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Abstract—Different astrophysical objects, such as the Sun, another stars, galaxies and accretion discs have
regular magnetic field structures. Their generation is usually connected with the dynamo mechanism. It is
based both on the differential rotation and the structure of the turbulence, which has non-zero vorticity. The
process is described by mean field dynamo equations which are obtained by averaging the magnetohydrody-
namics equations. They are quite difficult to solve, so it is useful to construct the models for the objects with
specific geometrical shape. As for the galaxy discs, the no-  approximation is usually used. It takes into
account that the disc is quite thin, so we can replace the partial derivatives by the algebraic expressions. How-
ever, as for thick discs, such models are not very good. So it is better to take the -approximation, which takes
into account the vertical structure of the magnetic field. In this paper we describe the principal features,
advantages and disadvantages of this two approaches.
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1. INTRODUCTION
Now it is no doubt, that different astrophysical

object have magnetic fields. There are observational
confirmations of the magnetism of the Sun, planets,
stars, galaxies and another celestial bodies [1]. It is
also quite reasonable to assume the magnetic fields on
the accretion discs surrounding black holes, neutron
stars and white dwarfs [2]. The magnetic field can be
divided to two different components [3, 4]. The first
one is associated with the magnetic field which is con-
nected with the turbulent motions and it has the typi-
cal length scale comparable with turbulent cells. The
second component is the result of the averaging the
magnetic field on such spatial lengths and it is has the
regular structures which can be associated with the
whole objects [5]. This component is much more
interesting from the point of view of different physical
processes and possible observational tests.

The generation of the large-scale magnetic fields is
usually described by the dynamo mechanism [6]. It is
based on joint action of the alpha-effect, which char-

acterizes the structure of the turbulent motions, and
the differential rotation (it is connected with the dif-
ference between the angular velocities for different
parts of the object). They compete with the turbulent
diffusion which can suppress the dynamo process. So,
the dynamo is a threshold phenomenon which can
take place only if the parameters which describe it are
higher than some critical values.

The regular magnetic field evolution is described
by the Steenbeck–Krause–Rädler equation [7]. It is
quite difficult to be solved both analytically and
numerically. So it is quite useful to take some approx-
imations which can make possible the asymptotical
analysis and facilitate the numerical solution. Usually
there are different models which are connected with
the specific features of the objects, especially their
geometrical shape [8].

We are mostly interested in the magnetic field gen-
eration in the disc objects. They can be associated with
the galaxies and accretion discs. Usually the no-
approximation is used for such objects [9, 10]. It takes
into account that the magnetic field mainly lies in the
disc plane. So, the vertical component of the magnetic
field can be neglected, and the partial derivative of it
can be taken from the solenoidality condition. Also,
the -derivatives of the plane components of the mag-
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netic field can be replaced by the algebraic expres-
sions. It is quite useful for lots of galaxy objects.

Unfortunately, if we describe the discs which large
half-thickness, the no-  approximation will give some
mistakes. So, it is necessary to use the models which
take into account the vertical structure of the magnetic
field [11–13]. Firstly, such model has been used for the
outer rings of galaxies [14–16]. Also it can be taken for
the objects, where the vertical length scales are com-
parable with the radial ones.

Here we give the estimates of the magnetic field
evolution for these two different models of the mag-
netic field generation and compare the results. We also
give the numerical solutions of the magnetic field for
such cases.

2. BASIC EQUATIONS
The magnetic field in the disc can be presented as:

where  is the small-scale field and  is the
large-scale one (the averaging is connected with the
turbulent cells). As for the velocity of the motions of
the medium we can take a similar formulae:

where  and  is the small-scale velocity.
The regular magnetic field is described by the

Steenbeck–Krause–Rädler equation [7]:

where  is the turbulent diffusivity coefficient, and 
characterizes the vorticity of the small-scale motions:

where  is the typical timescale of the turbulent
motions.

3. NO-z MODEL
If we use the no-  approximation for the magnetic

field, the magnetic field can be described by the fol-
lowing model [17]:

The field is mainly connected with the radial com-
ponent of the magnetic field  and the angular one

. The partial derivatives of the magnetic field can be
changed by the following expressions [17]:
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For alpha-effect it is possible to take the following
model:

where  is the typical value of the alpha-effect (it is
often proportional to the angular velocity  of the
disc).

If we rewrite the equation for the components of
the magnetic fields, we will obtain:

Here we use the dimensionless units [9]. The distances
are measured in units of  and the times are measured

in units of . Here  shows the dissipation in

the disc plane,  describes the alpha-effect

and  describes the differential rotation.

To estimate the magnetic field evolution, it is useful
to take the local approximation [18]. It is connected
with the value  which corresponds to the zero
dissipation in the disc plane:

If we assume that the exponential growth according
to the law:

we shall have the result:

where  is the so-called dynamo number. We
can see, that the growth rate  can be positive only if:

where  is the critical dynamo number:

It is also interesting to study the full model, solving
the equations in partial derivatives. To do that, we can
use the boundary conditions:
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Fig. 1. No-  approximation: numerical calculations for the time evolution of the magnetic field. Different lines correspond to
different values of the parameter : the solid line— , the dotted line— , the dashed line— .
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Fig. 2. No-  approximation: comparison of the radial profiles of the azimuthal magnetic field obtained using analytical approx-
imation and numerical calculation. The solid line corresponds to the approximate equation expressed in terms of the Bessel func-
tion; the dotted line—to the numerical calculation. , , , . 
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The approximate model shows that the azimuthal
component of the magnetic field is proportional to the
Bessel function [19]:

The results for different values of the dynamo num-
bers are given on Figs. 1, 2.
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4. rz-MODEL

If we take into account the vertical structure of the
magnetic field, it is quite convenient to present the
magnetic field using the following combination:

where  is the azimuthal component of the magnetic
field and  is the azimuthal component of the vector
potential of the magnetic field.

If we rewrite the Steenbeck–Krause–Rädler equa-
tions, we shall obtain [16, 20]:
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Fig. 3. -model: numerical calculations for the time evolution of the magnetic field. Different lines correspond to different values
of the parameter : the solid line— , the dotted line— , the dashed line— .
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Fig. 4. -model: comparison of the radial profiles of the azimuthal magnetic field obtained using analytical approximation and
numerical calculation. The solid line corresponds to the approximate equation expressed in terms of the Bessel function; the dot-
ted line—to the numerical calculation. , , , , .
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where  so ,

Expanding the function  in series

of , in the first order, we obtain
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where

Then, we have the following system of equations:
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The final expression for the approximation:

(4)

The results are shown on Figs. 3, 4. The numerical
calculation shows that the real critical dynamo num-
ber is close to this value ( ).

5. CONCLUSIONS

We have analyzed the magnetic field growth in the
discs using two different models. The first one is con-
nected with the no-  approximation which takes into
account that the disc is quite thin. The -model
describes also the vertical structure of the magnetic
field, which is more complicated [20]. It was obtained
that the critical dynamo number for this model is dif-
ferent, and the typical growth rate is different, too.
Also it can be shown that the magnetic field can have
the dypolar symmetry. This model can be used both
for the galactic dynamo and for the dynamo in accre-
tion discs.
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