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Abstract—The motion of an asteroid in a central gravitational field in the presence of an additional perturbing
acceleration due to the Yarkovsky effect was considered. The long-term evolution of the orbit was studied
using the analytical solution of the averaged equations of motion in two orbital frames of reference: , asso-
ciated with the radius vector, and , associated with the velocity vector. The Yarkovsky acceleration compo-
nents were found as averages over the orbital period based on the thermophysical characteristics and rotation
parameters of a small body within the linear thermophysical model of the Yarkovsky force for spherical aster-
oids. The drifts of the mean anomaly and semimajor axis, as well as the displacement relative to the unper-
turbed position per 1000 orbital revolutions, were obtained for model asteroids with different orbital eccen-
tricities in both frames of reference. As a result, the drifts of the semimajor axis and the mean anomaly, as well
as the displacements, were found to differ by less than 1% at small eccentricities (up to 0.5). When ,
the values found in system  are always greater than the same values in system . At , their dif-
ference does not exceed 6%, gradually increasing with the growth of . For , these differences
increase exponentially. Thus, when the Yarkovsky effect is modeled with transversal acceleration, the
expected values of drifts and displacements for objects with highly elliptical orbits may be overestimated,
which may be one of the factors for the low detection of the Yarkovsky effect directly from astrometric obser-
vations.
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1. INTRODUCTION

At present, humanity has come to recognize the
reality of the threat of a collision between the Earth
and small bodies of the Solar System. To prevent this
threat, it is necessary to identify potentially dangerous
objects, determine their orbits, and assess the proba-
bility of their collision or close encounter with the
Earth. To improve the accuracy of predicting the
motion of a body, it is necessary to consider non-grav-
itational effects, in particular, the Yarkovsky effect.
This effect occurs due to the thermal radiation of a
rotating body with non-zero thermal inertia, and it
causes secular variations in the eccentricity, semima-
jor axis and, first of all, the mean anomaly, the varia-
tion of which increases quadratically with time. Thus,
the Yarkovsky effect plays a significant role in the evo-
lution of the orbits of small bodies; therefore, deter-
mining the magnitude of this effect and studying its
impact on near-Earth asteroids (NEAs) is necessary
for calculating their orbits and assessing their potential
hazard to the Earth. Also, the Yarkovsky effect is con-

sidered one of the reasons for the migration of aster-
oids to the resonance zones of the Main Belt, after
which they may replenish the NEA population. In
addition, covering the object with a special substance
to change its orbit using the Yarkovsky effect is pro-
posed as one of the ways to manipulate space objects
that threaten to collide with the Earth.

To take into account the Yarkovsky effect and study
its influence on the long-term evolution of the orbit of
a small body, it is necessary to know the values of the
components of the perturbing acceleration that occurs
due to this effect. At present, the most common
method for estimating the Yarkovsky effect is differen-
tial orbit correction [1–4]. Since the Yarkovsky effect
leads to secular perturbations of the semimajor axis,
transversal acceleration is used in the following form

where  is the heliocentric distance to the asteroid,
 AU, and  is the dynamic parameter deter-

21
2 2

0 > 0.5e
21 2 2 ∼ −0 0.5 0.7e

0e 0 > 0.7e

 
 
 

2
0

2
ˆ= ,t

rA
r

a t

r
0 = 1r 2A
500



ACCOUNTING FOR THE YARKOVSKY EFFECT IN REFERENCE FRAMES 501
mined in the orbital fitting with the orbital elements.
Furthermore, the drift of the semimajor axis of the
orbit is estimated, and this drift is considered when
predicting the motion of the asteroid. However, when
the effect is determined by this method, a significant
part of it remains unaccounted, which can cause
noticeable errors in predicting the motion of a body
based on the resulting orbit [5].

A more accurate method, in our opinion, is the cal-
culation of the acceleration components based on
some model of the Yarkovsky force. At present, exten-
sive work is underway to determine the thermophysi-
cal characteristics of small bodies using observations
obtained in ground-based and orbital observatories,
for example, determining the shape and rotation
parameters of asteroids from their photometry [6, 7],
determining the diameter and geometric albedo from
the total thermal radiation of bodies found as a result
of a four-band thermal infrared all-sky survey carried
out by an infrared telescope located in near-Earth
orbit (NEOWISE project) [8], or refining the thermal
characteristics of the surface during laboratory studies
of meteorite and asteroid samples [9], as well as during
space missions to asteroids [10–12]. In the future, as
the knowledge about the properties of small bodies
expands, explicit consideration of the Yarkovsky effect
will become more preferable.

As mentioned above, when estimating the drift of
the semimajor axis due to the Yarkovsky effect, the
perturbing acceleration is usually modeled with a
transversal component. However, the tangential
acceleration component has a more direct effect on
the variation in the object’s velocity and, as a result, on
the drifts of the semimajor axis and the mean anomaly.
This is not essential for circular orbits and small eccen-
tricities, when the transversal and tangential compo-
nents almost coincide. However, for highly elliptical
orbits, the situation is different. It is also obvious that
the magnitude of the variation in the orbital elements
should not depend on the choice of the reference
frame. Furthermore, we determine the element drifts
and the displacement relative to the unperturbed posi-
tion per 1000 orbital revolutions for model asteroids
with thermophysical characteristics similar to the
asteroid 101955 Bennu, but with different orbital
eccentricities in two orbital systems and compare
them.

For this purpose, let us consider the motion of a
zero-mass point (asteroid) under the influence of
attraction to the central body (Sun) and perturbing
acceleration , which is inversely proportional to the

distance to  squared, i.e., , and its value is

small compared to the main acceleration :

(1)

!

6

'P

6
2' = /rP P

Æ
2 2/r

− μ
Æ Æ

!2 2 2

| ' | | |
max = max = 1.

r

P P
ASTRONOMY REPORTS  Vol. 66  No. 6  2022
Here, , ,  is the product of the gravita-
tional constant and mass , and  is a small parame-
ter. Let the acceleration  be due to the Yarkovsky
effect. In this case, condition (1) is satisfied, since for
an NEA with a diameter below 1 km, the typical value
of the transversal parameter A2 ~ 10–15–10–13

 AU/day2,

and for a distance of 1 AU, . The vector 
components are constant and small (on the order of μ)
values. For this problem, the authors of [13] obtained
evolutionary equations of motion in the mean ele-
ments in the first order of smallness in  for various
frames of reference. In [14, 15], these equations are
integrated for two orbital frames of reference: , asso-
ciated with the radius vector, and , associated with
the velocity vector. Section 2 presents particular solu-
tions needed to study the long-term evolution of the
semimajor axis and the mean anomaly.

Let us consider two reference systems with the ori-
gin at :  with the axes oriented along the radius
vector, transversal (perpendicular to the radius vector
in the plane of the osculating orbit along the direction
of motion), and binormal (along the area vector), and

 with the axes along the velocity vector, normal to it
in the plane of the osculating orbit, and the binormal.
Let vector  have components  in system 
and  in . We denote the values of the vec-
tor  components averaged over the orbital period as
follows: , , , , 
and call them the radial, transversal, tangential, nor-
mal, and binormal parameters, respectively. In [16],
the corresponding expressions are derived for the
parameters , ,  based on the formulas for the
components of the Yarkovsky acceleration in the pro-
jection onto the system  axes obtained in the linear
thermophysical model of the Yarkovsky force for
spherical asteroids [17] and published in [18]. In this
paper, the tangential  and normal  parameters are
derived (see Section 3).

In Section 4, the drifts of the semimajor axis and
the mean anomaly, as well as the displacement relative
to the unperturbed position due to the Yarkovsky
effect, are found and compared for model asteroids in
two orbital reference systems.

2. EQUATIONS OF MOTION

As shown in [16], the binormal component Pn aver-
aged over the orbital period is zero (W = 0), so we use
particular analytical solutions.

For reference frame  [14]:
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(2)

and for  [15]:

(3)

Here and below, the subscript  marks the values of
the variables at the initial epoch ,  is the eccen-
tricity,  is the semimajor axis,  is the mean

motion, ,  is the imclination,  is the lon-
gitude of the ascending node,  is the argument of the
pericenter, and  is the mean anomaly. The standard
notations for complete elliptic integrals in normal trig-
onometric form are also used [19]:

(4)

Solution (3) contains definite integrals from com-
binations of complete elliptic integrals, which can be
found by numerical methods.

The first expression in systems (2) and (3) is a kine-
matic equation, which can be used to find the time
during which a given change in eccentricity occurs,
and, vice versa, by solving the kinematic equation

 with respect to , we can find the change in
eccentricity over time .
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The definition domain of solutions of (2) and (3) is
given in [14, 15]. The representations of these solu-
tions are also provided there in the form of series
expansions in powers of eccentricity. According to
[16], in the case of solution (2), for reference frame 
at , it is necessary to use power-law series, so we
present them here:

We also give a solution for a circular orbit, which is
preferable to use instead of (2), (3) for :

where  is the mean longitude. This
solution is also valid in reference frame  with
replacement , .

3. YARKOVSKY ACCELERATION MODEL

Within the linear thermophysical model of the Yar-
kovsky acceleration for spherical asteroids [17], the
radial, transversal, and binormal components of this
acceleration in the frame of reference  have the fol-
lowing form [18, Eq. (12)]:
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where the subscript  corresponds to the seasonal Yar-
kovsky effect, and  is the daily effect. In (5),  is the
obliquity of the asteroid’s spin axis with respect to the
normal to its orbital plane,  is the mean
longitude,  is the mean motion,  is the time,  is
the initial time point,  is the optical absorp-
tion coefficient,  is the Bond albedo,

 is the thermal inertia of the surface,  is the tem-
perature of the subsolar point,  is the
solar radiation f lux at the heliocentric distance ,

 W is the luminosity of the Sun,
 m/s is the speed of light, σ =

 W m–2 K–4 is the Stefan–Boltz-
mann constant, , , , , ,  are the mass, radius,
bulk density, thermal emissivity, thermal conductivity,
and specific heat capacity of the asteroid, respectively.
Furthermore,

where  is the period of revolution of the asteroid
around the Sun, and  is the period of its rotation
around the axis. In addition, the amplitude 

 and phase  are defined, like in
[17], by the relations
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Taking into account (6), we obtain

(7)

The linear thermophysical model [17] was developed
under simplifying assumptions of a circular orbit
around the Sun and a spherical shape of the asteroid.
For an elliptical orbit, the coefficient  will depend on
the heliocentric distance  as , where

 AU, and  is  calculated for the distance of
1 AU. This inverse proportionality to the square of the
distance is already included in our equations of motion
(2) and (3) in accordance with the problem posed in
the Introduction. Furthermore, we replace the mean
longitude , which describes the position of the body
in orbit, with the mean anomaly  and average the
expressions for the tangential  and normal  com-
ponents of vector P with respect to the mean anomaly
over the orbital period. At the same time, we take into
account that

(8)

where  and  are the radial and transversal compo-
nents of vector P,  is the angle by which the velocity
vector must be rotated to coincide with the transversal
(Fig. 1),

(9)

 is the eccentric anomaly, and .

While averaging, we assume that the orientation of
the asteroid’s axis of rotation and the periods  and

 do not change with time.

Considering in (5) that , we write
the expressions for  and  in the form
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Fig. 1. The angle of rotation  of the velocity vector  until it coincides with the transversal. The axes of system  are radial 
and transversal . The axes of system  are tangential  and normal . The binormal axes  and  are oriented toward us
orthogonally to the orbital plane. The  angle is the true anomaly.
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Let us substitute (10) into (8) and combine similar
terms:
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Let us carry out the averaging procedure of expres-
sions (11) and (12):

and, considering the results given in Appendix A
(Eqs. (A14)), we obtain the tangential and normal
parameters:
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(14)

where  and  are defined by formu-
las (7), and  is expressed by the recursive formula:

coefficients  and  are given in Appendix A
(Eqs. (A7)), and their values for  are given in
Table 4 in Appendix A.

The expressions for the radial, transversal, and
binormal parameters were obtained in [16]. Let us
write them in the following form:
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linear motion and the procedure of averaging over the
orbital period loses its meaning; therefore, formulas
(13)–(15) are inapplicable at .

Note 1. The radial , transversal , and binormal
parameters are analogues of non-gravitational

parameters , , and  [20]. They are related
through the expressions , ,

, where  AU.
Note 2. Expressions (13)–(15) allow us to estimate

the magnitude of the Yarkovsky effect, but they
require knowledge of such characteristics of the body
as diameter, bulk density, rotation rate, obliquity of
the spin axis to the orbital plane, Bond albedo, ther-
mal inertia of the surface, specific heat capacity, and
thermal emissivity.

4. EVOLUTION OF THE ORBITS 
OF MODEL ASTEROIDS

Let us consider model objects with different orbital
eccentricities from 0 to 0.99, while all other orbital and
thermophysical characteristics correspond to the
asteroid 101955 Bennu (Table 1). We find the orbit-
averaged values of the vector P components, the drifts
of the elements, and the displacement relative to the
unperturbed position in two frames of reference. The
element drifts and displacement are marked with the
subscript “1” if they are defined in reference frame ,
and “2” in reference frame .

For comparison, we will also calculate the drift of
the mean anomaly and the displacement using the
estimation formulas given in [21]:

(16)

(17)

where ΔM is the variation in the mean anomaly in
arcseconds;  is the displacement in kilometers;

is the drift of the semimajor axis due to the Yar-
kovsky effect in units of 10–4 AU/Myr (the values
are given in the eight column of Table 2);

 is the time period for
which the estimation is made in tens of years; and 
is the semimajor axis in astronomical units (Table 1).
Estimates (16) and (17) were obtained in reference
frame  neglecting the fourth-order terms in eccen-
tricity.

Table 2 shows the tangential  and normal 
parameters for different values of the initial eccentric-
ity . According to (15), the radial  and transversal

 parameters do not depend on the eccentricity,
 AU3/day2, and  ×

10–14 AU3/day2 for all . Figure 2 illustrates the differ-
ence of  from  in percentage for : at

= 1e
S T

W
1A 2A 3A

2
1 0= /A S r 2

2 0= /A T r
2

3 0= /A W r 0 = 1r
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Table 1. Orbital elements, thermophysical characteristics, and rotation parameters of asteroid 101955 Bennu

Like in [12], we assume specific heat capacity  J kg–1 K–1 based on the measurements of CM-class meteorites (carbonaceous
chondrites) [9].  is calculated from the equatorial coordinates of the pole in accordance with the method given in [23]. The epoch of
the orbital elements is 2455562.5 (Jan. 1, 2011) TDB (JPL database accessed on February 3, 2022).

Parameter Value Ref.

Semi major axis , AU 1.126391025894812 [20]
Mean motion , deg⁄ day 0.8244613503320309 [20]
Inclination , deg 6.03494377024794 [20]
Longitude of the ascending node , deg 2.06086619569642 [20]
Argument of the pericenter , deg 66.22306084084298 [20]
Mean anomaly , deg 101.703952002457 [20]
Period of revolution around the Sun , days 436.6487281120201 [20]
Period of revolution around the Sun , years 1.195479063961725 [20]
Thermal inertia , J m–2 s–1/2 K–1 300 [12]
Specific heat , J kg–1 K–1 750 [9]
Thermal emissivity 0.95 [12]
Radius , m 242.22 [12]
Period of rotation around the axis , h 4.2960015 [12]
Bulk density , kg m–3 1194 [12]
Bond albedo 0.0170 [22]
Right ascension of the pole , deg 85.45218 [12]
Declination of the pole , deg –60.36780 [12]
Obliquity of the spin axis , deg 177.53514

0a

0n

0i
Ω0

ω0

0M

revP

revP
Γ

C
e

R

rotP
ρ
A

α
δ

γ
= 750C

γ

Table 2. Tangential  and normal  parameters, variations in the mean anomaly ,  and semimajor axis , 
for 1000 revolutions around the Sun (  years) depending on the initial eccentricity 

For all the  values, the radial parameter  AU3/day2, transversal parameter  AU3/day2. Col-
umns 8 and 9:  is the drift of the semimajor axis;  is the variation in the mean anomaly calculated by formula (16) for 1000 orbital
revolutions.

, 
AU3/day2

, 
AU3/day2

, arcmin , arcmin ,  AU ,  AU , 
AU/Myr

, arcmin

0 –5.10168 –9.91079 35.083 35.083 –0.0244 –0.0244 –20.4226 36.126
0.001 –5.10168 –9.91079 35.083 35.091 –0.0244 –0.0244 –20.4226 36.126
0.01 –5.10155 –9.91054 35.086 35.094 –0.0244 –0.0244 –20.4246 36.130
0.05 –5.09849 –9.90457 35.169 35.179 –0.0245 –0.0245 –20.4738 36.217
0.10 –5.08887 –9.88585 35.436 35.445 –0.0246 –0.0246 –20.6289 36.491
0.20 –5.04976 –9.80969 36.541 36.544 –0.0254 –0.0254 –21.2735 37.631
0.30 –4.98212 –9.67805 38.555 38.511 –0.0268 –0.0268 –22.4424 39.699
0.40 –4.88179 –9.48280 41.767 41.592 –0.0291 –0.0289 –24.3125 43.007
0.50 –4.74156 –9.20998 46.783 46.252 –0.0325 –0.0322 –27.2298 48.168
0.60 –4.54897 –8.83547 54.827 53.404 –0.0381 –0.0371 –31.9094 56.445
0.70 –4.28099 –8.31451 68.808 65.068 –0.0478 –0.0452 –40.0414 70.830
0.80 –3.88832 –7.55138 97.475 86.772 –0.0678 –0.0603 –56.7181 100.330
0.85 –3.60997 –7.01056 126.470 106.582 –0.0879 –0.0741 –73.5681 130.137
0.90 –3.22864 –6.26976 184.719 142.155 –0.1284 –0.0988 –107.4058 189.993
0.95 –2.62669 –5.10050 359.973 230.430 –0.2503 –0.1602 –209.0021 369.709
0.97 –2.23295 –4.33575 593.878 326.187 –0.4129 –0.2268 –344.0411 608.583
0.99 –1.53792 –2.98595 1763.840 673.643 –1.2263 –0.4684 –1008.9714 1784.796

T N 1dM 2dM 1da 2da
≈1195.48 0e

0e T
−1410 N

−1410
1dM 2dM 1da −410 2da −410

�4a −410 ΔM

0e −× 14= 9.91079 10S −− × 14= 5.10168 10T
�4a ΔM
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Fig. 2. The difference between the transversal parameter  and the tangential parameter in percentage at .
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e
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T T 0 > 0.7e
  exceeds  by 19 to 58%, and in the
interval  this difference is from 58 to
230%. The difference of  from  behaves similarly.

Using the values of the acceleration components
and formulas (2), (3), we find the variations in the
mean anomaly ,  and semimajor axis , 
for 1000 revolutions around the Sun (  years)
at different initial eccentricities  (see Table 2). The
differences of  from  and  from  are less
than  for small eccentricities (up to 0.5). At  from
0.5 to 0.7, their difference does not exceed , gradu-
ally increasing with . At , these differences
grow exponentially from 6 to 160%. The last column of
Table 2 shows the variation in the mean anomaly cal-
culated by formula (16). The comparison of columns

 and  gives good agreement between these val-
ues (the discrepancy does not exceed ).

Using the known formulas of celestial mechanics
[24], we determine the displacement  of a small body
relative to the unperturbed position, which will occur
due to the Yarkovsky effect. For this purpose, we cal-
culate the rectangular coordinates of the body from
the unperturbed and perturbed orbital elements and
then find the distance between these positions. Table 3
shows displacements  and  for 1000 orbital revolu-
tions (  years) at various , and Fig. 3 illus-
trates the difference of  from  in percentage at

. With an increase in the initial eccentricity
from 0.7 to 0.9, the excess of displacement  over 

∈0 (0.7,0.9)e T T

∈0 (0.9, 0.99)e
S N

1dM 2dM 1da 2da
≈1195.48

0e
1dM 2dM 1da 2da

1% 0e
6%

0e 0 > 0.7e

1dM ΔM
3%

d

1d 2d
≈1195.48 0e

1d 2d
0 > 0.7e

1d 2d
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changes from 6 to 30%, and at  from 0.9 to 0.99, the
difference is from 30 to 127%.

The calculation of displacement  also considers
the variation in the argument of pericenter ; how-
ever, it is small (less than an arc second) over the con-
sidered period of time, and depends little on the
eccentricity of the orbit. The variations in the eccen-
tricity ,  are small as well. If they are not consid-
ered, displacements ,  will change by no more than
0.01%. Table 3 shows the differences  and

, where  and  are the displacements calcu-
lated without taking into account  and . If the
variation in the mean anomaly is also neglected, the
displacement relative to the undisturbed position only
due to a variation in the semimajor axis will be insig-
nificant (columns  and  in Table 3). Also for com-
parison, the fifth column of Table 3 shows displace-
ment  calculated by formula (17). For  the
estimate  exceeds  by a factor of  and 
by a factor of , which indicates that the dis-
placement estimate calculated by formula (17) can be
significantly overestimated. This may explain the low
detection of the Yarkovsky effect directly from astro-
metric observations: in the JPL database of small bod-
ies, the parameter  among NEAs less than 5 km in
diameter was determined for 45 out of 588 objects with
orbital eccentricities up to 0.5, and only for 18 out of
640 objects with , although the estimated value
of the displacement at such eccentricities is greater, all
other conditions being equal.

0e

2d
ω2d

1de 2de
1d 2d

−1 1'd d
−2 2'd d 1'd 2'd

1de 2de

1''d 2''d

Δρ 0 > 0.7e
Δρ 1d −1.65 3.2 2d

−1.75 7.3

2A

> 0.5e
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Table 3. Displacements ,  of a small body relative to the unperturbed position for 1000 orbital revolutions
( years) depending on the initial eccentricity 

Here,  and  are the displacements calculated without the drift of the eccentricity;  and  are the displacements calculated with-
out the drifts of the eccentricity and the mean anomaly;  is the displacement calculated by formula (17).

,
million km

,
km

,
km

,
million km

,
million km

,
km

,
km

0 1.71966 0.0 365.075 1.70907 1.71966 0.0 365.075
0.001 1.71928 0.178 365.149 1.70907 1.71930 0.357 365.149
0.01 1.71604 1.781 365.887 1.70924 1.71609 3.561 365.887
0.05 1.70196 8.824 370.565 1.71335 1.70209 17.632 370.564
0.10 1.68551 17.446 379.653 1.72633 1.68555 34.760 379.647
0.20 1.65829 34.101 409.154 1.78028 1.65802 67.165 409.049
0.30 1.64528 50.193 455.852 1.87809 1.64295 96.892 455.244
0.40 1.65490 66.235 524.900 2.03460 1.64752 124.061 522.577
0.50 1.70106 83.050 626.827 2.27873 1.68132 149.033 619.599
0.60 1.80741 101.888 783.857 2.67034 1.76016 172.153 763.404
0.70 2.02727 124.791 1048.942 3.35087 1.91706 193.350 991.838
0.80 2.51687 155.639 1582.061 4.74646 2.24191 210.957 1408.131
0.85 3.02407 176.492 2116.054 6.15655 2.55239 216.375 1783.212
0.90 4.04230 203.772 3184.583 8.98827 3.12305 215.809 2450.715
0.95 7.02744 242.184 6390.858 17.49037 4.56189 198.477 4090.901
0.97 10.80306 261.979 10666.079 28.79112 6.12077 177.893 5858.310
0.99 26.24914 269.915 32042.028 84.43589 11.55552 127.993 12238.077

1d 2d
≈1195.48 0e

0e 1d −1 1'd d 1''d Δρ 2d −2 2'd d 2''d

1'd 2'd 1''d 2''d
Δρ
In system , parameters  and  gradually
decrease with increasing , but despite this decrease,
the drifts of the elements and the displacement relative

2 2 T N
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to the unperturbed position increase. In system , the
growth of the element drifts and displacements with  is
much greater than in  for the same T and S for all e0.
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Thus, when the Yarkovsky effect is modeled by radial
and transversal acceleration, the estimates of element
drifts and displacement relative to the unperturbed
position for objects with highly elliptical orbits may
turn out to be overestimated. For such objects, it is
necessary to develop special methods for taking into
account the Yarkovsky effect.

5. CONCLUSIONS

Expressions for the mean values of the tangential
and normal components of the Yarkovsky acceleration
over the orbital period have been derived based on the
rotation parameters and thermophysical characteris-
tics of the asteroid in the linear thermophysical model
of the Yarkovsky force for spherical asteroids. At

, , and , as it should be. For an
elliptical orbit, the tangential and normal parameters
are always smaller in absolute value than the transver-
sal and radial parameters, and their difference
increases with orbital eccentricity. The drifts of the
semimajor axis and the mean anomaly, as well as the
displacements relative to the unperturbed position cal-
culated for two orbital reference systems are almost
identical at small eccentricities ( ). When

, the values found in system  are always
greater than the corresponding values in system . At

 from 0.5 to 0.7, the difference is moderate ( ),
but it gradually increases, and at , the differ-
ences in the drifts and displacement grow exponen-
tially. Thus, when the Yarkovsky effect is modeled by
radial and transversal acceleration, the estimates of
element drifts and displacement relative to the unper-
turbed position for objects with highly elliptical orbits
may be overestimated. For such objects, it is necessary
to develop special methods for taking into account the
Yarkovsky effect.

APPENDIX A

MEAN VALUES OF THE FUNCTIONS
OF THE ECCENTRIC ANOMALY

The main part of the paper involves the mean val-
ues of the functions , , ,

, , and . All of
them can be expressed explicitly as analytic -peri-
odic functions of the eccentric anomaly depending on
the parameter , . The functions sin f,

 f, and are odd in , because,
according to (9),

→ 0e →T T → −N S

0 < 0.5e
0 > 0.5e 21
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The mean value of the odd function is zero [24].
Therefore, we restrict ourselves to even functions for
which the mean value is

(A1)

The following properties may be useful:

(A2)

(A3)

Let us find the mean values of the functions we
need. Taking into account (9), (A1), (A2), (A3),
and (4),

(A4)

where the new variable . We express 

and  through  and represent them as

(A5)

(A6)

where

(A7)

Expansions (A5) and (A6) were obtained using stan-
dard formulas for adding angles and expanding trigo-
nometric functions in power-law series [19]. The val-
ues of the coefficients for  are given in
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Table 4. Values  as rational (top) and decimal (bottom) fractions

0 1 2 8

1.0 2.0

1 9

2 10

0.6667 0.2667

3 11

4 12

0.0063 0.0014

5 13

6 14

7 15

1 2,k kg g

k 1kg 2kg k 1kg 2kg

2
638512875

4
10854 718875

−× 93.13 10 −× 103.69 10

−2 − 4
3

− 4
97 692 469 875

− 8
1856156 927 625

−2.0 −1.3333 −− × 114.09 10 −− × 124.31 10

2
3

4
15

4
9 280 784 638125

8
194 896 477 400625

−× 134.31 10 −× 144.10 10
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− 8
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− 8
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315
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4
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Table 4 in the form of rational and decimal fractions,
which will allow us to judge their behavior. The sum
symbols in (A5) and (A6) have an infinite upper limit,
but since the coefficients rapidly decrease with the
growth of , in practice it is sufficient to use 15–
20 terms. Expansions into a series of functions

 and  converge for any values
of : , hence they converge
for all .

Taking into account (9), (A1), and (A5), as well as
the commutativity of the integration and summation
operations, we find

(A8)
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By passing back to , it is easy to show that, by virtue
of (A2), the second and third terms in expression (A8)
are zero. After small trigonometric transformations,
we bring (A8) to the form

(A9)
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Similarly, we obtain

where the first and last terms are zero. As a result,

(A10)

Thus, finding the necessary mean values is reduced to
the integrals of the form

(A11)

In [19], the following formula is given:

with the help of which we obtain the recursive relation
for calculating (A11):
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The first terms of the  sequence are easy to find
using the reference book [19]:

(A13)

Taking into account (A4), (A9), (A10), and (A11),
we write the final expressions for the desired mean
values:

(A14)

Let us consider the behavior of the integrals (A14) for
. The last two expressions on the right contain

the uncertainty of the form  due to (A12) and
(A13). Therefore, we set  in the original integrals
and calculate them:

(A15)
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