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Abstract—This paper is devoted to examining the effects of charge and Weyl coupling parameter on the stable
configuration of thin-shell wormholes. We use a cut and paste approach to develop thin-shell wormholes
from the matching of two equivalent geometries of a charged black hole with Weyl corrections. The charac-
teristics of matter surface around wormhole throat are calculated through Lanczos equations. We examine
that matter distribution located at the wormhole throat violates the null and week energy conditions. The
expansion and collapse of thin-shell are observed through the graphical behavior of surface pressure. We
explore the stable behavior of wormhole throat through radial perturbation preserving its symmetries about
the static solution. It is found that charge and Weyl coupling parameter enhances the stable regions of thin-
shell wormholes but stable regions decrease for highly charged thin-shell wormholes.
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1. INTRODUCTION

A non-singular solution of the field equations that
connects two different regions of the same universe or
faraway universes through a geometrical passage is
referred to as a wormhole (WH). This passage can be
further partitioned into two types, i.e., inter-universe
and intra-universe. A WH that does not allow the
observer movement from one universe to another is
called non-traversable, otherwise, it is known as tra-
versable. Traversable WHs have remarkable impor-
tance to study the far-away as well as multi-universes
due to the absence of event horizon and singularity [1].
The presence of exotic matter at WH throat produces
enough pressure to counter-balance the effect of grav-
itational collapse that supports the observer motion
across the geometrical passage. Such matter distribu-
tion can be realized through the violation of energy
conditions.

Visser [2] examined that the distribution of exotic
matter can be minimized and found that such a viola-
tion can be reduced for some suitable geometrical
structures. He analyzed that an observer can travel
across the WH tunnel without passing the passage of
exotic matter. The same author [3] constructed thin-
shell WHs from the junction of interior and exterior
spacetimes of the Schwarzschild black hole (BH)
through cut and paste technique. The corresponding
components of energy-momentum tensor are evalu-
ated through Israel formalism [4]. This technique has

been applied to develop thin-shell WHs from different
BHs [5–25].

A major concern in cosmological and astrophysical
research is the analysis of linearized stability of the
geometrical structure of thin-shell WHs through
radial perturbation about the static solution as well as
the equation of state (EoS). Eiroa and Romero [26]
studied the stable characteristics of thin-shell WHs
constructed from Reissner–Nordström (RN) BHs
and found stable behavior for highly charged distribu-
tion. Eiroa and Simeone [27, 28] introduced a new
approach to analyzing the stable structure of spherical
and cylindrical thin-shell WHs through radial pertur-
bation preserving the symmetries. They investigated
the linearized stability of spherical WHs in the pres-
ence of Chaplygin gas.

Eiroa [29] examined the stable structure of dilation
and RN WHs by using radial perturbation preserving
the symmetry. He also linearized the EoS parameter
about the equilibrium throat radius. Eiroa and Sime-
one [30] analyzed the stable characteristics of spheri-
cal charged WHs in Einstein–Born–Infeld and Ein-
stein–Maxwell theories through radial perturbation.
Sharif and Azam [31] developed thin-shell WHs from
the charged black string in the presence of Chaplygin
gas and also explored their linear stability through
radial perturbation about the static solution.

The generalized Einstein–Maxwell theories are
very useful to explore the characteristics and effects of
the electromagnetic field. These theories provide
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information about the electromagnetic field and
higher derivative interactions. Such theories can be
partitioned into two different classes, i.e., the minimal
and non-minimal coupling between the Maxwell and
curvature parts [32–34]. In the Einstein and Maxwell
equations, the coefficients of second-order derivatives
are modified through the appearance of non-minimal
couplings in the Lagrangian. This new feature has
many interesting applications in different models and
systems such as the interaction of the electromagnetic
field with gravitational waves, cosmological scenarios,
and charged BHs. Black hole solutions in the presence
of a non-minimal connection between gravitation and
electromagnetic field have also been considered in the
modified Maxwell field [35]. The resulting coupled
terms produced significant changes in the electromag-
netic and gravity structure of charged BHs.

Balakin and his collaborators [36–38] investigated
exact solutions of three-parameter non-minimal Ein-
stein–Yang–Mills and Einstein–Maxwell models that
represent a new type of WH and the non-minimal
magnetic monopoles of the Dirac type, respectively.
They also investigated exact solutions supported with
non-minimal coupling for the electromagnetic and
gravitational fields that express static spherically sym-
metric objects with and without center. These non-
minimal couplings of electromagnetic and gravita-
tional fields modify the geometrical structure of
charged BHs. The coupling between the Maxwell field
and Weyl tensor is another simple generalization of
electromagnetic theories with Weyl corrections [39].
Moreover, the current investigation explains that such
non-minimal coupling must occur near the astrophys-
ical compact objects with strong gravitational field and
large mass density, i.e., the existence of supermassive
BHs at the center of galaxies. Chen and Jing [40] pre-
sented dynamical equations of the electromagnetic
perturbation coupled with Weyl tensor in the back-
ground of Schwarzschild BHs. They also studied the
effects of Weyl correction on the stable configuration
of BHs. The geometrical structure of charged BHs
greatly depends on the electrodynamics of the Max-
well field and hence the Weyl corrections in the Ein-
stein–Maxwell theory modify their structure as well as
physical properties.

Chen and Jing [41] introduced rotating and non-
rotating charged spherically symmetric BHs with
small Weyl corrections. They examined that positive
and negative values of the Weyl parameter (α) increase
and decrease the region of the event horizon, respec-
tively. For charged rotating BHs with Weyl correc-
tions, the ergosphere in the equatorial plane becomes
thick, if α > 0 while it becomes thin if α < 0. Mahapa-
tra [42] investigated the charged BH in d-dimensional
anti-de Sitter spacetime with four derivative Weyl cor-
rection. He determined the quasinormal frequencies
of the massless scalar field perturbation and also ana-
lyzed thermodynamics as well as a phase transition.
Mureika and Varieschi [43] studied the shadow of
rotating BHs neutral with fourth-order conformal
Weyl gravity.

In this paper, we are interested to investigate the
effects of the coupling parameter on the stability of
thin-shell WHs developed from charged BHs with
Weyl corrections. The paper has the following format.
Section 2 develops the general formalism of thin-shell
WHs developed from two equivalent copies of charged
BH with Weyl corrections. Section 3 explains the sta-
bility procedure of thin-shell through radial perturba-
tion preserving its symmetry. We also observe the cor-
responding stable regions of thin-shell WHs. In the
last section, we summarize our final results.

2. CONSTRUCTION OF THIN-SHELL 
WORMHOLES

Here, we briefly discuss the geometrical construc-
tion of thin-shell WHs from the interior and exterior
copies of charged BH with Weyl corrections. The
action that represents the coupling of Weyl tensor and
electromagnetic field can be proposed as [41]

(1)

where  is the Maxwell tensor, 
represents the Weyl tensor,  = (φ(r), 0, 0, 0) denotes
the vector potential and φ(r) is the electric potential.
By varying the action (1) with respect to the metric
coefficients, we obtain the modified form of the field
equations given as

(2)

where

(3)

These equations are very useful to explore the effects
of Weyl coupling parameter over the geometrical con-
figuration of the compact objects.

The line element of static spherically symmetric
spacetime is given as

(4)

where the metric coefficients Ψ(r) and h(r) are the
functions of polar coordinate r. By using Eqs. (2) and
(3), the respective three coupled equations of motion
are obtained as [41]
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The solution of BH with Wely correction is obtained
by solving these coupled equations [41]. For α = 0,
their solution represents the RN BH.

The line elements of two equivalent copies (±) of
charged BH with Weyl corrections can be written in
the following form [41]

(5)

where

α, , and  denote the coupling parameter, electric
charged, and mass of the interior (–) and exterior (+)
copies of BHs respectively. For simplicity, we assume
that both spacetimes have the same mass and charge
distributions, i.e.,  and . In
this case, the electric potential and metric function
depend on the charged distribution of BH and cou-
pling parameter while in RN spacetime, it depends
only on the charge. This indicates the coupling
between electromagnetic and gravitational fields
implying that the coupling parameter greatly affects
the characteristics of charged BH. Notice that

• if α = 0 and Q ≠ 0, then it represents the RN BH;
• if α = 0 = Q, then it corresponds to Schwarz-

schild BH.
To avoid the singularity and event horizon in the

geometrical structure of thin-shell WHs, the shell’s
radius must be greater than the radius of the event
horizon (rh). It is observed that the region of event
horizon increases for negative values of α and
decreases for positive values. We consider only positive
values of α to avoid the event horizon in the WH
geometry. We construct thin-shell WHs from the
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matching of interior and exterior copies (±) of BHs
through Visser’s approach. For this purpose, we take a
subset ( ) of these manifolds ( ) through cut and
paste technique that does not contain any type of event
horizon as well as singularity, i.e., . Here,

= , where , τ and w(τ) repre-
sent coordinates of the manifold, proper time on the
shell and shell radius, respectively. These subsets are
glued at their common timelike hypersurface , i.e.,

. The matching between  and  at throat
radius provides a connection between interior and
exterior spacetimes ( ) that follows the
radial f lare-out condition. This manifold ( ) rep-
resents a WH throat that connects both manifolds.
The corresponding induced metric for hypersurface
can be defined as

(6)

The components of unit normals to  can be
expressed as

and

The corresponding extrinsic curvature components
are defined as

(7)

where prime denotes the derivative with respect to w.
The presence of matter surface produces extrinsic

curvature discontinuity at the hypersurface and its
existence can be evaluated by using Israel formalism.
Mathematically, such a matter surface can be observed
if . The characteristics of matter surface
located at thin-shell are determined by the field equa-
tions for the hypersurface known as Lanczos equations
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Fig. 1. Plots of energy conditions for Q = 0 = α (a) and Q = 0.5, α = 0.1 (b) with m = 0.5. These plots indicate physical viability
of the developed WH geometry. 
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and K = tr[Kij] = [ ]. For perfect f luid distribution,
the stress-energy tensor yields

(9)

where Ui, p, and σ represent the velocity of shell, sur-
face pressure and energy density of matter surface
located at thin-shell. The corresponding σ and p of
thin-shell WHs can be evaluated through the Lanczos
equations as

(10)

which yield

(11)

(12)

We assume that the shell does not move in the radial
direction. Therefore, the first and second derivatives
of the shell radius with respect to τ vanish at equilib-
rium throat radius (w = w0), i.e.,  = 0 = . The
above equations at w = w0, become

(13)

where σ0 and p0 denote the surface energy density and
pressure at w = w0.

To discuss the physical viability of a model, we
impose some geometrical constraints, known as
energy conditions. There are four well-known energy
conditions null (σ0 + p0 ≥ 0), weak ( ,

), strong ( ), and dominant

( , ). These constraints must be sat-
isfied with normal matter distribution. A viable WH
geometry requires the presence of exotic matter at the
WHs throat that repel the gravitational force and pre-
vent it from contraction. Figures 1a and 1b indicate
that  and  which leads to the physi-
cally viable structure of WH. It is also observed that
the strong energy condition is satisfied for small values
of shell radius (w0), otherwise, it is violated. The sur-
face pressure of matter distribution explains the
expanding and collapsing characteristics of WH
throat. The positive values of p0 prevent WH throat
from collapsing while negative values hold its expand-
ing behavior. The corresponding expansion and col-
lapse of thin-shell WHs are shown in Fig. 2. Figure 2a
explains that thin-shell shows expanding behavior for
small values of shell radius (p0 < 0) and then represents
the collapse (p0 > 0) for Q = 0.5. It is also observed that
thin-shell shows collapse for higher values of charge
Q = 0.8 (Fig. 2b).
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Fig. 2. Plots of surface pressure for Q = (a) 0.5 and (b) 0.8 with m = 0.5 = α. These plots show the expanding and collapsing behav-

ior of thin-shell WHs.
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3. STABILITY ANALYSIS

In this section, we explore stable and unstable
characteristics of charged thin-shell WHs with Weyl
corrections under radial perturbation preserving the
spherical symmetry. We linearize the EoS satisfied by
matter surface around the WH throat at equilibrium
shell radius [27–29]

(14)

where  represents the EoS parameter.

This parameter is also referred to as speed of sound for

normal matter distribution while for exotic matter it is

not clear that  shows the speed of sound. Also,

 for normal matter and for exotic matter, its

range is not defined. Using Eqs. (11)–(13) in (14), we

have

(15)

We consider small radial perturbation ( ) about equi-
librium throat radius w0 to explore the effect of shell

radius on the stable/unstable behavior of WH throat.
Hence, the shell radius can be expressed in the follow-
ing form
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By considering these truncated functions in Eq. (18),
we get a system of differential equations

(19)

where

(20)

and

It is noted that the above equation is reduced to the
RN thin-shell WHs for α = 0 given as

This expression is exactly the same as in reference [29,
Eq. (37)].

The system of first-order differential Eqs. (16) can
be expressed as
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metrical behavior of thin-shell WHs.
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The stable condition of thin-shell can be written in
the following form

(22)

Here, χ(w0) = χ0 is the coefficient of the EoS parame-

ter ( ) and A(w0) = A0 is the remaining term of

Eq. (22) in which  does not involve. We discuss the
geometrical behavior of WHs through the stability
regions. The stable regions can be characterized as fol-
lows

(i) if χ0 < 0, then  < A0/χ0;

(ii) if χ0 > 0, then  > A0/χ0,

where

We plot χ0 and A0/χ0 to explore the stable configu-

ration of charged thin-shell WHs with Weyl correc-
tions. It is observed that for each value of charge, pos-
itive values of the Weyl coupling parameter with
m = 0.5, χ0 < 0, which shows that stable regions exist

for < A0/χ0. Figure 3 indicates the effect of the cou-

pling parameter on the stable regions of thin-shell
WHs. It is found that the presence of charge and cou-
pling parameter enhances the stable regions of thin-
shell WHs. It is noted that stable regions increase by
increasing α. Figure 4 indicates that initially stable
regions increase if 0 < Q ≤ 0.7 and decrease for higher
values of charge. These plots explain that thin-shell
WHs constructed from charged BHs with Weyl cor-
rections are more stable than Schwarzschild and RN
spacetimes.
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Fig. 3. Plots of χ0 and A0/χ0 for different values of coupling parameter with Q = 0.5. The shaded regions indicate the stable

regions. It is found that stable regions are increased in the presence of charge and coupling parameter. It is also examined that

charged thin-shell WHs with Weyl corrections are more stable than Schwarzschild and RN thin-shell WH.
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4. FINAL REMARKS

In this paper, we have explored the stability of thin-
shell WHs in the presence of charge and the Weyl cou-
pling parameter. We have developed WH geometry
through the smooth matching of interior and exterior
manifolds of charged BHs with Weyl corrections. The
stable configuration of WHs is observed by consider-
ing radial perturbation about equilibrium throat radius
preserving their symmetries. The matter distribution
located at the WH throat violates the null and weak
energy conditions indicating that the developed model
ASTRONOMY REPORTS  Vol. 65  No. 5  2021
is physically viable. It is noticed that the strong energy

condition is verified for small values of shell radius

otherwise shows a violation (Fig. 1). We have also

investigated the expansion as well as the collapsing

nature of thin-shell WHs through different values of

charge (Fig. 2). It is found that shell indicates collaps-

ing behavior for highly charged geometry.

The study of stable regions of the developed struc-

ture is carried out through the graphical behavior of

 in terms of equilibrium shell radius with= σ2

0 0 0/h dp d
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Fig. 4. Plots of A0/χ0 for different values of charge with α = 0.1. These plots explain that the stability regions are enhanced by

increasing charge (0 < Q ≤ 0.7) and stable regions decrease for highly charged thin-shell WHs (Q > 0.7).
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different values of charge and coupling parameter. We
have found that the stability regions are greatly
affected by the presence of charge as well as the Weyl
coupling parameter. It is observed that stable regions
are increased by increasing α (Fig. 3). The stable con-
figuration of WH throat becomes more stable for small
values of charge (0 < Q ≤ 0.7) while decreases for its
higher values (Fig. 4). It is worthwhile to mention here
that the presence of both charge and coupling param-
eter increase the stable configuration of WHs geome-
try as compared to Schwarzschild and RN BHs. It is
found that all our results follow the geometrical behav-
ior of RN thin-shell WH for α = 0 [29].
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