A)
dA

)

dA,

−4π(P (r, z) − Pex(z)) =
Ω2

2r2
+

r∫

r∗

Ω2

r3
dr

+

r∫

r∗

1
r2

(
∂2A

∂z2
+

∂2A

∂r2

)
∂A

∂r
dr

−
r∫

r∗

1
r3

(
∂A

∂r

)2

dr.

Taking the integral containing the second deriva-
tive with respect to r by parts and replacing r∗ by the
infinity sign, we will obtain a formula to calculate the
pressure:

P (r, z) = Pex(z) − 1
8π

[
Ω2

r2
+

1
r2

(
∂A

∂r

)2

(8)

− 2

∞∫

r

Ω2

r3
dr −

∞∫

r

2
r2

∂2A

∂z2

∂A

∂r
dr

]

.

To calculate the plasma density in the flux tube,
we must find the corresponding partial derivative
∂P (A, z)

∂z
in accordance with Eq. (5), while Eq. (8)

gives a function of the form P (r, z). Note that the
following relations are valid for P , just as for any
differentiable function:

∂P (r, z)
∂z

=
∂P (A, z)

∂z
+

∂P (A, z)
∂A

∂A

∂z
, (9)
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∂P (r, z)
∂r

=
∂P (A, z)

∂A

∂A

∂r
. (10)

From Eq. (9) we have

∂P (A, z)
∂z

=
∂P (r, z)

∂z
− ∂P (A, z)

∂A

∂A

∂z
. (11)

Here, the derivative
∂P (A, z)

∂A
remains unknown on

the right-hand side. To find it, we will use Eqs. (10)
and (8):

∂P (A, z)
∂A

∂A

∂r
=

∂P (r, z)
∂r

= − 1
4π

∂

∂r

[
Ω2

2r2
+

1
2r2

(
∂A

∂r

)2

−
∞∫

r

Ω2

r3
dr

−
∞∫

r

1
r2

∂A

∂r

∂2A

∂z2
dr

]

= − 1
4π

[

− Ω2

r3
− 1

r3

(
∂A

∂r

)2

+
Ω
r2

∂Ω
∂A

∂A

∂r

+
1
r2

∂A

∂r

∂2A

∂r2
+

Ω2

r3
+

1
r2

∂A

∂r

∂2A

∂z2

]

.

Hence, eliminating
∂A

∂r
, we will get

∂P (A, z)
∂A

=

1
4π

[
1
r3

∂A

∂r
− Ω

r2

∂Ω
∂A

− 1
r2

∂2A

∂r2
− 1

r2

∂2A

∂z2

]

. Next,

using (11), we find

∂P (A, z)
∂z

=
∂Pex(z)

∂z
− 1

4π
Ω
r2

∂Ω
∂A

∂A

∂z
− 1

4π
∂

∂z

×
[

1
2r2

(
∂A

∂r

)2

−
∞∫

r

Ω2

r3
dr −

∞∫

r

1
r2

∂A

∂r

∂2A

∂z2
dr

]

− 1
4π

∂A

∂z

[
1
r3

∂A

∂r
− Ω

r2

∂Ω
∂A

− 1
r2

∂2A

∂r2
− 1

r2

∂2A

∂z2

]

or

∂P (A, z)
∂z

=
∂Pex(z)

∂z
− 1

4π
∂

∂z

×
[(

∂A
∂r

)2 −
(

∂A
∂z

)2

2r2

−
∞∫

r

1
r2

(
Ω2

r
+

∂A

∂r

∂2A

∂z2

)

dr

]

+
1

4πr

∂A

∂z

∂

∂r

(
1
r

∂A

∂r

)

.

Finally, the mass density distribution in the magnetic
flux tube is

ρ(r, z) = ρex(z) +
1

4πg
(12)

×
{

∂

∂z

[(
∂A
∂r

)2 −
(

∂A
∂z

)2

2r2
−

∞∫

r

Ω2

r3
dr

−
∞∫

r

1
r2

∂A

∂r

∂2A

∂z2
dr

]

− 1
r

∂A

∂z

∂

∂r

(
1
r

∂A

∂r

)}

.

4. THE ANALYTICAL MODEL OF A
HYDROSTATIC SOLAR ATMOSPHERE

The functions Pex(z) and ρex(z) in Eqs. (8) and
(11) represent the background, the external medium,
a hydrostatic solar atmosphere (photosphere, chro-
mosphere, and corona) unaffected by the magnetic
field. To calculate the pressure and density distri-
butions inside the magnetic configuration, we must
know these unperturbed functions. The solar corona
may be considered with a good accuracy to be in
a state of hydrostatic equilibrium by neglecting the
influence of the solar wind up to heights of the or-
der of one solar radius (Obridko and Solov’ev 2011).
The situation with the chromosphere is much more
complex; this layer is distinguished by pronounced
inhomogeneity and dynamism (the phenomenon of
chromospheric spicules with speeds of tens of km s−1

and heights up to 10–12 Mm, the supergranulation
network, etc; the dynamic properties of the chromo-
sphere are partly taken into account by the fact that
the microturbulent component 0.5ρV 2

turb determined
from the profiles of chromospheric lines is included
in the gas pressure of the medium maintaining its
vertical equilibrium). Nevertheless, to have a basis for
quantitative calculations, semi-empirical static mod-
els at the levels from subphotospheric layers to tens
of Mm in the corona have been proposed and widely
used for many years as some averaged description
of the “quiet” solar photosphere, chromosphere, and
corona. The Vernazza–Avrett–Loeser (VAL) model
(Vernazza et al. 1981) had been considered for a long
time to be the main model of the solar chromosphere,
transition region, and inner corona. The Avrett–
Loeser (AL) model (Avrett and Loeser 2008) that
superseded the VAL model is the latest and probably
most reliable (to date) and worked-out one among
such models (there is a detailed overview and analysis
of the preceding works on modeling the chromo-
sphere and transition region in the above paper). We
use this model (below designated as AL) in this paper
as the main one. In this model (see Table 26 and
Fig. 8 in Avrett and Loeser (2008)), the heights are
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measured from the base of the photosphere, from the
level with the following parameters:

z0 = 0 km, T0 = 6583 K,

P0 = 1.228 × 105 dyn cm−2,

n0(H) = 1.188 × 1017 cm−3, ρ0 = 2.78 g cm−3.

The temperature-minimum region is located above
this level, in the range of heights from 500 to 600 km:
the temperature drops to Tm = 4400 K at a height of
560 km and only rises further out. At heights from
1300 to 2130 km, this rise is very slow: from 6600 to
6768 K. This region may be called the temperature-
plateau region. A very thin transition region begins
further out (we will denote its parameters by the sub-
script “tr”). The temperature rises to 20 000 K already
at a height of 2152 km. Starting from this level,
which may be taken as the boundary of the transition
region, z = ztr = 2.152 Mm, the plasma temperature
rises very sharply to hundreds of thousands of kelvins
and then increases monotonically up to its limiting
coronal values, ∼2 MK at heights of 100–200 Mm;
further out, the coronal temperature ceases to rise.

Our objective in this section is to approximate
the vertical temperature profile specified by the semi-
empirical AL model by fairly simple analytical for-
mulas as accurately as possible and then to obtain
the corresponding profiles Pex(z) and ρex(z) also in
the form of analytical formulas using the hydrostatic
equilibrium condition for the external medium

dPex(z)
dz

= −ρex(z)g (13)

and the equation of state for an ideal gas (6).

It is natural to divide the entire region of space to
be described into three layers.

(1) The subphotospheric layers, heights −0.5 <
z < 0. Here and below, we will measure the heights
in Mm. These depths are sufficient to describe in
detail the subphotospheric layers of sunspots and the
footpoints of chromospheric and coronal loops buried
in the photosphere.

(2) The photosphere and chromosphere, heights
from z = 0 to ztr = 2.152 Mm.

(3) The corona, z > 2.152 Mm.

We will begin with the layer adjacent to the photo-
sphere from below, with heights from −0.500 Mm to
zero. In this layer, the AL model gives a description of
the medium only to a depth of 100 km. For deeper
layers, we will adopt a monotonic change in tem-
perature with depth taken from the convection zone
model of Stix (2004), which is close to the AL model
profile in the region of overlap between the models

(−0.1 Mm < z < 0 Mm). The temperature curve at
these depth is well approximated by the formula

Tex(z) =
6.583

1 − 1.2(z2)
1
4 − 0.78z

, (14)

−0.5 < z < 0.

The temperature here and below is given in thou-
sands of K. The corresponding pressure and density
profiles in the subphotospheric region are

Pex(z) = P0 exp

(
−z+0.8(z2)

3
4 −0.39z2

)

H0
,

ρex(z) = ρ0(1 − 1.2(z2)
1
4 − 0.78z)

× exp

(
−z+0.8(z2)

3
4 −0.39z2

)

H0
,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(15)

−0.5 < z < 0.

Here, H0 = �T0(μg)−1 = 0.156 is the local scale
height at z = 0 expressed in Mm.

According to the AL model, the vertical tempera-
ture profile in the photosphere and chromosphere has
a fairly complex shape. Let us choose the following
approximation formula for it:

Tex(z) (16)

=
6.583

1 + 0.71
√

z

1+
(
1.5z

3
2

)6 − 0.01z − 3.4 × 10−34z100
,

0 < z < 2.152.

Here, the second term in the denominator of
the fraction describes the decrease in temperature
from its photospheric values to 4400 K at a level
of 0.56 Mm and its return to 6600 K at a level of
∼1.3 Mm. The third small term provides a slight
temperature rise in the temperature-plateau region.
Finally, the last term with a very high power of z
describes the sharp rise in temperature as the tran-
sition region is approached: in the narrow range
from 2.13 to 2.152 Mm, the temperature rises from
6800 to 20 000 K (Fig. 1). Note that we choose the
temperature profile for the subsequent integration of
the hydrostatic equilibrium equation (13). There-
fore, when writing Eq. (16), we separated out the
characteristic argument 1.5z

3
2 in it. Since the last

term in the denominator of Eq. (16) makes a very
small (<1%) contribution to the pressure and density
profiles, below we will discard it. Equation (13),
given (6) in the photospheric–chromospheric layer
under consideration, should be integrated by taking
into account the fact that the mean molar mass
μ changes appreciably with height from 1.288 at
the photospheric level to a coronal value of 0.6 at
z = 2.152. The reason for this decrease has to do not
so much with the hydrogen ionization caused by a
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Fig. 1. The analytical dependence of temperature on
height Tex(z) (solid line) in the range from −0.5 to
2.152 Mm calculated from Eqs. (14) and (16). The
temperature is given in thousands of K, and the height z
measured from the photospheric level is given in thou-
sands of km (Mm).

temperature rise as with the plasma microturbulence,
which, as has been pointed out above, raises the
effective pressure of the external medium. Formally,
this pressure rise can be described as a decrease
in the effective molar mass of the gas with height.
According to the AL model, the height dependence of
the effective molar mass can be represented as

μeff(z) = 1.288
[

1 − 0.535
( z

2.152

)3
]

. (17)

The pressure and density profiles in the chromo-
sphere calculated by taking into account (17) will
take the form

Pex(z) = P0

(
2.25z3−1.5

√
3z

3
2 +1

2.25z3+1.5
√

3z
3
2 +1

)0.433

× exp
(
−z+0.0134z4−0.1043F−0.0526G+0.005z2

H0

)
,

ρex(z) = ρ0
Pex(z)

P0

(
1+0.71

√
z

1+(1.5z
3
2 )6

− 0.01z
)

×
(
1 − 0.535z3

(2.152)3

)
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

0 < z < 2.152.

Here, F = arctan(1.5z
3
2 ) and G = arctan(3z

3
2 +√

3) + arctan(3z
3
2 −

√
3). The small terms making

a contribution <1% are discarded in Eqs. (18).
At heights above the transition region, at z >

ztr = 2.152 Mm, the change in temperature with
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Fig. 2. The same distribution Tex(z) in a logarithmic
form in the range from −0.5 to 11.6 Mm calculated from
Eqs. (14), (16), and (19). The dashed lines mark the levels
of the logarithms of minimum 0.001Tex(0.56) = 4.4 and
asymptotic coronal temperature, 0.001Tc = 2000. The
circles designate the AL model data.

height can be well represented by the formula (Fig. 2)

Tex(z) = Tc
4.2a +

√
z − 2.152

4.2 +
√

z − 2.152
, z > 2.152. (19)

Here, a =
Ttr

Tc
, where Tc is the asymptotic coronal

temperature, for which we will take Tc = 2 × 106 K;

thus, a =
20000
2 × 106

= 0.01. In the corona, μ = μc =

0.6 g/mol. Under our assumptions, the hydrostatic
equilibrium condition (13) and the equation of state
for an ideal gas (6) lead to the following expressions
for the pressure and density in the corona:

Pex(z) = Ptr(
√

z − 2.152 + 4.2a)
4.2a
101

× exp
(
− z−2.152+8.4

√
z−2.152

Hc

)
,

ρex(z) = ρtr
Pex(z)

Ptr
a 4.2+

√
z−2.152

4.2a+
√

z−2.152
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(20)

z > 2.152.

Here, according to the AL model, Ptr =
0.1056 dyn cm−2, ρtr = 2.27 × 10−14 g cm−3, and
Hc = �Tc(μcg)−1 = 101 is the scale height in the
corona at Tc = 2 × 106 K expressed in Mm, and we
took into account the fact that Pex(2.152) ≡ Ptr =
aρtrgHc. Note that the scale heights H0 and Hc differ
by three orders of magnitude!

Figure 2 presents the temperature distributions
calculated from Eqs. (14), (16), and (19). As can be
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Fig. 3. Change of the logarithm of pressure Pex(z) ex-
pressed in 1 dyn cm−2 with height. The diamonds repre-
sent the AL model data.

seen, these analytical formulas approximate the tem-
perature profile of the AL model with a high accuracy.
In Avrett and Loeser (2008), attention was focused
on the temperature distribution that was chosen to
achieve the closest correspondence of the theoretical
line profiles (especially in the ultraviolet) to the ob-
served ones. The AL temperature profile appears to
have been determined fairly reliably and is close to the
real one. Figures 3 and 4 show the hydrostatic vertical
pressure and density distributions also in comparison
with the AL data.

The fairly simple analytical model of a hydrostatic
solar atmosphere constructed here in a large range
of heights, from subphotospheric layers to tens of
Mm in the corona, is definitely more realistic than
the elementary barometric distributions commonly
used in such problems. Its practical application for
numerical simulations of magnetic configurations in
the solar atmosphere is considerably more convenient
and economical than the direct use of several hundred
tabulated AL model data.

Thus, when a model of the external medium is
available, the problem of determining the pressure
and temperature–density distributions in an equi-
librium vertical flux tube with a specified magnetic
structure turns out to be completely solved in an
analytical form.

5. THE MAGNETIC STRUCTURE
OF A VERTICAL FLUX TUBE

As an example of using the general formulas of
the magnetohydrostatic theory developed above, let
us choose a vertical magnetic flux tube inside which
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Fig. 4. Change of the logarithm of solar-atmosphere
plasma density expressed in 10−12 g cm−2 with height.
The diamonds represent the AL model data.

the initial field distribution is described by the force-
free solution from Schatzman (1965):

Bz(r, z) = B0J0(kr) exp(−lz),

Br(r, z) = l
kB0J1(kr) exp(−lz),

Bϕ(r, z) =
√

1 − l2

k2 B0J1(kr) exp(−lz).

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(21)

Here, B0 is the magnetic field strength at the coordi-
nate origin, J0(kr) and J1(kr) are Bessel functions of
the zeroth and first orders, respectively. Solution (21)
belongs to the class of linear force-free fields satisfy-
ing the condition [∇× B] = αB, α = const. In our

case, α = k

√

1 − l2

k2
. The linear force-free magnetic

fields are remarkable in that they correspond to the
minimum of magnetic energy at fixed magnetic helic-
ity (Woltjer 1958). The magnetic flux function for (21)
is

A(r, z) =
B0

k2
krJ1(kr) exp(−lz); (22)

the current (or field twisting) function is proportional
to the magnetic flux: Ω(A) = αA(r, z). Obviously,
l ≤ k, i.e., the vertical scale dominates over the hor-
izontal one, which exactly corresponds to the struc-
ture of coronal loops. The special case of l = k and
α = 0 corresponds to a potential field. Any of the
zeros of the Bessel function J1(kri) = 0, i.e., R = ri,
may be taken as the side boundary of the magnetic
flux tube (21), r = R, because the radial and az-
imuthal fields become zero on such a surface, and only
the vertical field enters into the boundary condition
of continuity for the total pressure. (The boundary
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Fig. 5. Vertical section of the magnetic flux
tube (21) obtained from the condition A(r, z) =
B0
k

rJ1(kr) exp(−lz) = const at l = 0.9k. The
azimuthal field whose field lines wrap around the z
axis is not shown here.

conditions and the structure of the external field are
discussed below in a separate section). According to
what has been said, the product kR can be one of the
terms of the sequence

kRi = 3.8317; 7.0166; 10.1735; 13.3237;
16.4706; 19.6158; 22.7601; 25.9037....

In this paper, we will restrict ourselves to the case of
i = 1, kR1 = 3.8317, although fairly large numbers
i can be of interest for the problem of magnetic field
concentration to the vertical-rope axis, but we will not
consider these effects here. The vertical section of the
magnetic flux tube (23) is presented in Fig. 5.

We will emphasize that the cross-sectional radius
of the magnetic flux tube under consideration does
not change with height due to the separation of vari-
ables in Eqs. (21), which is a characteristic feature of
coronal loops. Note in passing that the problem of
constancy of the coronal loop cross section is easily
solved for magnetic loops comprising a magnetic ar-
cade (translational symmetry). In this case, however,
not the arcade but a solitary magnetic flux tube is
considered.

Potential and force-free magnetic fields do not
perturb the hydrostatic state of the medium in which
they are immersed, because the magnetic force in
these fields becomes zero. Consequently, purely po-
tential or force-free magnetic structures cannot be
observed in principle in the solar atmosphere. For
them to be “visible,” observable, some deviations
from the force-free (or potential) state must appear in
the corresponding field distributions. One of such de-
viations can be an excess or reduction of the magnetic
field twisting compared to its force-free level. Let the
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Fig. 6. Vertical section of the magnetic
configuration with the modified flux function
A(r, z) = B0

k0.8 r1.2J1(kr) exp(−lz) = const at l = 0.9k.
In this case, there is no magnetic field on the r = 0
axis, corresponding to the configuration of a horizontal
magnetic ring in Fig. 12.

azimuthal component of distribution (21) be

Bϕ(r, z) = b

√

1 − l2

k2
B0J1(kr) exp(−lz), (23)

where b is some positive coefficient of the order of
unity. There is the initial force-free state (21) at
b = 1; the equilibrium magnetic structure at b 	= 1 is
no longer a force-free one; the gas pressure, density,
and temperature distributions inside such a tube dif-
fer from the hydrostatic distribution of the external
medium.

What is remarkable in this case is that, as it has
turned out, the sign of this deviation is directly related
to the sign of the difference b − 1. If this difference is
positive, i.e., b > 1, then the additions to the pressure
and density attributable to the magnetic field are also
positive in the entire tube volume. Otherwise, when
b < 1, i.e., the field twisting turns out to be below
the force-free level, the additions to the pressure and
density profiles in the tube become negative; at a
sufficiently large deviation from the force-free state,
the resulting pressure and/or density at some points
of the magnetic flux tube may turn out to be arbitrarily
small, close to zero. As the field twisting b decreases
further, these quantities formally become negative,
which has no physical meaning. This simply means
that a configuration with such parameters cannot be
balanced in a given hydrostatic medium at a given
geometric level. To return the system to the region
of equilibrium states, we should change (reduce) the
unit of measurement of the magnetic field B0, i.e.,
increase the plasma parameter β0 = 8πPex(0)B−1

0 or
choose a twisting coefficient b to be not too small
compared to unity. The aforesaid is illustrated graph-
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ically in Figs. 7, 8 and 9, 10 with several numerical
examples.

6. THE MECHANISM OF ENERGY RELEASE
IN MAGNETIC FLUX ROPES

The energy release in solar flares is usually at-
tributed to the reconnection of magnetic field lines
in large-scale current sheets (Syrovatskii 1981;
Priest 1985; Priest and Forbes 2000). For example,
the “standard” flare model (Sturrock 1968; Kopp and
Pneuman 1976; Tsuneta 1997; Shibata 2005; Shiba-
ta and Magara 2011; etc.) suggests the formation of
a vertical current sheet beneath the lower outline of
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a twisted magnetic loop (rope) rising into the corona
through the deformation by this loop of the external
magnetic field transverse to it. The magnetic flux
rope acts here as a driver of the entire flare process.
In several cases, this model seems fairly adequate to
the observed phenomena. However, more and more
observational evidence that intense flare energy re-
lease occurs more often in low-lying helically twisted
loops (sigmoids) without any apparent signs of large-
scale reconnection has appeared in recent years (see,
e.g., Aschwanden 2014).

For example, in the July 6, 2011 flare event, a
powerful CME in the form of a twisted magnetic loop
that carried away a very large amount of cold chromo-
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spheric material into the corona occurred first. Only
laminar flows of dark material dragged upward in the
wake of the rising rope were observed under this mag-
netic loop that flew out into the corona and subse-
quently into the heliosphere, but no current sheet was
formed beneath the loop—this is clearly seen in the
images and videos obtained by the AIA (Atmospheric
Imaging Assembly) instrument of the Solar Dynamic
Observatory (SDO). Another twisted flux rope with
the same spatial orientation as that of the first one
went into the chromosphere at the same place after
the CME, but it was not ejected into the corona,
remaining at heights near the transition region, and
violent energy release that lasted about 1.5 h began
in it. This event was interpreted by Solov’ev (2012)
within the framework of an exact magnetostatic so-
lution for two quasi-parallel magnetic flux ropes that
emerged successively and relatively slowly, quasi-
statically, from beneath the photosphere. According
to the solution found, the plasma density in the first
(upper) rope was enhanced significantly compared to
the surrounding medium; therefore, no flare energy
release would be possible in it, and this filament
was vigorously ejected into the corona due to large
field twisting, carrying away a considerable excess of
mass. In contrast, according to the derived quasi-
static distribution, the plasma density in the second,
subsequently emerged magnetic flux rope was re-
duced considerably with respect to the coronal one.
As a result, the electron drift velocity in this rope
turned out to be high enough for plasma kinetic in-
stabilities to be excited in it, and the free energy of
the azimuthal magnetic field served here not as a
driver of the mechanical ejection but as a source of
the observed flare energy release. In other words, the
store of free energy was converted in this rope not into
the kinetic and potential energy of the ejection but
into the energy of accelerated nonthermal particles,
into ultraviolet and soft X-ray plasma radiation, and
into an increase in the total bolometric luminosity of
the filament.

A second example of such a kind was the X1 flare
that occurred on September 22, 2011, and lasted
about 12 h. Here, a characteristic feature of the event
was the prolonged sucking of cold chromospheric
material from the surrounding medium directly into
the hot region of flare energy release located low in
the chromosphere. The pattern of motion of the ma-
terial drawn into the flare region along a low helical
trajectory clearly pointed to a significant twisting of
the magnetic flux rope in which the energy release
occurred. As in the previous case, the model of this
event (Solov’ev and Murawski 2014) was based on
the idea that when the magnetic flux rope goes into
the rarefied layers of the solar atmosphere, the re-
quirement of a transverse equilibrium of the magnetic

flux tube can lead to a sharp decrease in the plasma
pressure and density in some region inside the rope.
Given a certain electric current density in the rope
that is required by the condition of equilibrium of a
twisted flux tube, the electron drift velocity Ve,dr in
this place will increase sharply, and the excitation
of plasma oscillations (in particular, ion sound) will
begin in the plasma when it approaches the thermal

ion velocity, Vth,i =
√

2kTM−1
i . This will lead to a

considerable scattering of electrons by plasmons and
to the appearance of anomalous plasma resistivity,
with all the ensuing consequences. The sequence of
elementary formulas given below explains the afore-
said:

j =
c

4π
[∇× B] ≈ const ⇒ j = neeVe,dr (24)

≈ const ⇒ Ve,dr =
const

n
⇒ Vdr = Vth,i

ncr

n
,

where Vth,i =
√

2kT

Mi
.

The main idea of our approach is that the flare en-
ergy release in twisted magnetic flux ropes (sigmoids)
is attributable to the excitation of plasma instabilities
in them (Bernstein modes, ion sound) caused by a
sharp drop in the plasma density in some region inside
the rope that arises in it when an equilibrium is estab-
lished as the rope emerges from beneath the photo-
sphere. A shortage of charge carriers in some plasma
volume at a fixed electric current density increases
their drift velocity, and conditions for the excitation of
plasma turbulence are created in this place when the
latter approaches the thermal ion velocity. Thus, in
the context of this ideology, the twisting of the rope
magnetic field (and the corresponding free magnetic
energy of the electric currents) serves as a source of
the energetics of a chromospheric flare.

7. THE MODEL OF A RING FLARE
FILAMENT

In this paper, we would like to develop the same
idea of the excitation of plasma turbulence in a rar-
efied magnetic filament as applied to yet another case
of a flare event observed by the TRACE spacecraft
in 2000. Figure 11 shows six successive images of a
horizontal flare filament in the chromosphere that had
the shape of an almost regular ring.

A schematic view of the horizontal ring corre-
sponding in its geometry to the described flare con-
figuration with a magnetic field twisted around its
toroidal axis is presented in Fig. 12.

To describe the magnetic field of such a ring con-
figuration, we use a magnetic flux function slightly
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Fig. 11. Successive stages of the propagation of flare excitation in a ring magnetic structure. The last frame (bottom right)
shows how another slightly fainter ring ignites in the upper left corner of this frame.

different from (22) to ensure the absence of a mag-
netic field on the symmetry axis of the ring, at its
center:

A(r, z) =
B0

k2
(kr)mJ1(kr) exp(−lz), (25)

where m is a positive constant greater than one. In
this case, according to (7),

Bz(r, z) = B0

[
(kr)m−1J0(kr) (26)
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0

 

j

 

Chromosphere

Fig. 12. Horizontal flare filament in the solar chromo-
sphere. The solid black lines indicate the field lines of
magnetic field В, the white arrow indicates the direction
of the electric current in the filament, and the thin dotted
lines represent the cylindrical coordinate system.

+ (m − 1)(kr)m−2J1(kr)
]
exp(−lz)

and Bz(0, z) = 0. We will choose m = 1.2 for a
numerical example. The vertical section of such a
magnetic structure is shown in Fig. 6. For the az-
imuthal field, we will take the same Eq. (25) with
a coefficient b different from unity. Of course, this
doubly “corrected” field compared to (21) will no
longer be a force-free one; deviations in the pressure
and density profiles from the background hydrostatic
distributions will appear. These profiles follow the
same trends as those for a rope with the magnetic
flux (22): as the twisting increases, at b > 1, the ad-
ditions to the pressure and density are positive, while
as the twisting decreases, at b < 1, these additions
turn out to be negative at a certain distance from
the axis. Numerical examples are given in Figs. 13
and 14. It can be seen from them that the gas pressure
at the chosen configuration parameters is everywhere
positive, but the gas density in the area near kr = 1.5
becomes arbitrarily small if the twisting parameter b
approaches 0.829. This result was obtained at m =
1.2 and l2 = 0.1k2.

We can choose other values of these parameters
for the system, but the main result is retained: we
can always choose such a twisting b < 1 that the
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Fig. 13. Radial pressure profile in a horizontal circular
filament at z = 0 (in units of the background pressure)
at m = 1.2, l2 = 0.1k2 and b1 = 0.84, b3 = 0.82. The
pressure remains constant at all points.

equilibrium gas density at some distance from the axis
will approach zero. For example, if we take m = 1.1
and l2 = 0.8k2, then the gas density will become zero
at kr = 1.55 at b = 0.59.

This effect of a reduction in density with decreas-
ing field twisting is of fundamental importance for
the rope mechanism of energy release we discuss.
Indeed, if the effect had the opposite sign, i.e., if the
density increased with decreasing field twisting, then
the energy release based on the excitation of plasma
turbulence would decay as soon as it began: the
decrease in field twisting due to current dissipation
on anomalous resistivity would cause an increase in
density, i.e., an increase in the number of charge
carriers and a decrease in the electron drift velocity
below the excitation threshold.

In our case, the situation is completely different.
Once begun, the electric current dissipation in the
rope leads to a decrease in density and a further in-
crease in drift velocity in the rarefaction region, i.e.,
the entire process acquires the irreversible pattern
of catastrophically rapid conversion of the free mag-
netic energy of electric currents into the energy of
accelerated particles, radiation, and heating of the
surrounding plasma.

8. THE EQUILIBRIUM BOUNDARY
CONDITIONS

As has been said in Section 5, we choose the
surface with the radial coordinate kr = kR1 = 3.8317
as the side boundary surface of our configuration. On
this surface J1(kR1) = 0, i.e., the azimuthal and ra-
dial components become zero, while the longitudinal
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Fig. 14. Radial plasma density profile in a horizontal ring
at z = 0 (in units of the density of the external medium)
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a distance kr ≈ 1.5 approaches zero, while at b = b3 =
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field is Bz(R, z) = B0(kR)m−1J0(kR) exp(−lz) =
−0.523B0 exp(−lz) if m = 1.2. If m = 1, then
Bz(R, z) = −0.4B0 exp(−lz).

To describe the field in the external region, we can
take, for example, the following flux function:

A(r, z) = Bex
0 R2

[
R

r
− 1

]

exp(−lz), (27)

Ω(A) = 0, r > R.

The magnetic field configuration outside of the flux
tube under consideration is

Bz(r, z) = −Bex
0

R3

r3 exp(−lz),

Br(r, z) = Bex
0 RlR

r

[
R
r − 1

]
exp(−lz),

Bϕ(r, z) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(28)

r > R.

To fulfil the condition of continuity for the mag-
netic pressure at the boundary, it will suffice to as-
sume that Bex

0 = 0.523B0 or 0.4B0 for n = 1. The sit-
uation with the gas pressure continuity at the bound-
ary is slightly more complex. According to Eq. (8),
the expression for the pressure contains the integral
term 1

4π

∫ ∞
r

Ω2

r3 dr that does not become zero at the
boundary r = R, and, as a consequence, P (R, z)
depends on the field twisting in the rope (see Figs. 7
and 8). There is no azimuthal field outside of the
magnetic flux tube, and, hence, Pex(R, z) does not
depend on the field twisting here. The gas pressure
continuity at the boundary can be ensured by small
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variations of the product Rl, on which no condi-
tions are imposed in the external medium. The most
important fact here is that the density and pressure
deviations from the hydrostatic background caused
by the external magnetic field must be positive in the
entire outer space. Figure 15 presents the pressure,
density, and temperature distributions outside of the
tube at (Rl)2 = 6. No problems with negative pres-
sure, density, and temperature arise in this case. At
the boundary, at r = R, all these three quantities are
equal to the external background values, consistent
with the force-free distribution inside the magnetic
flux tube (b = 1). When (Rl)2 deviates from 6, they
can be above or below this level, depending on the
field twisting inside the rope, i.e., on the factor b, to
ensure the gas pressure continuity at the boundary.

9. CONCLUSIONS

A closed magnetostatic theory of a vertical mag-
netic flux tube immersed in a realistic solar atmo-
sphere was presented in an analytical form. Its spe-
cific applications to modeling the vertical parts of
coronal loops with a constant cross section whose
tops are located high in the corona and to the de-
scription of horizontal flare filaments were considered.
The mechanism of flare energy release in a twisted
magnetic flux tube is reduced to the fact that with its
exit into the chromosphere, as a new equilibrium is
established in it, the concentration of particles corre-
sponding to this equilibrium decreases to vanishingly
small values in some part of its volume, despite the
fact that the electric current density here is nonzero
and remains constant according to the equilibrium

conditions: j = c(4π)−1curlB; j = neeVe,dr ≈ const.
In such a situation, the electron drift velocity in the
rarefied region, where n → 0, will grow sharply as
the loop rises upward, reaching the thermal ion ve-
locity. This leads to the instantaneous excitation of
plasma instabilities (Bernstein modes, ion sound),
the appearance of “anomalous” resistivity, runaway
particles, i.e., in essence, to a solar flare.

Thus, the proposed flare model does not deal with
the traditional mechanism of magnetic field line re-
connection in the solar corona. We suggest that a
fairly strong twisting of the magnetic field and a high
degree of nonuniformity of the equilibrium gas density
distribution over the volume of the magnetic flux rope
are responsible for the flare energy release in rope
magnetic configurations.
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