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Abstract—Using data from the literature, we made a list of individual estimates of the solar Galactocentric
distance, which were performed after 2017 by different methods. These values have not yet been used to cal-
culate the best value of mean . For the sample containing 21 estimates, based on the standard approach, we
found the weighted mean  kpc with the dispersion  kpc, and using the median statistics,
we obtained the estimate  kpc. For practical use, the value  kpc can be recom-
mended.
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1. INTRODUCTION

The solar Galactocentric distance  is one of the
most important fundamental astronomical parame-
ters, the exact knowledge of which is of great impor-
tance for astrophysics and cosmology. The “standard”
values of this quantity recommended by the Interna-
tional Astronomical Union (IAU) differ markedly,
amounting to  kpc (IAU, 1964) and 
8.5 kpc (IAU, 1986). Modern estimates give a value
close to 8.0 kpc [1–6].

There are various methods for assessing , for
which various types of classification have been pro-
posed. Reid [7] divided all such measurements into
three classes: direct, secondary, and indirect. Bland-
Hotthorn and Gerhard [3] adhere to a close classifica-
tion, dividing all measurements into three classes:
direct, model-dependent, and secondary. Nikiforov
[1] proposed a special three-dimensional classifica-
tion. He divided measurements into three classes
based on the type of measurement, the type of the 
estimate, and the type of reference objects.

The method for determining the absolute trigono-
metric parallax of an object located close to the Galac-
tic center is truly straightforward. Based on VLBI
observations of several maser sources in the Sgr B2
region, this method was used to estimate of R0 =

 kpc [8]. The dynamic parallax method is also
highly accurate and reliable. From a joint analysis of
the orbital motion of 28 stars around the central
supermassive black hole, Gillessen et al. [9] found

 kpc by this method with a simultane-
ous estimate of the black hole mass (4.31 ± 0.38) ×

106 M(. During high-precision astrometric observa-
tions of these stars, only one star, S2, with an orbital
period of about 16 years, has completed a full revolu-
tion. The orbital periods of the remaining 27 stars are
45 years or more, up to 1000 years [9]. Therefore, in
order to refine the  estimate, it is the motion of the
star S2 that is usually analyzed [10–13]. To date, the
application of this method makes it possible to esti-
mate  with a relative error of about 0.3% [12, 13].

Variable stars—classical Cepheids, type II Cephe-
ids and RR Lyr variables—are important for the 
estimate. High accuracy of distance estimates to
Cepheids is possible due to the period—luminosity
relationships [14, 15] and the period—Vesenheit func-
tion [16, 17]. These relationships are well calibrated
using high-precision trigonometric stellar parallaxes
[18]. Their use makes it possible to estimate distances
to Cepheids with relative errors less than 10% [19, 20].
Moreover, according to [21], errors in the distances to
Cepheids are ~5%. Although a local systematization is
not excluded, where strong differences in the metallic-
ity of stars, a non-standard ratio of total to selective
absorption, etc. According to estimates by Majaess
et al. [22], the distances to RR Lyr variables can cur-
rently be measured on average with relative errors of
about 4%. For the  estimate, it is required to identify
a group of such variable stars that are located in the
Galactic disk, bulge, or halo, and are symmetrically
distributed relative to the center of the Galaxy.

Note that the maser sources have measured trigo-
nometric parallaxes [23, 24]. At present, the results of
radio observations using the VLBI method for more
than 200 such sources have been published. The dis-
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Table 1. Results of determining the “best value” of mean 

 kpc Years Reference

37 1972–1993 [7]
65 1974–2003 [1]
53 1992–2011 [2]
26 2009–2014 [3]
27 2012–2017 [4]

162 1927–2017 [5]
28 2011–2017 [6]

0R

± ε σ ,0 (1 )RR n

. ± .8 0 0 5

. ± .7 9 0 17

. ± .8 0 0 25

. ± .8 2 0 1

. ± .8 0 0 2

. ± .8 3 0 4

. ± .8 0 0 15
tances to them were measured on average with relative
errors of about 6%. The estimates R0 based on these
data were obtained mainly by the kinematic method
[23–25]. Nikiforov and Veselova [26] proposed an
interesting method for estimating  from the distribu-
tion of masers in spiral arms.

The aim of this paper is to obtain a new estimate of
the mean  from the analysis of the latest individual
determinations. For practical use, it is important to
know the most probable value of the error in deter-
mining  that we plan to estimate. The objective
value of such an error is necessary, in particular, when
evaluating the linear Galactic rotation velocity  from
the measured value of the angular velocity of its rota-
tion  ( ), as well as when evaluating, for
example, the uncertainty of the Oort constants A =

 and .

2. DATA
To date, there are a number of studies in which the

mean value of the “best” distance  is derived on the
basis of individual determinations of this value
obtained by independent methods over a certain long
time interval. Such results are shown in Table 1. The
first column of the table gives the mean  with the
error estimate, the second column shows the number
of independent measurements  used to calculate the
mean, the third column indicates the time interval
during which individual  estimates were obtained,
and the last column provides a reference to the authors
of the individual estimate.

Table 1 shows the mean values of  obtained from
the analysis of individual estimates published over a
time interval from 6 to 20 years. Particularly notewor-
thy is the result from [5], in which 162 individual esti-
mates were analyzed over a 100-year time interval. It
can be seen that all the mean values of  presented in
this table are in very good agreement with each other.
Note that not all results are completely independent.
For example, the sets of initial data in [4] and [6] are
practically common. Vallée [4] and Camarillo et al. [6]
use different statistical methods to analyze the data.

The main conclusion that can be drawn from the
analysis of Table 1 is that the value of  is close to
8.0 kpc. And this value is very different from 
8.5 kpc recommended by the IAU in 1986.

Table 2 shows the individual results of determining
the distance, which were obtained after the publica-
tion of work [6]. Thus, they have not yet been used by
anyone to derive the average value of R0. The first col-
umn of the table gives a value of  with an error esti-
mate corresponding to the level , the second column
contains the type of stars used or the method of 
estimate, the third column contains the number of
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objects  used for the calculation of , and the last
column provides a reference to the authors of the 
estimate.

Note that some authors estimate both the statistical
and systematic error of the result. For example, in [5],

 kpc was obtained with an error  (stat.)
and  (syst.). Further, we will write it as

 kpc. In the present paper, when
refer to an  estimate, we usually take the systematic
error as an error. In this case, as for R0 = 7.93 ±

 kpc [11], we take the maximum error
value.

Table 2 contains 21 estimates of . Four estimates
were obtained from the analysis of the orbital motion
of the star S2 around the supermassive black hole in
the center of the Galaxy [10, 11, 13, 27]. In all these
four cases, there are partially common astrometric
measurements of the positions of the star S2, but there
are differences, for example, in the number and qual-
ity of the radial velocities of this star. Indeed, in the
studies of the GRAVITY collaboration [12, 27], obser-
vations were carried out at the European Southern
Observatory in Chile using an optical interferometer
Very Large Telescope Interferometer (VLTI). The
results of Chu et al. [11] and Do et al. [13] were
obtained mainly on the basis of observations at the
Keck Observatory located on the Mauna Kea Moun-
tain in Hawaii.

Quite recently, paper [12] was published, where the
estimate of  kpc was
obtained. But the most recent publication of Abuter
et al. [27] shows the presence of instrumental aberra-
tions. Therefore, all previous estimates of the collabo-
ration, starting from 2018 (in particular, the result of
[12]), were revised, and a value of R0 = 8.275 ±

 kpc was proposed. This is what we use
in this paper.

As observed from all these results, the estimates
[13, 27] were obtained with the smallest random
errors. Therefore, they should have the greatest
weights when calculating the weighted mean. Note
that the random errors of the presented  estimates
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Table 2. Individual results of determining the distance 

*The accuracy of the estimate is strongly overestimated here; in what follows, for this result, we will use the value of the random error of
0.11 kpc.

, kpc Star type/Method Reference

RR Lyr type variables 850 [31]
Classical Cepheids ~800 [38]
S2 1 [27]
Masers and radio stars 256 [25]
blue giant branch ~2500 [36]
RR Lyr type variables 16221 [30]
Masers of VERA program 99 [24]
Masers of BeSSeL program 199 [23]
S2 1 [13]
RR Lyr type variables 2016 [29]
Classical Cepheids 218 [37]
Mira variables 1863 [34]
Globular clusters 119 [39]

* RR Lyr type variables 960 [28]
RR Lyr type variables 4194 [22]
Cepheid II 894 [33]
Classical Cepheids 4 [35]
S2 1 [11]
Sections of spiral arms 2 [26]
Cepheid II 264 [32]
S2 1 [10]

0R

± ε σ0 (1 )RR n

. ± .7 99 0 49

. ± .8 27 0 10
. ± .8 275 0 033

. ± .8 15 0 12
. ± .8 2 0 6

. ± .8 28 0 14

. ± .7 92 0 30

. ± .8 15 0 15
. ± .7 971 0 032

. ± .8 1 0 2

. ± .8 2 0 1

. ± .7 9 0 3

. ± .7 6 0 7
. ± .8 05 0 024
. ± .8 30 0 36
. ± .8 46 0 11
. ± .8 10 0 22
. ± .7 93 0 13
. ± .8 8 0 5

. ± .8 34 0 41

. ± .8 32 0 14
differ by an order of magnitude. In this case, a weigh-
ing system must be used.

Nine  estimates are derived from an analysis of
the spatial distribution of variable stars. Four estimates
were obtained for RR Lyr type variables [22, 28–31],
two for type II Cepheids [32, 33], one for Mira vari-
ables [34], and one for classical Cepheids [35]. In
terms of the similarity of the approach, they are similar
to the result obtained for the blue-giant branch stars
[36].

Type II Cepheids were used in [32, 33]. They are
low-mass stars, poor in metals. They are found in
globular clusters, the Galactic disk and the Galactic
bulge. Type II Cepheids are more than magnitude
fainter than classical Cepheids with similar periods,
and follow a slightly different period–luminosity rela-
tionship. In [32], data from the Optical Gravitational
Lensing Experiment (OGLE-III [40]) and VISTA
Variables in the Via Lactea (VVV [41]) reviews are
combined. We selected 264 stars with good quality
light curves. In [33], the same team of authors
repeated the study using a much larger sample of
Cepheids. The R0 estimates were obtained on the
assumption that the selected stars are distributed sym-
metrically about the Galactic center.

0R
RR Lyr variables belong to the horizontal giant
branch in the Hertzsprung–Russell diagram. These
are old stars belonging to Population II, containing
few heavy elements and located in the spherical sub-
system of the Galaxy. Commonly they found in glob-
ular clusters. In [22], the selection of RR Lyr variables
was carried out from the VVV survey [41]. Individual
distances to these stars were estimated using near
infrared photometry ( ).  was calculated using
a high-latitude subsample of selected stars .
In [28], candidates were also selected from the VVV
catalog [41], but the individual distances to stars were
estimated by them using other calibrations. In [29],
the SEKBO (Southern Edgeworth–Kuiper Belt
Object [42]) survey was used to select RR Lyr vari-
ables. In [30], reviews of the OGLE program [43] were
used for these purposes. In [31], new spectral and pho-
tometric observations with the Southern African
Large Telescope (SALT) and a new calibration for
850 RR Lyr stars were used for the  estimate.
According to estimates [22], the dispersion in deter-
mining the absolute magnitude of RR Lyr stars is

. This means that, on average, the ran-
dom error in determining the individual distance to
such variable stars is about 4%.
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In [35], a sample of 55 classical Cepheids belonging
to the Galactic bulge was studied. Considering absorp-
tion, we used their photometric observations in seven
ranges , ,  3.6 μm, 4.5 μm, 5.8 μm, and 8.0 μm.
In these ranges, the interstellar extinction value is sig-
nificantly lower than in the optical range. As is known,
the estimate of the individual distance to the star, the
Cepheid in particular, strongly depends on the correct
accounting for the absorption. As a result, according
to [35], the error in estimating the distances to these
Cepheids averaged about 4–5%. They are unevenly
distributed relative to the center of the Galaxy. The
basic mass is located outside the center of the Galaxy
at a mean distance of about 12 kpc. And only 4 stars
are located in the center of the Galaxy, according to
which the  estimate was obtained.

A large sample of Mira variables was studied in
[34]. These stars are pulsating variables that are in the
late evolutionary stages of the asymptotic giant
branch. They are characterized by long periods of pul-
sation (over 100 days) and high near infrared and bolo-
metric luminosities. They belong to the Galactic halo.
In [34], a large sample was formed, compiled from
data from several observational programs (SAAO,
MACHO, and OGLE). Calibration and absorption
accounting was performed using photometry 
from the 2MASS catalog [44]. The  estimate was
obtained on the assumption that the selected stars are
distributed symmetrically about the Galactic center.

In [36], stars of the blue giant branch, which are
also halo objects, were used. The  estimate was
obtained by analyzing their kinematics based on the
statistical parallax method.

Compared to the random errors of  obtained
from other samples of RR Lyr stars, the random errors
in [28] are too small. Therefore, when calculating the
weighted mean, we increased them by a factor of 10,
i.e., made them comparable with the estimates
[22, 29].

Five estimates of  were obtained from an analysis
of the kinematics of maser sources with measured trig-
onometric parallaxes [23, 24], maser sources and radio
stars [25], as well as from various samples of classical
Cepheids [37, 38]. Data on 199 masers observed at
different frequencies (methanol at 8.4 GHz and
H2O-masers at 22 GHz) in the framework of the Bar
and Spiral Structure Legacy Survey (BeSSeL1) project
are described in [23]. In [24], 99 maser sources were
analyzed, which were observed at a frequency of
22 GHz in the framework of the Japanese VLBI
Exploration of Radio Astrometry (VERA2) program.
Note that the higher the frequency, the more accu-
rately the VLBI observations of parallaxes and proper
motions of radio objects are obtained. Most of the data

1 http://bessel.vlbi-astrometry.org
2 http://veraserver.mtk.nao.ac.jp
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from [24] was included in the sample [23]. In [25], the
sample [23] was supplemented by VLBI observations
of radio stars, which, however, lie very close to the Sun
in the Gould Belt region. In [38], the latest data on
classical Cepheids from [21, 45] were used. These
Cepheids belong to the disk component of the Galaxy
and are distributed practically over the entire disk. In
all five cases noted here,  entered as an unknown
when solving the basic kinematic equations describing
the Galactic rotation. According to Reid’s classifica-
tion [7], this approach belongs to indirect methods,
and according to the classification of Bland-Hotthorn
and Gerhard [3], it refers to model-dependent
methods.

The  estimate was also obtained by a kinematic
method in [39]. For this, the spatial velocities of 119
globular clusters were analyzed. Moreover, for them,
the original values of proper motions were calculated,
obtained with an epoch difference of about 65 years.

Finally, Table 2 presents the  estimate obtained
in [26] from an analysis of the distribution of masers
with measured trigonometric parallaxes in the spiral
arms. They used masers located in the two sections of
the spiral arms closest to the Sun—Perseus and
Carina–Sagittarius. So far, however, there is little data
for a confident application of the method, so the 
estimation error turned out to be large.

For statistical analysis and comparison of the
results obtained with other authors, we formed a sam-
ple of 35 measurements performed during 2011–2017.
These data are described in [6], which also contains
some results from [4], in which Camarillo et al. [6] did
not include in their sample. Thus, we have created a
more complete list of measurements for this time
period.

At the same time, the very inaccurate estimate
 kpc obtained by the statistical method

for planetary nebulae in [46] was not included in the
sample. Finally, one of our results obtained for
73 masers,  kpc [47], was added to the
sample.

All individual  estimates used in this paper,
depending on the year of publication, are shown in
Fig. 1. They cover a ten-year range from 2011 to 2021,
where the so-called “bandwagon” effect is completely
invisible. This effect was noticed by Reid [7]. It mani-
fests itself as a tendency to obtain a new estimate close
to the current standard value.

3. RESULTS AND CONCLUSIONS

3.1. Traditional Approach

This approach consists in calculating the arithme-
tic mean, the weighted mean of the parameter , as
well as the error estimates, based on the assumption of

0R

0R

0R

0R

= . ± .0 7 6 1 35R

= . ± .0 8 3 0 3R

0R

0R



502 BOBYLEV, BAJKOVA

Fig. 1. The values of  obtained by various authors in the last decade: data from the review [6] are indicated by open blue circles
and data from Table 2 of this paper are presented by red squares. The mean  kpc (gray horizontal line) and the confi-
dence region corresponding to the dispersion  kpc (gray fill) are shown.
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Table 3 shows the values of the mean distance .
The calculations were carried out for three samples:
first, for a sample of 21 individual assessments, which
are given in Table 2; second, for a sample of 35 indi-
vidual estimates, which we formed according to data
from [6]; and third, for a pooled sample of 56 individ-
ual estimates, which contains the results from 2011 to
2021. The mean value of  is calculated in accordance
with the well-known formula:

(1)

where  is the number of measurements,  is the
weight of the ith dimension, as can be seen from the
Table 3, weights of the following two types are used:

 and . The dispersion of the  estimate
is calculated according to the formula

(2)
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(3)

As we can see from Table 3, for any data segmentation
into subsamples, we obtain the mean value of  in a
very narrow range of 8.0–8.2 kpc. The dispersion val-
ues are very different. The type of weighting coeffi-
cients noticeably affects both the dispersion and the
error of the mean.

In our case, we have a slightly larger number of
members in the sample  from the 2011–2017 interval
compared with the sample analyzed by Camarillo
et al. [6], where . Despite this, the result we
found,  kpc (fourth row from the
top in Table 3), is in good agreement with the estimate
[6]  kpc (weighted mean, with
weights of the type  and dispersion 
0.40 kpc). It can also be noted that our estimate is in
good agreement with the result of [2], which was
obtained on the basis of a similar 
0.048 kpc (weighted mean error) method from the
analysis of a completely different set of individual esti-
mates of .

We consider the weighted mean 
 kpc found for the sample from the 2017–2021

interval to be the most interesting ( , second line
from the top in Table 3). This estimate is new, based on
independent data. It can be seen that the variance val-
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Table 3. Estimates of the mean  and its errors, obtained by the standard method

, kpc Dispersion, kpc Error of mean, kpc Weight Marks in Fig. 1

21 8.157 0.239 0.052 1 Red
21 8.139 0.157 0.034 Red
35 7.977 0.422 0.071 1 Blue
35 7.973 0.304 0.051 Blue
56 8.044 0.374 0.050 1 All
56 8.090 0.225 0.030 All

0R

n 0R w

ε21/ R

ε21/ R

ε21/ R
ues in this sample favorably differ in the smaller direc-
tion from the dispersion values calculated for the pre-
vious time period.

Figure 1 shows the mean  kpc value
found from a sample of 56 measurements and indi-
cates the confidence region corresponding to the stan-
dard deviation (  kpc) found for this entire
sample. At the same time, it is clearly seen that the
confidence region for the red points should be approx-
imately twice as narrow.

Figure 2 shows two histograms. One histogram is
based on a sample of 56 individual determinations of

 (light shading) with mean value  kpc and
 kpc. The other is based on a sample of

21 individual definitions of  (dark shading) with
mean value  kpc and  kpc.
Camarillo et al. [6] noted that the distribution of the
28 estimates of  used in [6] is wider than the Gauss-
ian distribution and has other small deviations from
the Gaussian. Such manifestations can be seen in
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Fig. 2. Histograms of distribution for samples consisting of 56 va
Gaussians, see the text for details.
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Fig. 2 (the distribution wings are broadened, the sec-
ondary maximum at  kpc in the distribution of
56 estimates), although they are not large.

In [6], the non-Gaussianity in the distribution of
errors was proved using the Student distribution. Since
the approach used to determine the most probable
value of the error of the mean  in [6] is of interest,
we also decided to apply it.

3.2. Median Statistics

A description of the approach can be found in [6,
48, 49], in which it was applied when searching for the
most probable values of some astronomical parame-
ters. Camarillo et al. of these papers call their
approach “median statistics”. Moreover, it is com-
pletely different from the median method used, for
example, in papers [2, 50].

The median is the center value in a sorted dataset
that divides the dataset into two halves, each with an
equal number of elements. Median statistics assume
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Table 4. Estimates of  and its errors obtained by the
“median statistics” method

, 
kpc

, 
kpc

Interval , 
kpc

Interval , 
kpc

21 8.05–8.27 7.97–8.28

35 7.91–8.13 7.70–8.20

56 7.99–8.20 7.97–8.20
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Fig. 3. Ordered sequences of measurements showing median values (a) and probability distributions (b) versus sequence number
 for three samples.
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statistical independence of all measurements and the
absence of systematic errors. It does not use measure-
ment errors, which is an advantage if the errors are
non-Gaussian or estimated incorrectly. The payback
for it is that the central median estimate has relatively
large uncertainty. To find errors related to the median
value, we follow [48].

For a dataset consisting of  independent mea-
surements , we determine the probability  of the
median , lying between  and  as the bino-
mial distribution:

(4)

Median errors  are defined as follows. From the
value of , which has the highest probability, inte-
gration is performed in both directions. The stop
occurs when the cumulative probability reaches
0.6827 of the total probability, which corresponds to
the standard deviation . Next, the difference
between the median  and the two values , cor-
responding to the ends of the integrals, is taken to
obtain an error of one standard deviation, . We then
continue this integration until the cumulative proba-
bility reaches 0.9545 of the total probability to get the
standard deviation errors in . Note that the distri-
bution does not have to be symmetric, so the bounding
values  are not necessarily twice the value .

Table 4 shows the  estimates and its errors
obtained by the method just described. As shown in
[6], the error estimates are not symmetric. Therefore,
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Table 4 gives estimates of  for both the level  and
. Note that the mean value is not calculated in this

method, but the median value is taken from the avail-
able ordered list (therefore, we do not put the average
sign here).

The second line in the table is given for comparison
with the result of [6], in which a sample of 28 estimates
using the median statistics, , was found
for the  level and  for the  level.
Camarillo et al. [6] estimates were made from very
close samples.

The method is illustrated in Fig. 3. Figure 3a shows
three ascending measurement sequences for three
samples, which contain 21 (red), 35 (sandy), and
56 (blue) measurements, respectively. The vertical
lines in this figure represent the median value. The
probability distribution  (see expression (4)) for the
same samples is shown in Fig. 3b.

The most interesting result in Table 4, of course, is
the result obtained from the sample containing 21 esti-
mates. Assuming that the errors are symmetric, we can

0R +
−σ1

+
−σ2

+ .
− .= . 0 11

0 0 237 96R
σ1 + .

− .= . 0 24
0 0 307 96R σ2

P
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write  kpc. As we can see from Fig. 3a,
the sequence for a sample of 56 measurements (blue
line) has the smallest slope to the horizontal axis com-
pared to the other two sequences. Therefore, for this
sample, close errors were obtained, both for the level

 and .
According to the second and last lines of the Table 3,

we have the most probable mean value  kpc.
As the most probable estimate of the error of , one
can take  kpc value, which is in agreement with
both the value obtained using the standard approach
and using the median statistics. Then, for practical
use, the value  kpc can be recom-
mended. Note that this value is in good agreement
with the results given in Table 1.

4. CONCLUSIONS

A statistical analysis of the estimates of the Galacto-
centric distance  is performed. For this, we used the
results obtained by various authors over the past
decade, from 2011 to 2021. For this entire sample con-
taining 56 measurements, based on the standard
approach, we found the weighted mean  8.090 kpc
with the dispersion  kpc and the error of the
weighted mean  kpc. For the same sample,
on the basis of median statistics, we found R0 =

 kpc.

Our list contains 21 individual estimates of  since
2017. These results have not yet been used by anyone to
calculate the best value of mean . For this sample,
on the basis of the standard approach, we found a
weighted mean  kpc with a dispersion

 kpc and an error of the weighted mean 
0.03 kpc. For the same sample, containing 21 esti-
mates, based on the median statistics, we found

 kpc under the assumption of symme-
try of errors.

As we have already noted, the median statistics
does not give a completely accurate mean value (the
median is assigned from the available list of measure-
ments), but it estimates the errors of the result well.
Therefore, we use the combined result. Namely, we
take the weighted mean  and the errors are esti-
mated based on the median statistics.

As a result, we came to the conclusion that it is pos-
sible to recommend the value  kpc for
practical usage.
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