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Abstract—The work is devoted to the study of the physical libration of the Moon. Interest in the traditional
topic related to the rotation of the Moon is stirred up by the activity of many countries regarding the devel-
opment of circumlunar space. Scientifically, the main agenda is to consider the viscosity of the core. At this
stage of the theory development, such effects as indirect and direct perturbations from the planets were con-
sidered, the 4th order harmonic was included in the gravitational potential of the Moon, and the mean tidal
potential was also considered. The inclusion of the described effects in the equations of the Moon’s rotation
led to a significant improvement in the solution when compared with the corresponding data from the DE421
theory, although the residual differences still remain greater than the 1 ms accuracy required by the theory.
The influence of the direct effect from the planets was milliseconds. The influence of the 4th harmonic man-
ifested itself as a systematic shift of the order of 0.85  in the residual differences in libration in longitude. Con-
sidering the tide made it possible to reduce the residual differences in latitude by almost an order of magni-
tude. In this case, the main factor that reduces the residual differences is changes in the second-order Stokes
coefficients. The calculations were carried out using the DE421 ephemeris built at NASA Jet Propulsion Lab-
oratory.
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1. INTRODUCTION
In this study, factors are considered that make it

possible to improve the accuracy of the theory of the
Moon’s physical libration in comparison with the the-
ory previously constructed for a solid Moon model
within the framework of the main problem of physical
libration [1, 2]. It should be noted that many works
have been devoted to the study of the dynamic proper-
ties of the Moon. The Earth-Moon system is one of
the most interesting objects to study. First, seismo-
graphs were placed on the Moon, which provided
independent confirmation of the presence of a lunar
core [3, 4] and the existence of a molten layer at the
core/mantle interface. Secondly, there are high-preci-
sion gravimetric measurements carried out during
many space missions, including Kaguya and GRAIL,
in which accurate mascon maps were built, and high-
precision values of Stokes coefficients in the expan-
sion of the Moon’s gravitational field were determined
[5]. The refined values of the Stokes coefficients con-
firmed the compression of the lunar core [6]. Third, to
date, long-term lunar laser ranging (LLR) has
achieved high accuracy (several tens of millimeters) in
determining the distance between the Earth and the
Moon, which made it possible to create high-preci-

sion ephemerides of the Moon, one of which is the
DE421 ephemeris [7]. Considering the new data and
using the DE421 ephemeris, Ramboux and Williams
[6] constructed an empirical series of parameters of
the lunar physical libration (LPhL), which is, in fact,
the most accurate analytical description of the lunar
rotation today. All of this would be impossible without
the development of the LPhL theory itself, in which
the correct interpretation of the LLR data is permissi-
ble, modeling of the described effects is carried out.
This ultimately improves the accuracy of predicting
the Moon’s position in orbit, the position of objects on
the lunar surface, and, of course, clarification of the
internal structure parameters of the lunar body.

Dissipative processes were also discovered, which
are due to a shift at the equatorial node on the ecliptic
by a magnitude (in modulus) 5.81 , which is equiva-
lent to the angle of deviation of the rotation pole from
the Cassini plane, equal to 0.263 . Williams et al. [8],
and even earlier Yoder [9], and Dickey et al. [10], pro-
posed two possible sources of dissipation: solid-body
tides from the Earth and the Sun and dissipation at the
core-mantle boundary. It was shown that these effects
can be considered independently of each other. The
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1094 ZAGIDULLIN et al.
processing of long-term observations of LLR showed
that the tidal delay is about 4 h [8].

The inclusion of these internal effects in the model
of the Moon’s rotation requires not only complex the-
oretical calculations, but also the use of high-precision
observations that are sensitive to these effects. The
most obvious is the installation of additional seismo-
graphs on the lunar surface, in which it would accu-
rately identify the inner structure of the Moon.
Another solution is to mount the telescope on the
lunar surface. With such a telescope available, it will be
possible to introduce corrections to the LPhL theory
to reduce the discrepancies between the observed
positions of the stars and the theoretically calculated
ones. This idea is planned to be implemented in the
ILOM mission [11, 12].

Thus, to study the fine effects of the Moon’s rota-
tion, it is necessary to have an instrument that allows
one to calculate and make appropriate adjustments to
the calculation of the LPhL to reduce the residual dif-
ferences. Thus, we first built a numerical LPhL-the-
ory, which in its internal content fully corresponded to
the analytical theory of Petrova [2]: the equations
included a model of an absolutely rigid Moon, the
gravitational potential of which was described by sec-
ond and third order harmonics, the orbital motion of
the Moon was specified by the analytical theory [13]
constructed in the framework of the Hill problem, i.e.,
description of the Moon motion in the plane three-
body problem Sun–Earth–Moon. The accuracy of
the analytical theory [2], determined by comparison
with similar analytical theories, was not very high

. The obtained numerical solution [1] dif-
fered from the corresponding analytical one only in
libration in longitude: the residual differences had an
amplitude  at the resonance frequency .
This difference, we believe, is due to the inaccuracy of
the analytical solution when obtaining the amplitudes
of the resonant and with small denominators of the
terms.

At this stage of our research, we are considering a
more accurate model of lunar rotation. First, the
modern numerical ephemeris defined by the DE421
theory shall be the focus. It was this model, and not
the later, that was chosen in order to be able to com-
pare the obtained LPhL solution with the semiempir-
ical Ramboux and Williams series [6], which were also
obtained on the basis of DE421. We needed to make
such a comparison in order to check the correctness of
our operations to extract both the parameters of the
motion of the Moon’s mass center and the LPhL
parameters from the dynamic model.

Secondly, we refine the numerical values of the
parameters included in the developed theory. The
solution of differential equations by the numerical
method within the framework of the Cauchy problem
requires the setting of the initial conditions for the
sought variables, which are the libration angles and the
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canonical momentum conjugate to them. Inaccuracy
in the initial data leads to the appearance of false near-
resonant harmonics in the solution. In our case, the
libration in longitude is most sensitive to inaccuracies
in the initial values, in which the described effect man-
ifests itself at periods close to 3 years. Therefore, we
carefully verified the initial conditions for the libration
variables with the DE421 ephemeris.

Thirdly, we make an approximate account of the
lunar body deformation due to solid-body tides, intro-
ducing average corrections to the lunar inertia tensor
obtained in [8] based on the analysis of laser data.

And fourthly, in addition to indirect accounting for
perturbations from the planets, realized through the
transition to a dynamic ephemeris, we consider the
direct perturbations from the planets.

After introducing each of the described effects into
our numerical theory of LPhL, we obtain residual dif-
ferences when comparing our results with the data
extracted from DE421, which coincide with calcula-
tions based on semiempirical series [6] with a high
accuracy. As a result, the obtained differences, which
do not exceed 1.2  for libration in longitude and 2  in
latitude, show that we are using the correct algorithm
for working with a dynamic ephemeris and that the
effects we have introduced bring our solution increas-
ingly closer to the results obtained with the help of
semiempirical series. In conclusion, we discuss the
nature of the remaining residuals and analyze the pos-
sible unaccounted effects that can reduce the ampli-
tude of the residual differences.

2. OBTAINING THE MOON’S ORBIT
FROM DE421

The staff members of the NASA Jet Propulsion
Laboratory (JPL) wrote two programs for the primary
processing of ephemeris files containing Chebyshev
coefficients. The first program converts the original
data into a binary format, and the second one carries
out Chebyshev interpolation at a given time moment.

The Pleph function (ET, NTARG, NCTR, R),
which implements interpolation, is written in Fortran:

ET is the date in Julian days;
NTARG is the index of the object, the coordinates

of which we want to obtain (see Table 1);
NCTR is the index of the object, relative to which

we want to obtain the coordinates of the celestial body
NTARG; and

R is the set of coordinates and their derivatives.
The coordinate system laid down in the ephemeris

is geocentric with the equator of the J2000 epoch tilted
at  to the ecliptic of the epoch. When
constructing a numerical LPhL-theory, we use the
direction cosines of the vector radii directed from the
Moon’s center to the centers of the Earth and the Sun.
The transition from rectangular components to the
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Table 1. NTARG values

NTARG Body

5 Jupiter

2 Venus

13 Earth–Moon barycenter

10 Moon geocenter

3 Earth

11 Sun

15 LPhL, NCTR = 0

Table 2. Residual differences between different orbital the-
ories  in the components of the Earth relative to the Moon
over an interval of 80 years

Radius 
vector, m

Longitude, 
m

Latitude,
m

DE430–DE421

DE431–Horizons

DE430–DE421 [7]

Δ

Δ

± .0 4 −0 2 ± .1 5
−± . × 61 5 10 −± . × 61 5 10 −± . × 60 2 10

± .0 2 −0 1 ±1
direction cosines of the radius vector (to a rotating
ecliptic coordinate system) is implemented in the fol-
lowing way:

1. Rotation of the equatorial coordinate system at
an angle 

2. Calculation of the longitude  and latitude  of
the object (Earth/Sun) with the transition to a rotating
frame of reference by subtracting the mean motion

 from longitude

3. Calculation of the direction cosines of the radius
vectors Moon–Earth and Moon–Sun:

The obtained parameters are necessary for calculating
the potential energy of the system. The potential
energy considers the interaction of the Moon with the
Earth (through harmonics of the 2nd, 3rd, and
4th orders) and with the Sun (harmonic of the 2nd
order). The formulas used are given in [1].

To check the calculation correctness of the orbit
parameters, we compared the values we obtained
based on the DE421, DE430, and DE431 ephemeris
with the values taken from the HORIZONS web-
interface database,1 with the DE431mx model. The
residual differences calculated by us and similar differ-
ences obtained in [7] are given in Table 2.

Since the differences between DE431 and Hori-
zons are millionths of a meter, our calculation algo-
rithm can be considered correct.

1 https://ssd.jpl.nasa.gov/horizons.cgi
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3. DEVELOPMENT OF AN ALGORITHM
FOR EXTRACTING LIBRATION PARAMETERS 

FROM DE421

3.1. Semiempirical Series of Observations

The DE421 model was also chosen by us because it
was used to construct the semiempirical Ramboux and
Williams series [6], which today are the most accurate
analytical representation of the observed physical
libration in the form of series:

(1)

Series (1) can be correctly called semi-empirical ones
[14], since the numerical values of their coefficients
and frequencies, presented through the fundamental
Delaunay arguments (Table 3), were obtained not
from the solution of the differential equations of the
LPhL, but as a result of a complex multiparameter
analysis of the residual differences obtained by com-
paring numerical solution of DE421 for LPhL with
data of long-term laser observations. In other words,
the series [6] are, in its own way, an analytical interpre-
tation of the LPhL parameters obtained from observa-
tions. They do not fully comply with DE421, since
they also contain low-amplitude terms  ( ),
which are absent in DE421, but they are present in
observations. Barkin et al. [14] showed that the nature
of these terms is due to the presence of Free Core

= =
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Table 3. Fragment of the table of semiempirical series [6]

Arguments Period, days Fourier C, as Fourier S, as Poisson C, as/cent Poisson S, as/cent

+l 27.555 — —
+F 27.212 78.575 0.249 — —
+l F 0.072 — —

7.582 0.121
F 13.606 — —

F W 27.185 0.004 5.758
D F 173.310 — —
D l 2.469 — —

F –W 27.239 2.443 0.005
l F 13.691 1.408 0.001 — —

− .0 046 − .101 344

−2 − .26 878 − .24 569
+Ω − .6798 526 − .9 023 − .0 006
+2 − .0 003 − .10 080
+ + − .0 012 − .0 002
−2 +2 − .0 001 − .3 002
−2 + − .31 812 − .0 001
+ − .0 001 − .0 001
+ +

Table 4. Delaunay parameters [16], parameters of motion of the lunar node (epoch) and general precession

Par deg/amin/as T1, as T2, as T3, as T4, as

L 134/57/48.2264 1717915923.0024 31.3939 0.051651

L 357/31/44.7744 129596581.0733 –0.5529 0.000147 0.00000015

F 93/16/19.5517 1739527263.2179 –13.2293 0.00000417

D 297/51/0.6902 1602961601.0312 –6.8498 0.006595

125/2/40.3265 6.3593 0.007625

Pa 0 5028.7946 1.11113 0

− .0 00024470

′
− .0 001021

− .0 00003184

Ω − .6967919 8851 − .0 00003586

− .0 000006

Table 5. Longitude parameters of planets of the ecliptic of the epoch [17]

Par T0, rad T1, as T2, as T3, as Т4, as

Me 4.40260884240 26087.90314157420 –0.00000934290 0.00000003100 0

Ve 3.17614669689 10213.28554621100 0.00000287555 –0.00000003038 0

Ea 1.75347031435 6283.07584918000 –0.00000991890 0.00000000073 0

Ma 6.20348091341 3340.61243149230 0.00000454761 –0.00000005057 0

Ju 0.59954649739 529.69096509460 –0.00014837133 0.00000007482 0

Sa 0.84701675650 213.29909543800 0.00036659741 –0.00000033330 0.00000000217
Nutation (FCN), and the terms with the status corre-
spond to harmonics derived from FCN [15].

Series [6] are used by us for the procedure of check-
ing the algorithm (see below, Section 3.2) for extract-
ing the parameters of the Moon’s libration. To do this,
we have implemented a program for calculating the
components of the Moon’s libration according to for-
mula (1) using tables [6] and calculated the same
parameters using the algorithm given in Section 3.2.
As a result, we got good agreement in residual differ-
ences. All the numerical values of the parameters used
for the calculation by formulas (1) are given in
Tables 4–6.
3.2. Extracting LPhL Parameters from Numerical 
Ephemeris DE421

To obtain the libration angles of the Moon from the
DE421 ephemeris, we used the Pleph function. For
this, the necessary parameters were set NCTR = 0,
NTARG = 15. The set returned by the function con-
tains the values of the Euler angles that determine the
system’s position of the main axes of inertia of the
Moon relative to ICRF. To obtain the classical libra-
tion angles , , and , the following transformation
algorithm was used [18]:

(1) transition to the ICRF system using the Euler
angles obtained by performing the Pleph function;

ρ τ σI
ASTRONOMY REPORTS  Vol. 64  No. 12  2020
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Table 6. The polynomial coefficients  for the libration parameters in the Euler angles and for the direction cosines of the
ecliptic , , relative to the system of the main axes of inertia of the Moon

in as T1, as T2, as T3, as

ja

1P 2P

,ja P

σI − .0 249 .0 0189 − .0 0036 .0 000245

ρ − .0 014 .0 0003201 − .0 0001504 .0 00001375

τ .67 753 .0 3162 − .0 1034 .0 007434

1P − .78 513 .0 00001075 − .0 000006604 .0 0000006663

2P .0 290 .0 0002411 − .0 00006364 .0 000004586
(2) transition to the equatorial coordinate system;
(3) determination of the vector directed to the

descending node of the lunar equator on the ecliptic;
(4) calculation of Euler angles in an ecliptic coordi-

nate system based on scalar and vector transforma-
tions;

(5) extraction of libration angles , , and  from
Euler angles.

Having performed all the necessary calculations
using this algorithm, we extracted the values of the
LPhL parameters from DE421, calculating , , and

ρ τ σI

τc ρc
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Fig. 1. Differences in the libration angles , , and , obtaine
developed algorithm, and calculated by the series [6].
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 over an interval of 200 years, starting from J2000,
with a step of 1 day. The obtained values were com-
pared with the values , , and , calculated by
series (1) at the same time interval. The residual dif-
ferences , , and 

 presented in Fig. 1 were compared with
the analogous values obtained in [8] (see Fig. 2).

Analysis of the obtained differences showed that
the discrepancy with the data [6] does not exceed
20 mas (marcsec) for all three angles. For libration in

σcI

τe ρe σeI

Δτ = τ − τ| |c e Δρ = ρ − ρ| |c e Δσ =I
× σ − σ| |c eI
d by comparing the data extracted from DE421 according to the

Δρ
, a

s

−0.02

−0.08

−0.06

−0.04

0

0.04

0.02
(b)

Time, day
10 000 30 000 70 00050 0000

(c)

Time, day
0 000 70 00050 000



1098 ZAGIDULLIN et al.

Fig. 2. Differences in latitude. The lower plot shows the difference in declination [6].
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the slope  over the given time interval, our calcula-
tions show a small trend, the nature of which is we
haven’t figured out yet. However, within the accuracy
required at this stage, the results obtained indicate
both the correctness of the algorithm used by us for
working with the DE421 numerical ephemeris, and
the correct choice of the values of the parameters used.

3.3. Formation of Numerical Constants and Initial 
Values for the LPhL

As mentioned above, in order to solve differential
equations within the framework of the Cauchy prob-
lem, it is necessary to correctly set the initial condi-
tions. In addition, since the transition to the numerical
orbit of the DE ephemeris was carried out, the used
parameters, constants, and initial values for the libra-
tion angles and conjugate momenta must also be
adjusted in accordance with the DE421 parameters
(Table 7).

The theory of physical libration that we are devel-
oping is based on the J2000 ecliptic, this must be borne
in mind if it is necessary, for example, to go to the
ecliptic of date. In this case, this would be the longi-
tudes of the ascending node  from the ecliptic of date
epoch from the node J2000, calculated by the coeffi-

ρ

Ω

cients in Table 4, as well as the inclination of the
Earth’s equator to the ecliptic .

Let us consider an algorithm for calculating the ini-
tial conditions for the physical libration parameters.
Recall that DE421 contains the traditional Euler
angles and it is possible to determine the libration
parameters , , and  from them. In the theory we
are developing, we operate with angles  (see
Table 6, Fig. 3) that determine the trihedron position
of the Moon’s axes of inertia (dynamic coordinate sys-
tem—DCS), directly relative to the ecliptic. They are
also called aircraft angles [1]. The angles  and  are
similar in meaning to the direction cosines of the
ecliptic , , and the libration angle in longitude

 [2]. To bring into agreement
these two different ways of describing the LPhL and to
obtain the correct initial values for the angles , , and

, we need to program the transition from the DCS to
the ecliptic system through the aircraft angles, and
then the reverse transition from the ecliptic to the
DCS, but already through the Euler angles , , .

The mathematically necessary transition between
the ecliptic and dynamic coordinate systems is carried
out using rotation matrices, the rotation angles in
which are either aircraft angles or Euler angles. This

ε0

τ ρ σI
μ, ν, π

ν π

1P 2P

( )μ τ +∼

2 sin(2 )
2
I F

μ ν
π

ψ( θ φ)
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Table 7. Constants included in the numerical integration model

Values and number of characters in constants are taken directly from the files of the DE421 model.

Coefficient Value Coefficient Value

C20(–J2) C22

C22 C30(–J3)

C31 C32

C33 S31

S32 S33

C40(–J4) C41

C42 C43

C44 S41

S42 S43

S44

0.39326772660028886

328900.55915 1.0/81.30056907

0.02163368386360741 0.011

0.026919957991 84381.406

−− . × 30 2032732576370724 10 −. × 40 2238976709652413 10

−. × 40 2238976709652413 10 −− . × 50 8404701525941 10

−. × 40 28452435 10 −. × 50 484638724000903 10

−. × 50 1674047530039142 10 −. × 50 59008 10

−. × 50 16841984741476 10 −− . × 60 2485526 10

−. × 50 9642285999999999 10 −− . × 50 5692687 10

−− . × 50 15862 10 −− . × 70 812041 10

−− . × 60 1273941 10 −. × 50 1574393 10

−− . × 50 1517312 10 −− . × 60 8027907000000001 10

−. × 70 831475 10 γ −. × 30 2277305314199142 10

β −. × 30 6310022025364629 10 = 2
CC

MR

⊕ +
�

Moon

M
M M ⊕

MoonM
M

SGM −. × 30 2959122082855911 10 JuGM −. × 60 282534584085505 10

S

E

GM
GM

−. × 90 7243452332698441 10 VGM −. × 90 7243452332698441 10

2k S

I ε0
gives us a reason to relate different types of libration
angles through the product of rotation matrices:

(2)

Here, the angle , where  is the mean lon-
gitude of the Moon, measured from the axis directed
to the vernal equinox.

(3)

Thus, Eqs. (3) enable us to obtain the initial values of
the aircraft angles based on the Euler angles taken
from DE421. To calculate the rate of change of angles,

−π ν = ψ −θ ϕ .( ) ( ) ( ) ( ) ( ) ( )x y z z x zR R R M R R R

= + μM L L

ν = ψ θ ,
π ν = ψ θ ,
sin( ) sin( )sin( )

sin( )cos( ) cos( )sin( )

ν = ψ ϕ
+ ψ θ ϕ ,

sin( )cos( ) cos( )sin( )
sin( )cos( )cos( )

M

ν = ψ ϕ
− ψ θ ϕ .

cos( )cos( ) cos( )cos( )
sin( )cos( )sin( )

M
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we differentiated expression (3) over time and
obtained the necessary relations:

(4)

The LPhL equations, which are based on the canoni-
cal Hamilton equations, include not the velocities, but
the momenta conjugate to the angular coordinates. To
obtain canonical momenta, we use the features of
Hamilton’s approach when working with canonical
variables. According to [1], the projections of the

ν ν = ψ ψ θ + θ ψ θ ,
π π ν = ν π ν

− ψ ψ θ + θ ψ θ ,

�

� �

��

�

�

cos( ) cos( )sin( ) sin( )cos( )
cos( )cos( ) sin( )sin( )
sin( )sin( ) cos( )cos( )

ν = ν ν
− ψ ψ ϕ + ϕ ψ ϕ
�

�

� �

cos( )cos( ) sin( )sin( )
sin( )sin( ) cos( )cos( )

M M M

+ ψ ψ θ ϕ
− θ ψ θ ϕ
+ ϕ ψ θ ϕ .

�

�

�

cos( )cos( )sin( )
sin( )sin( )cos( )
sin( )cos( )sin( )
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Fig. 3. Libration angles , , and . Selenocentric ecliptic
coordinate system. The system , ,  is an ecliptic sys-
tem that rotates uniformly at the speed of the mean motion
of the Moon. Frame , ,  represents DCS.
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angular velocity  of the Moon’s rotation in DCS are
determined by the formulas:

(5)

Substituting the projections of the angular velocity
into the formula for calculating the kinetic energy  of
a solid body and considering that the canonical

momenta are defined as , where ,

, and , we obtain the following expres-
sions for them:

(6)

In the transition to the portable frame of reference,
tied to the DCS, the canonical momentum will be
reduced by the value of the mean rotation velocity of
the Moon  [1]: . As a result, Eqs. (5)
and (6) allow calculating the necessary initial values
for the canonical momenta.

Thus, we get the opportunity, firstly, based on the
Euler angles extracted from DE421, to calculate the
initial values of the libration parameters , ,  and
their conjugate momenta , ,  in order to cor-
rectly carry out the numerical integration of the libra-
tion equations we have constructed, and secondly, to
test the quality of the numerical solution , ,
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μ( )t ν( )t
 we obtain by comparing with the data calculated
by the series [6].

4. ACCOUNTING FOR THE DIRECT
AND INDIRECT INFLUENCE OF PLANETS 

ON THE LPhL

Indirect perturbations induced by the planets arise
due to the influence of planets on the motion of the
Moon’s mass center. Previously, we used the analyti-
cal theory of orbital motion [13], which was con-
structed for the limited problem of three bodies: the
Earth, Moon, and Sun. At this stage, we come to the
modern numerical orbit DE421, which was built con-
sidering perturbations from both planets and even
asteroids. We carried out a number of tests (Sections 2
and 3) confirming the correctness of our transition to
a new theory of motion of the lunar mass center. One
of the assumptions that we put into our theory of libra-
tion is the fact that we consider the rotational and
orbital motion of the Moon to be independent. The
effect of spin-orbital interaction has a very small con-
tribution to the accuracy of the rotational theory [19].
Therefore, our assumption is justified and it allows us,
without changing the equations of rotation, to transfer
calculations from one orbital theory to another one.
Naturally, the transition to a new orbit also led to a
recalculation of the initial data already for the numer-
ical integration of the libration equations, which, in
general, ensures an increase in the accuracy of the
libration theory. Thus, the transition to ephemeris
D421 provided us with automatic accounting for indi-
rect perturbations induced by the planets.

To include direct perturbations from the planets,
we have introduced the interaction effects of the
Moon with Venus and Jupiter into the second har-
monic of the selenium potential. Perturbations from
other planets are not yet considered by us due to either
their small masses or their great distances.

We obtained two solutions: , ,  without consid-
ering the direct perturbations from the planets and ,

,  with consideration to these perturbations, and
analyzed the obtained differences in these solutions

, ,  in order
to estimate the contribution of disturbances from the
planets to the libration angles. According to our calcu-
lations, it turned out that the behavior of  and 
is practically the same; therefore, we show the differ-
ences only for two angles:  and  in Fig. 4.

Behavior analysis of the residual differences indi-
cates that the contribution of perturbations from the
planets is only a fraction of a milliarcsecond, which is
much less than the required accuracy of both theory

π( )t

μ ν π
μ p

ν p πp

Δμ = μ − μ| |p p Δν = ν − ν| |p p Δπ = π − π| |p p

Δν p Δπp

Δμ p Δν p
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Fig. 4. Contribution of perturbations from planets to libration in longitude and libration in latitude.
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and observations. The obtained amplitudes of plane-
tary contributions fully agree with the data of a similar
work [20], which independently confirms the correct-
ness of our calculations.

5. APPROXIMATE ACCOUNTING
FOR THE TIDAL DEFORMATION

OF THE LUNAR BODY

The model of an absolutely solid Moon is no longer
consistent with the level of accuracy of modern obser-
vations. For adequate processing of data from the lat-
est satellite missions and long-term series of laser
ranging, it is necessary to consider the potential not of
a solid but of a lunar body deformable due to tidal
interaction with the Earth and the Sun. Due to solid-
body tides, the body of the Moon “breathes” with an
amplitude of about  cm per month. In addition,
the gravitational field and, accordingly, the physical
libration are subject to the influence of tides. In [21], a
thorough analysis of high-precision data on satellite
tracking in the GRAIL mission [5] was carried out,
based on the construction of a mathematical model of
the lunar potential, including both elastic deforma-
tions and dissipation effects caused by the viscous
properties of the lunar body and internal processes in
the heated mantle on the depth of the outer liquid
core.

In our study, we are not yet ready to solve the prob-
lem to the extent that it has been done by scientists
from the NASA JPL laboratory, which have many
years of experience in the development of the theory of
the Moon’s rotation and the construction of geophys-
ical models of its internal structure. But since we have
set the task to develop our own instrument for describ-
ing the lunar rotation with the required accuracy, we
made the first step in this direction at this stage—an
approximate account of tidal deformation.

The essence of the method we use is that tidal
deformation causes small constant changes in the

±10
ASTRONOMY REPORTS  Vol. 64  No. 12  2020
inertia moments of the Moon , , , , , and in
the second-order Stokes coefficients  and . The
values of these averaged constants were obtained by
analyzing laser observations [8]. Based on these data,
we have developed an algorithm for accounting for
mean tidal deformations.

(1) First, we calculate the solid-state components
of the moments of inertia

(7)

(2) Then, we introduce the empirically determined

in [8] corrections for the mean tide. Let  be

the normalized moment of inertia of the Moon, then
due to tidal deformation, the moments of inertia will
receive some corrections in the form:

(8)

(3) The Love numbers  and the spherical term 
are presented in Table 7.
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Fig. 5. Residual differences between the DE421 solution and the solution for the solid-body model (left) and the tidal model
(right). All solutions are obtained in the angles , , .
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When solving the LPhL problem within the frame-
work of the main problem [1, 2], the main moments of
inertia were set in units of the main moment of inertia

. With this approach, we can assume that
. Following this adopted system, all the main

moments of inertia in (8) are also given in units of
.

To check how significantly the corrections made
for the tide will affect the quality of our solution, we
first obtained our solid-state solution , ,

RigidC
=Rigid 1C

RigidC

μ ( )r t ν ( )r t
, built on the basis of the DE421 ephemeris, con-
sidering the corresponding constants (Table 7) and the
initial values calculated from (3)–(6). Then, correc-
tions (8) were made to the differential equations of
LPhL, constructed earlier [1], and a numerical solu-

tion , ,  was obtained, considering the
mean tide. Based on the Euler angles extracted from
DE421 and reduction formulas (3)–(6), we obtained

the solution , ,  on the same
interval. Then, we constructed two types of residual

π ( )r t

μ ( )d t ν ( )d t π ( )d t

μ421( )t ν421( )t π421( )t
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differences: , ,

, , ,

. Figure 5 presents plots of the behav-
ior of both types of residuals. From the analysis of the
plots in Fig. 5, it follows that the tide significantly
affects the libration in latitude at the angles  and ,
but does not have a significant effect on the amplitude
of libration in longitude . In addition, the libration in
longitude contains a fictitious frequency, the period of
which is 1023.4 days, which is close to the resonance
period of the system (1056.13 days). Similar harmon-
ics are manifested in the libration in latitude: for , the
period of the fictitious harmonic is 27.22 days; and
for —27.16 days, while the resonance periods in lati-
tude are 27.185 (for ) and 27.239 days (for ). The
appearance of fictitious harmonics  or  in the
solution either indicates that the initial values calcu-
lated by us do not correspond to the model laid down
in equations [1]. This also explains the gradually
increasing residual differences in both types of solu-
tions. The DE421 solution was obtained considering
many factors: a viscoelastic model with dissipation for
the tidal potential, considering the differential rotation
of the core and mantle, non-inertial forces (Coriolis
force and centrifugal force), higher degrees of decom-
position of the selenopotential, starting from the
fourth harmonic, and direct perturbations from the
planets (Jupiter and Venus).

6. INFLUENCE OF THE 4TH HARMONIC
OF THE SELENOPOTENTIAL

Analytical estimates show that the contribution to
the perturbing potential from the 4th harmonic, and
even more so from the 5th and 6th harmonics, is many
times less compared to the 2nd and 3rd harmonics:

 and . However, at the cur-

rent level of requirements for the accuracy of the the-
ory, the contribution of the 4th harmonic is signifi-
cant. Having received a verified expression for the har-
monic through the direction cosines (9), see below.
We included it in the Hamiltonian and compared the
obtained solution with the solution without consider-
ing this harmonic. Constructed residual differences

, , 
are shown in Fig. 6
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(9)

where  are the Stokes coefficients,  is the mean
Earth–Moon distance,  is the mean Moon radius, 
is the instantaneous Earth–Moon distance,  is
the Earth/Moon mass, respectively, and  is the
directing radius-vectors of the perturbing body relative
to the Moon center.

Analyzing the residual differences in Fig. 6, we see
that the contribution of the 4th harmonic to libration
in longitude manifests itself both in the form of a con-
stant shift by 0.9  and in the form of periodic changes
with amplitude of about 0.9  and a period of
1056 days. Our previous calculations showed a similar
manifestation of the 3rd harmonic of the selenopoten-
tial in libration [1], which describes the “pear-shaped”
form of the Moon. As a result, the elongated “nose of
the pear” carries out librational oscillations about the
direction, which is approximately 200  displaced to
the east relative to the average direction to the Earth.
But it turns out that the 4th harmonic also causes a
permanent shift in the position of the x axis relative to
the average direction to the Earth, but the magnitude
of this shift is 2 orders of magnitude less than the con-
tribution from the 3rd harmonic.
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Fig. 6. Contribution of the 4th harmonic to the LPhL solution.
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As for the contribution of the 4th harmonic to the
libration in latitude, it is less noticeable compared to
the effect on longitude. The inclusion in the selenium
potential  leads to the appearance of a long-period
component, the nature of which we cannot yet
explain: in the integration interval of 15 years, the har-
monic period is no more than a quarter of this period.

7. CONCLUSIONS

The study of the celestial body rotation is the most
important tool for studying its structure and for con-
structing a high-precision coordinate-time support
system for solving navigation problems. For the
Moon, both directions are very relevant. To date, on
the basis of modern satellite data on the gravitational
field of the Moon and thanks to the computer-mathe-
matical analysis of a large number of long-term laser
observations of the Moon, the JPL NASA laboratory
has developed high-precision numerical theories of
the DE series, which describe the spin-orbital dynam-
ics of the lunar body. Dynamic ephemerides allow not
only to adequately describe modern observations, and
to clarify many parameters of the internal structure of
the lunar body, the dynamic theory is a constantly
evolving tool that allows one to study more and more

4U
subtle effects that determine lunar dynamics. There-
fore, we were tasked to develop our own physical,
mathematical and computer tools for describing the
lunar rotation in a numerical way.

In work [1], we developed a numerical theory of
physical libration for a model of a solid Moon. In this
paper, we have shown the factors and methods, in
which we were able to significantly improve the accu-
racy of the developed theory.

First of all, a necessary transition is made from a
less accurate analytical theory of orbital motion to the
numerical ephemeris DE421. The correctness of the
algorithm developed by us for the inclusion of a
numerical ephemeris (Sections 2 and 3) was verified
by analyzing the residual differences when comparing
our solution with similar solutions for the parameters
of motion of the Moon’s mass center (Table 2).

The theory we are developing is based on the libra-
tion angles , , and , which describe the trihedron
position of the Moon’s axes of inertia (DCS) relative
to the ecliptic, similarly to aircraft angles in aerody-
namics (Fig. 2). In the numerical ephemeris DE, to
describe the LPhL, the Euler angles and the corre-
sponding librational corrections to them , , and 
are used. To check the correctness of this quantity
extraction from the dynamic theory and for an

μ ν π

τ ρ σI
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adequate comparison of the results of the proper solu-
tion , , and , with the DE421 data, we con-
structed Eqs. (3)–(6), which allow us to carry out the
transition from Euler angles to aircraft angles. These
equations also made it possible to adequately calculate
the initial conditions for the integration of libration
equations and to verify the numerical values of the
parameters included in the developed theory (Sec-
tions 3.2 and 3.3).

The programs for calculating , , and , devel-
oped by us, based on semiempirical series (1) con-
structed by Ramboux and Williams [6], significantly
simplified the procedure for comparing our own
results with actually observed data, since series [6] is
an analytical representation of LPhL observations
obtained on the basis of analysis of laser ranging mea-
surements (Section 3.1).

Having checked the correctness of the algorithms
for extracting data from the DE421 theory, we began
to improve the model of the Moon’s rotation in the
theory we are developing.

First, the transfer of our calculations to the DE421
ephemeris made it possible to automatically consider
indirect perturbations from the Solar System planets,
the effect of which is incorporated in the calculations
of the motion of the lunar center mass.

Secondly, we included the interaction potential of
the Moon with Venus and Jupiter (Section 4) in the
equation of the second harmonic of the selenopoten-
tial, as well as estimated the contribution of this effect
to the parameters of the Moon’s rotation (Fig. 4): it
does not exceed a few milliarcseconds, which is in
good agreement with similar data of [20].

Thirdly, we made an approximate account of the
tidal deformation of the lunar body by including the
constant additions determined in [8] in the tensor of
inertia and the second-order Stokes coefficients based
on the laser observation analysis. The inclusion of this
effect when compared with the DE421 data reduced
the amplitude of the residual differences in latitude by
one order of magnitude. At the same time, we showed
that the main role in this improvement of the results is
played by the inclusion of tidal deformations in the
Stokes coefficients; the effect of additions to the
moments of inertia had practically no effect on the
solution.

And finally, the selenium potential includes the 4th
harmonic, due to which it was possible to get rid of the
systematic difference in the libration in longitude from
the systematic difference in the previous model [1]
when compared with DE421. At the same time, in
comparison with the 3rd harmonic, the 4th harmonic
makes a small contribution to the permanent shift of
the “nose of the Moon” relative to the average direc-
tion to the Earth (Section 6).

As a result, all of the above effects allowed us to
build an improved LPhL model in comparison with
the previous version [1]. Our improved theory differs

from DE421 in the following way: variations of resid-
ual differences in the libration angle in longitude  are
from 1.1  to 0.75 , in the angle  they change from
‒2.3  to 1.8  and in the libration angle  from –1.5
to 2.7 .

Of course, the amplitude of the residual differences
is still large enough to discuss achieving the required
accuracy of our theory. Therefore, we are not going to
stop there and still are developing methods and math-
ematical apparatus for including such effects as the
influence of the Earth’s shape on the selenopotential,
a more accurate rather than an approximate account
of tidal phenomena, as well as the inclusion of a liquid
core in the lunar body structure in the simplest Poin-
caré model.
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