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Abstract—The magnetic-field structure in regions of stationary, planar accretion disks around active
galactic nuclei where general-relativistic effects can be neglected (from 10 to 200 gravitational radii) is
considered. It is assumed that the magnetic field in the outer edges of the disk, which forms in the
magnetosphere of the central black hole during the creation of the relativisitic jets, corresponds to the
field of a magnetic dipole perpendicular to the plane of the disk. In this case, the azimuthal field component
Bϕ in the disk arises due to the presence of the radial field Bρ and the azimuthal velocity component Uϕ.
The value of the magnetic field at the inner radius of the disk is taken to correspond to the solution of the
induction equation in a diffusion approximation. Numerical solutions of the induction equation are given
for a number of cases.
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1. INTRODUCTION

The magnetic-field structure in a stationary accre-
tion disk is determined by boundary conditions and
the distribution of the Uz , Uρ, and Uϕ velocities of the
accreting material. We used a cylindrical coordinate
system where the z axis is perpendicular to the plane
of the accretion disk, ρ is the distance from the z axis
in the plane of the disk, and ϕ is the azimuthal angle.
We considered the magnetic-field structure in a pla-
nar accretion disk around a supermassive black hole
at the center of an active galactic nucleus. Various
models for such accretion disks are concerned with
the values for these velocities and their dependence
on z and ρ. The aim of our study was to develop a
comparatively simple, partially analytical and partially
numerical method for computing the magnetic-field
components corresponding to given velocity compo-
nents Uz(z, ρ), Uρ(z, ρ), and Uϕ(z, ρ).

The distributions of the density, temperature, and
pressure of the disk matter are described in the stan-
dard accretion-disk model of Shakura and Syunyaev
[1]. Various models for accretion disks around neu-
tron stars were presented in the 1970s (see, e.g., [2]).
Most subsequent accretion-disk models [3–8] also
describe the evolution of the magnetic field, and, in
particular, the transition of the disk to a stationary
state. Usually, numerical solutions of a full system
of magnetohydrodynamical equations are presented.

*E-mail: mpiotrovich@mail.ru

The magnetic field B(z, ρ, ϕ) is usually described
in terms of the vector potential A(z, ρ, ϕ), (B = ∇×
A), which is usually taken to have the form A(z, ρ) =
Ψ(z, ρ)eϕ. In this case, Bz = ρ−1∂(ρΨ)/∂ρ, Bρ =
−∂Ψ/∂z, Bϕ = 0.

In models for a thin accretion disk (Bz(ρ, z) ≈
Bz(ρ)), one boundary condition is provided by the
assumption that the disk is located in a uniform ex-

ternal magnetic field B
(0)
z . In this case, Ψ∞(ρ) =

B
(0)
z ρ/2 [9]. According to [6], the condition Ψ∞(ρ) =

B
(0)
z ρ/2 is satisfied only in the limit z → ∞, while a

component Bρ(h) of the external magnetic field also
exists at the disk surface (z = h). The solution of the
Biot–Savart equations for the potential Ψ(z, ρ) lead

to the dependence Bz,max ∼ ρ−2B
(0)
z . The component

Bρ(z, ρ) is taken to be Bρ(ρ, z) ≈ Bρ(h)z/h.

It was assumed in [10] that the magnetic field
near the black hole could be presented as the sum
of a jet-like field along the disk rotation axis and a
poloidal field in the disk at ρin < ρ < ρout. It was also
assumed that Bz(h, ρ) ∼ ρ−n, with various values
n = 3, 4, 4.5. The evolution of the magnetic field for
the case when the accretion disk was located in the
dipolar magnetic field of a young star was considered
in [4]. Reviews of studies of accretion disks are
presented in [11, 12]. Numerical solutions to the
magnetohydrodynamical equations with a number of
specific conditions imposed at the disk boundary are
given in [12], where it was assumed that the radial
velocity component Uρ was zero at the boundary of
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the disk. It is interesting that Bisnovatyi–Kogan and
Lovelace [12] present the characteristic value βc ∼ ρ
for stationary accretion (β is the ratio of the plasma
pressure to the magnetic pressure).

We considered a stationary induction equation for
the magnetic field, assuming that the magnetic field
at the boundary of the planar accretion disk cor-
responds to the field of a magnetic dipole oriented
perpendicular to the plane of the disk along the z axis.
In this case, both the normal component Bz ≡ B‖
and the horizontal component Bρ of the magnetic field
at the boundary are given by the corresponding com-
ponents of the magnetic-dipole field. The azimuthal
component of the dipolar magnetic field Bϕ at the disk
boundary is zero. The appearance of an azimuthal
field Bϕ in the disk is related mainly to winding of the
component Bρ due to the azimuthal velocity Uϕ.

The central problem is the assumption that the
magnetic field at the boundary of a planar accretion
disk around a black hole is dipolar. At first glance,
this contradicts the assertion that “a black hole has
no hair;” i.e., it cannot possess its own magnetic field.
However, the black hole possesses a magnetosphere,
whose radius can exceed the event-horizon radius. A
model of a force-free, stationary, axially symmetric
magnetosphere of a Kerr black hole with a poloidal
magnetic field was developed in [13]. The extraction
of energy from a rotating black hole, leading to the
generation of the observed powerful relativistic jets, is
possible precisely in this case. The magnetospheric
currents that generate the magnetic field are pro-
portional to the angular velocity of the rotation of
the black hole in this case. Numerical methods for
computing such a magnetosphere were developed in
[14]. This yielded various magnetic-field configura-
tions, including dipolar [7].

We considered the simplest case when there are
no electric currents near the disk boundary. In this
case, both the Bρ(h, ρ) and Bz(h, ρ) components cor-
respond to those of a dipolar magnetic field. Note that
we did not consider the amplification of the magnetic
field by the dynamo mechanism.

2. INDUCTION EQUATION

In general, the induction equation for the magnetic
field depends on time, and has the form [15, 16]

∂B(r, t)
∂t

= ∇× (U × B) (1)

+ ∇× αtB −∇× (Dσ + Dt)∇× B.

Here, B(r, t) is the vector magnetic field, Dσ + Dt

the total diffusion coefficient, equal to the sum of
the diffusion coefficients Dσ = c2/4πσ, where σ is
the electrical conductivity of the plasma and c is the

speed of light, and Dt, due to turbulent motions of
the gas. The diffusion coefficient Dt is related to
the characteristic scale of the turbulent motions R0,
the characteristic velocity of turbulent vortices U0,
and the characteristic decay time for these vortices
τ0. If U0τ0/R0 � 1, then Dt ≈ R2

0/τ0. By virtue of
the symmetry of the problem, Dt can depend on the
distance ρ, Dt = Dt(ρ). For the case U0τ0/R0 	 1,
Dt ≈ U0R0 [16, 17]. The coefficient αt ∼ 〈u∇× u〉
describes the amplification of the magnetic field (the
“α effect”). Here, u is the fluctuational component of
the velocity field and U is the mean velocity (〈u〉 = 0).
Further, we will consider the case when there is no
α effect; i.e., αt = 0. Moreover, we assumed that
Dσ � Dt. A similar treatment of this question is
given in [15]. Recall that ∇ ·B = 0. We considered
the induction equation in a kinematic approximation,
where the kinetic energy of the gas is much greater
than the energy of the magnetic field (ρgasU

2/2 	
B2/(8π)), where ρgas is the density of the disk matter.
The possible realization of this situation in a standard
accretion disk was considered in [18], based on an
analysis of data on the wavelength dependence of the
observed degree of polarization for a number of active
galactic nuclei [19]. In this approximation, we can
neglect the dependence of the gas velocity on the
magnetic field. The stationary nature of the gas flows
means that we can neglect the term ∂B/∂t. Phys-
ically, stationary gas flows are realized far from the
central parts of the accretion disk when the magnetic-
dipole moment is oriented perpendicular to the plane
of the disk (the magnetic field is not stationary when
the magnetic moment is oriented at some angle to the
disk). We have in our case

∇2B(r) =
1
Dt

(−rot(U × B) (2)

+ ∇Dt × rotB) =
1
Dt

(BdivU + (U∇)B

− (B∇)U + ∇Dt × rotB) ≡ S(r).

We used a cylindrical coordinate system with the z
axis perpendicular to the plane of the disk, ρ being
the distance from the center of the disk in the plane
of the disk, and ϕ being the azimuthal angle. In the
axially symmetric case we considered, all quantities
depend only on z and ρ. In this case, Eq. (2) can be
written in terms of the components Bz , Bρ, and Bϕ in
the following form:(

∂2

∂z2
+

1
ρ

∂

∂ρ
ρ

∂

∂ρ

)
Bz (3)

=
1

Dt(ρ)

[
Bz

Uρ

ρ
+

∂

∂ρ
(BzUρ) + Uz

∂Bz

∂z
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− Bρ
∂Uz

∂ρ
− ∂Dt(ρ)

∂ρ

(
∂Bz

∂ρ
− ∂Bρ

∂z

)]
≡ Sz(z, ρ),

(
∂2

∂z2
+

1
ρ

∂

∂ρ
ρ

∂

∂ρ
− 1

ρ2

)
Bρ =

1
Dt(ρ)

(
Bρ

Uρ

ρ

+
∂

∂z
(BρUz) + Uρ

∂Bρ

∂ρ
− Bz

∂Uρ

∂z

)
≡ Sρ(z, ρ),

(
∂2

∂z2
+

1
ρ

∂

∂ρ
ρ

∂

∂ρ
− 1

ρ2

)
Bϕ

=
1

Dt(ρ)

(
Bρ

Uϕ

ρ
+

∂

∂z
(BϕUz) +

∂

∂ρ
(UρBϕ)

− Bz
∂Uϕ

∂z
− Bρ

∂Uϕ

∂ρ
− ∂Dt(ρ)

∂ρ

1
ρ

∂

∂ρ
(ρBϕ)

)

≡ Sϕ(z, ρ).

Murphy and Pessah [20] show that the turbu-
lence in accretion disks has an anisotropic character.
However, we assume in our model that the diffusion
coefficient can be taken to be approximately isotropic.

3. GENERAL SOLUTION OF EQ. (2)
IN THE AXIALLY SYMMETRIC CASE

Using a Hankel transform, we can write for-
mula (3) in the form(

d2

dz2
− x2

)
B̃z,ρ,ϕ(z, x) (4)

= S̃z(z, x), S̃ρ,ϕ(z, x),

where

B̃z(z, x) =

∞∫
0

dρρJ0(xρ)Bz(z, ρ), (5)

B̃ρ,ϕ(z, x) =

∞∫
0

dρρJ1(xρ)Bρ,ϕ(z, ρ). (6)

Here, J0(xρ) and J1(xρ) are Bessel functions of zero
and first order. The inverse Hankel transforms deter-
mine Bz(z, ρ), Bρ(z, ρ), and Bϕ(z, ρ):

Bρ,ϕ(z, ρ) =

∞∫
0

dxxJ1(xρ)B̃ρ,ϕ(z, x), (7)

Bz(z, ρ) =

∞∫
0

dxxJ0(xρ)B̃z,x(z, x).

Substituting (7) into (5) and (6) leads to the known
relation

∞∫
0

dρρJn(xρ)Jn(x′ρ) = δ(x − x′)/x, (8)

where δ(x − x′) is the Dirac delta function and n =
0, 1, ....

The upper surface of the accretion disk is located
at z = h, and the lower surface at z = −h. The
magnetic dipole moment m = mez is directed along
the z axis. The dipolar magnetic field is given by the
formula

B(z, ρ) = m(3zr − ezr
2)/r5, (9)

r2 = ρ2 + z2.

The values of the magnetic-field components at the
z = h and z = −h planes are

Bz(±h, ρ) = m
2h2 − ρ2

(h2 + ρ2)5/2
, (10)

Bρ(±h, ρ) = ±m
3hρ

(h2 + ρ2)5/2
.

Using tables from [21, 22], we obtain

B̃z(±h, x) = mxe−xh, (11)

B̃ρ(±h, x) = ±mxe−hx.

According to the general theory of boundary-value
problems [23, 24], the solution of (4) can be repre-
sented as a sum of the solution of the homogeneous
equation (i.e., S = 0) that satisfies the boundary con-
ditions at z = ±h and the solution of the inhomoge-
neous equation (S �= 0) that is equal to zero at the
boundary; i.e.,

B̃(z, x) = B̃hom(z, x) + B̃inhom(z, x), (12)

with

B̃hom(±h, x) = B̃dipole(±h, x), (13)

B̃inhom(±h, x) = 0.

It can easily be verified that

B̃z,hom(z, x) = m
cosh xz

cosh xh
xe−hx, (14)

B̃ρ,hom(z, x) = m
sinhxz

sinhxh
xe−hx.

According to (7) and (14), the explicit forms of
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Bz,hom(z, ρ) and Bρ,hom(z, ρ) can be expressed as
integrals:

Bz,hom(z, ρ) = m

∞∫
0

dxx2J0(xρ)
cosh xz

cosh xh
e−hx, (15)

Bρ,hom(z, ρ) = m

∞∫
0

dxx2J1(xρ)
sinh xz

sinh xh
e−hx.

The value of B̃inhom(z, x) can be expressed in terms of
a Green’s function G̃(z, z′, x):

B̃inhom(z, x) =

h∫
−h

dz′G̃(z, z′, x)S̃(z′, x), (16)

where the Green’s function has the form

G̃(z, z′, x) ≡ G̃(z′, z, x) (17)

=
θ(z − z′) sinh x(z − h) sinhx(z′ + h) + θ(z′ − z) sinh x(z + h) sinhx(z′ − h)

x sinh 2xh
.

Here, θ(z) is a step function,

θ(z > 0) = 1, θ(z < 0) = 0, (18)

d

dz
θ(z) = δ(z).

It can easily be verified that G̃(z, z′, x) satisfies the
equation(

d2

dz2
− x2

)
G̃(z, z′, x) = δ(z − z′) (19)

and the boundary condition G̃(±h, z′, x) = 0.

Using the transformations (5), (6), and (7) yields a
formula for Binhom(z, ρ) in the form

Binhom(z, ρ) (20)

=

h∫
−h

dz′
∞∫
0

dρ′ρ′G(z, z′, ρ, ρ′)S(z′, ρ′),

where the Green’s function G(z, z′, ρ, ρ′) is

G(z, z′, ρ, ρ′) (21)

=

∞∫
0

dxxJ0(xρ)J0(xρ′)G̃(z, z′, x)

for calculations of Bz(z, ρ) and

G(z, z′, ρ, ρ′) (22)

=

∞∫
0

dxxJ1(xρ)J1(xρ′)G̃(z, z′, x)

for calculations of Bρ,ϕ(z, ρ). We then add B̃hom(z, x)
and Bhom(z, ρ) to the right-hand and left-hand sides

of (16) and (20). This yields the following integral
equations for B̃(z, x) = B̃hom(z, x) + B̃inhom(z, x):

B̃(z, x) = B̃hom(z, x) (23)

+

h∫
−h

dz′G̃(z, z′, x)S̃(z′, x),

and for B(z, ρ):

B(z, ρ) = Bhom(z, ρ) (24)

+

h∫
−h

dz′
∞∫
0

dρ′ρ′G(z, z′, ρ, ρ′)S(z′, ρ′).

It is easy to see that the components B̃(z, x) and
B(z, ρ) satisfy Eqs. (4) and (3), respectively. The
boundary conditions are satisfied both due to the
presence of the free terms B̃hom(z, x) and Bhom(z, ρ)
and because the Green’s function is zero at the
boundaries z = ±h.

Note that, in the approximation hx � 1 (ρ 	 h),
the Green’s function G̃(z, z′, x) acquires the form

G̃(z, z′, x) ≈ 1
2h

[θ(z − z′)(z − h)(z′ + h) (25)

+ θ(z′ − z)(z + h)(z′ − h)] ≡ G(z, z′);

i.e., it does not depend on x. Using (8), we can obtain
the asymptotic formula for G(z, z′, ρ, ρ′):

G(z, z′, ρ, ρ′) = G(z, z′)
δ(ρ − ρ′)

ρ
. (26)
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At large distances (ρ 	 h), Eq. (24) takes the
form

B(z, ρ) = Bhom(z, ρ) +

h∫
−h

dz′G(z, z′)S(z′, ρ). (27)

Strictly speaking, this is not an integral equation,
since it is satisfied only for large ρ. However, it can be
used to estimate the z-averaged magnetic field values
for geometrically thin disks (see Section 6).

In general, it is usually simpler to solve the integral
equation (24) than the system of differential equa-
tions (3). However, in the model we consider further,
in which the z dependences of all quantities are ne-
glected, the second equation of (3) is transformed into
a separate differential equation for Bρ, substantially
simplifying the solution of the entire system of equa-
tions. Therefore, we chose this system of differential
equations for our numerical solutions.

4. EXPLICIT EXPRESSIONS
FOR Bz,hom(z, ρ) and Bρ,hom(z, ρ)

To obtain explicit formulas for Bz,hom(z, ρ) and
Bρ,hom(z, ρ), we used the Hankel transformations (5)
and (6) and the known values of the integrals [21, 22]:

∞∫
0

dxx2J1(xρ)e−ax =
3aρ

(a2 + ρ2)5/2
, (28)

∞∫
0

dxx2J0(xρ)e−ax =
2a2 − ρ2

(a2 + ρ2)5/2
.

Substituting B̃z,hom(z, x) [see (14)] into (5) and ex-
panding the cosh xh function in powers of e−xh, we
obtained the following formula for Bz,hom(z, ρ):

Bz,hom(z, ρ) = m

{[
2(2h − z)2 − ρ2

((2h − z)2 + ρ2)5/2
(29)

+
2(2h + z)2 − ρ2

((2h + z)2 + ρ2)5/2

]
−

[
2(4h − z)2 − ρ2

((4h − z)2 + ρ2)5/2

+
2(4h + z)2 − ρ2

((4h + z)2 + ρ2)5/2

]
+

[
2(6h − z)2 − ρ2

((6h − z)2 + ρ2)5/2

+
2(6h + z)2 − ρ2

((6h + z)2 + ρ2)5/2

]
− ...

}
.

The expression in square brackets is symmetric rel-
ative to the substitution z → −z. This leads to the
property Bz,hom(−z, ρ) = Bz,hom(z, ρ). For z = ±h,
we obtain the first expression in (10). When z = 0,
formula (29) simplifies as follows:

Bz,hom(0, ρ) (30)

= 2m
{

2(2h)2 − ρ2

((2h)2 + ρ2)5/2
− 2(4h)2 − ρ2

((4h)2 + ρ2)5/2

+
2(6h)2 − ρ2

((6h)2 + ρ2)5/2
− ...

}
.

We can obtain an expression for Bρ,hom(z, ρ) in the
same way:

Bρ,hom(z, ρ) = 3mρ

{
2h − z

((2h − z)2 + ρ2)5/2
(31)

− 2h + z

((2h + z)2 + ρ2)5/2
+

4h − z

((4h − z)2 + ρ2)5/2

− 4h + z

((4h + z)2 + ρ2)5/2
+ ...

}
.

The results of the computations using formu-
las (29) and (31) are presented in Tables 1 and 2.

Equation (3) for Bϕ yields the estimate

Bϕ(z, ρ) ≈ Bρ,hom(z, ρ)Uϕ/ρ. (32)

5. MODEL OF A THIN ACCRETION DISK

Many studies have neglected the dependences of
quantities on the z coordinate inside the accretion
disk—the so-called thin-disk model. Physically, this
means that the values of all quantities averaged over
the thickness of the disk are used, in particular the
averaged magnetic field. The averaged values of the
solutions (14) acquire the form

〈B̃z,hom(z, x)〉z =
m

2h

h∫
−h

dz
cosh xz

cosh xh
xe−xh (33)

=
m

h
tanh (xh)e−xh = 〈Bz,hom(x)〉.

This means of using Bhom(z, ρ) at the inner
boundary of the disk leaves B(z, ρ) virtually un-
changed at small distances from the inner boundary.

〈Bρ,hom(z, ρ)〉 ≡ 0, 〈B̃ρ,hom(z, x)〉 ≡ 0. (34)

〈Bρ,hom(ρ)〉 is equal to zero by virtue of the anti-
symmetry of the boundary values Bρ,hom(h, ρ) =
−Bρ,hom(−h, ρ). In particular, in the mid-plane
of the accretion disk, Bρ,hom(0, ρ) = 0. Averag-
ing of the anti-symmetric quantity Bρ,hom(z, ρ) =
−Bρ,hom(−z, ρ) leads to a zero average value. Using
formula (7), we obtain for the averaged magnetic field

〈Bz,hom(ρ)〉 (35)

=
m

h3

[
1

(1 + ρ̄2)3/2
− 2

(
3

(32 + ρ̄2)3/2

− 5
(52 + ρ̄2)3/2

+
7

(72 + ρ̄2)3/2
− ...

)]
,
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Table 1. Bz(z̄, ρ̄) (in kG), with z̄ = z/h and ρ̄ = ρ/h calculated using (29) with m = 4.4 × 1045 G cm3

ρ̄\z̄ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

10.0 –1.999 –1.999 –1.996 –1.992 –1.985 –1.977 –1.968 –1.956 –1.943 –1.928 –1.912

11.0 –1.503 –1.502 –1.500 –1.497 –1.494 –1.489 –1.483 –1.476 –1.467 –1.458 –1.448

12.0 –1.157 –1.157 –1.156 –1.154 –1.152 –1.148 –1.144 –1.140 –1.134 –1.128 –1.122

13.0 –0.910 –0.910 –0.909 –0.908 –0.906 –0.904 –0.902 –0.899 –0.895 –0.891 –0.886

14.0 –0.729 –0.729 –0.728 –0.727 –0.726 –0.725 –0.723 –0.721 –0.718 –0.715 –0.712

15.0 –0.593 –0.592 –0.592 –0.591 –0.591 –0.590 –0.588 –0.587 –0.585 –0.583 –0.581

16.0 –0.488 –0.488 –0.488 –0.488 –0.487 –0.486 –0.485 –0.484 –0.483 –0.481 –0.480

17.0 –0.407 –0.407 –0.407 –0.406 –0.406 –0.405 –0.405 –0.404 –0.403 –0.402 –0.401

18.0 –0.343 –0.343 –0.343 –0.343 –0.342 –0.342 –0.341 –0.341 –0.340 –0.339 –0.338

19.0 –0.292 –0.292 –0.291 –0.291 –0.291 –0.291 –0.290 –0.290 –0.289 –0.289 –0.288

20.0 –0.250 –0.250 –0.250 –0.250 –0.250 –0.249 –0.249 –0.249 –0.248 –0.248 –0.247

21.0 –0.216 –0.216 –0.216 –0.216 –0.216 –0.215 –0.215 –0.215 –0.215 –0.214 –0.214

22.0 –0.188 –0.188 –0.188 –0.188 –0.188 –0.187 –0.187 –0.187 –0.187 –0.186 –0.186

23.0 –0.164 –0.164 –0.164 –0.164 –0.164 –0.164 –0.164 –0.164 –0.163 –0.163 –0.163

24.0 –0.145 –0.145 –0.145 –0.145 –0.144 –0.144 –0.144 –0.144 –0.144 –0.144 –0.144

25.0 –0.128 –0.128 –0.128 –0.128 –0.128 –0.128 –0.128 –0.128 –0.127 –0.127 –0.127

26.0 –0.114 –0.114 –0.114 –0.114 –0.114 –0.114 –0.114 –0.113 –0.113 –0.113 –0.113

27.0 –0.102 –0.102 –0.102 –0.102 –0.102 –0.101 –0.101 –0.101 –0.101 –0.101 –0.101

28.0 –0.091 –0.091 –0.091 –0.091 –0.091 –0.091 –0.091 –0.091 –0.091 –0.091 –0.091

29.0 –0.082 –0.082 –0.082 –0.082 –0.082 –0.082 –0.082 –0.082 –0.082 –0.082 –0.082

30.0 –0.074 –0.074 –0.074 –0.074 –0.074 –0.074 –0.074 –0.074 –0.074 –0.074 –0.074

where ρ̄ = ρ/h.
Naturally, the averaged values Bz,hom(ρ) do not

coincide with the boundary values Bz(±h, ρ).

6. AVERAGING OF THE GREEN’S
FUNCTIONS

The use of a thin-disk model (neglecting the z
dependences) requires the use of averaged Green’s
functions:

〈G(z, z′, ρ, ρ′)〉z (36)

=
1
2h

h∫
−h

dzG(z, z′, ρ, ρ′) ≡ 〈G(z′, ρ, ρ′)〉,

〈G̃(z, z′, x)〉z

=
1
2h

h∫
−h

dzG̃(z, z′, x) ≡ 〈G̃(z′, x)〉.

Using the explicit form of the Green’s function
G(z, z′, x) [see (17)], we obtain

〈G̃(z, z′, x)〉z ≡ 〈G̃(z′, x)〉 (37)

= − 1
2hx2

(
1 − cosh xz′

cosh xh

)
.

Note that 〈G̃(z′, x)〉 is an even function of z′.
When averaging the Green’s function G(z, z′, ρ, ρ′)
over z, we must use the averaged value of the right-
hand side of the induction equation. In this case, the
Green’s function must be averaged over both z and z′.
This yields

〈〈G̃(z, z′, x)〉〉z,z′ ≡ 〈〈G̃(x)〉〉 (38)

= − 1
2hx2

(
1 − tanh xh

xh

)
.
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Table 2. Bρ(z̄, ρ̄) (in kG), with z̄ = z/h and ρ̄ = ρ/h calculated using (31) with m = 4.4 × 1045 G cm3

ρ̄\z̄ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

10.0 0.000 0.060 0.120 0.180 0.239 0.298 0.357 0.415 0.472 0.529 0.585

11.0 0.000 0.041 0.082 0.123 0.163 0.204 0.244 0.284 0.324 0.363 0.401

12.0 0.000 0.029 0.058 0.087 0.115 0.144 0.173 0.201 0.229 0.257 0.284

13.0 0.000 0.021 0.042 0.063 0.084 0.105 0.125 0.146 0.166 0.187 0.207

14.0 0.000 0.016 0.031 0.047 0.062 0.078 0.093 0.109 0.124 0.139 0.154

15.0 0.000 0.012 0.024 0.036 0.047 0.059 0.071 0.083 0.094 0.106 0.117

16.0 0.000 0.009 0.018 0.027 0.037 0.046 0.055 0.064 0.073 0.082 0.091

17.0 0.000 0.007 0.014 0.022 0.029 0.036 0.043 0.050 0.057 0.064 0.071

18.0 0.000 0.006 0.011 0.017 0.023 0.029 0.034 0.040 0.045 0.051 0.057

19.0 0.000 0.005 0.009 0.014 0.018 0.023 0.028 0.032 0.037 0.041 0.046

20.0 0.000 0.004 0.007 0.011 0.015 0.019 0.022 0.026 0.030 0.034 0.037

21.0 0.000 0.003 0.006 0.009 0.012 0.015 0.018 0.022 0.025 0.028 0.031

22.0 0.000 0.003 0.005 0.008 0.010 0.013 0.015 0.018 0.020 0.023 0.025

23.0 0.000 0.002 0.004 0.006 0.009 0.011 0.013 0.015 0.017 0.019 0.021

24.0 0.000 0.002 0.004 0.005 0.007 0.009 0.011 0.013 0.014 0.016 0.018

25.0 0.000 0.002 0.003 0.005 0.006 0.008 0.009 0.011 0.012 0.014 0.015

26.0 0.000 0.001 0.003 0.004 0.005 0.007 0.008 0.009 0.010 0.012 0.013

27.0 0.000 0.001 0.002 0.003 0.005 0.006 0.007 0.008 0.009 0.010 0.011

28.0 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

29.0 0.000 0.001 0.002 0.003 0.003 0.004 0.005 0.006 0.007 0.008 0.008

30.0 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.007

For the case hx � 1 (ρ 	 h), (37) and (38) are trans-
formed into the formulas

〈G̃(z′, x)〉 ≈ − 1
4h

(h2 − z′2), (39)

〈〈G̃(x)〉〉 = −h

6
. (40)

In place of (16), we obtain for the averaged value
〈B̃inhom(x)〉

〈B̃inhom(x)〉 (41)

= − 1
2hx2

h∫
−h

dz′
(

1 − cosh xz′

cosh xh

)
S̃(z′, x),

and for the case ρ 	 h

〈Binhom(ρ)〉 (42)

= − 1
4h

h∫
−h

dz′(h2 − z′2)S(z′, ρ).

The contribution of the averaged source term 〈S(ρ)〉
is given by the expression

〈Binhom(ρ)〉 (43)

= −h

6

h∫
−h

dz′S(z′, ρ) ≡ −h

3
〈S(z′, ρ)〉.

Note that the anti-symmetric part of the source
term (Sa(z′, ρ) = −Sa(−z′, ρ)) makes no contribu-
tion in formulas (41), (42), and (43); i.e., the averaged
magnetic field 〈Binhom(ρ)〉 is determined purely by
the symmetric part of the source term Ss(z′, ρ) =
Ss(−z′, ρ). This is a consequence of the fact that the
z-averaged Green’s function G̃(z, z′, x) is a symmet-
ric function of z′.
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Table 3. Bz(z̄, ρ̄) (in kG), taking into account the right-hand side and with M8 = 1, h = 1.3 × 1013M8 cm, and
m = 4.4 × 1045 G cm3

ρ̄\z̄ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

10.0 –1.687 –1.689 –1.696 –1.706 –1.721 –1.740 –1.764 –1.792 –1.826 –1.866 –1.912

11.0 –1.279 –1.281 –1.285 –1.293 –1.304 –1.319 –1.337 –1.359 –1.384 –1.414 –1.448

12.0 –0.998 –0.999 –1.002 –1.008 –1.016 –1.027 –1.040 –1.056 –1.075 –1.097 –1.122

13.0 –0.793 –0.794 –0.797 –0.801 –0.807 –0.815 –0.825 –0.837 –0.851 –0.868 –0.886

14.0 –0.641 –0.642 –0.644 –0.647 –0.652 –0.658 –0.666 –0.675 –0.686 –0.698 –0.712

15.0 –0.526 –0.526 –0.528 –0.530 –0.534 –0.539 –0.545 –0.552 –0.560 –0.570 –0.581

16.0 –0.436 –0.437 –0.438 –0.440 –0.443 –0.447 –0.451 –0.457 –0.463 –0.471 –0.480

17.0 –0.436 –0.437 –0.438 –0.440 –0.443 –0.447 –0.451 –0.457 –0.463 –0.471 –0.480

18.0 –0.310 –0.310 –0.311 –0.312 –0.314 –0.317 –0.320 –0.323 –0.328 –0.333 –0.338

19.0 –0.265 –0.265 –0.266 –0.267 –0.268 –0.270 –0.273 –0.276 –0.279 –0.283 –0.288

20.0 –0.228 –0.228 –0.229 –0.230 –0.231 –0.233 –0.235 –0.237 –0.240 –0.243 –0.247

21.0 –0.198 –0.198 –0.199 –0.199 –0.200 –0.202 –0.203 –0.205 –0.208 –0.211 –0.214

22.0 –0.173 –0.173 –0.173 –0.174 –0.175 –0.176 –0.177 –0.179 –0.181 –0.183 –0.186

23.0 –0.152 –0.152 –0.152 –0.153 –0.153 –0.154 –0.156 –0.157 –0.159 –0.161 –0.163

24.0 –0.134 –0.134 –0.134 –0.135 –0.135 –0.136 –0.137 –0.139 –0.140 –0.142 –0.144

25.0 –0.119 –0.119 –0.119 –0.120 –0.120 –0.121 –0.122 –0.123 –0.124 –0.125 –0.127

26.0 –0.106 –0.106 –0.106 –0.107 –0.107 –0.108 –0.108 –0.109 –0.110 –0.112 –0.113

27.0 –0.095 –0.095 –0.095 –0.095 –0.096 –0.096 –0.097 –0.098 –0.099 –0.100 –0.101

28.0 –0.086 –0.086 –0.086 –0.086 –0.086 –0.087 –0.087 –0.088 –0.089 –0.090 –0.091

29.0 –0.078 –0.078 –0.078 –0.078 –0.078 –0.079 –0.079 –0.079 –0.080 –0.081 –0.082

30.0 –0.071 –0.072 –0.072 –0.072 –0.072 –0.072 –0.072 –0.072 –0.073 –0.073 –0.074

By virtue of the axial symmetry of the problem,
the velocity components Uρ(z, ρ) and Uϕ(z, ρ) are
symmetric relative to the substitution z → −z, while
Uz(z, ρ) is anti-symmetric. The magnetic-field com-
ponents Bρ(z, ρ) and Bϕ(z, ρ) are anti-symmetric,
while Bz(z, ρ) is symmetric. Since the derivative of
a symmetric function with respect to z is an anti-
symmetric function and vice versa, we find that the
mean value 〈Sz〉 consists of all the averaged terms of
the expression for Sz(z, ρ) in (3). The mean value for
the symmetric part is 〈Sρ(z, ρ)〉 = 0; consequently, in
the thin-disk model,

Bρ(ρ) = 0. (44)

Similarly, the symmetrical part of 〈Sϕ(z, ρ)〉 = 0, and

Bϕ(ρ) = 0. (45)

7. NUMERICAL SOLUTION
OF THE EQUATION WITH THE

RIGHT-HAND SIDE
In this section, we present our numerical solution

of Eqs. (3). We assumed that Uz = 0, and that Uρ

and Uϕ do not depend on z. We made a translation
to the parameters ρ̄ = ρ/h, z̄ = z/h, D̄t = Dt/h

2,
Ūϕ = Uϕ/h, and Ūρ = Uρ/h. The equations of (3)
then acquire the form

D̄t

(
∂2Bz

∂z̄2
+

∂2Bz

∂ρ̄2

)
(46)

+
∂Bz

∂ρ̄

(
D̄t

ρ̄
− Ūρ +

∂D̄t

∂ρ̄

)

− Bz

(
∂Ūρ

∂ρ̄
+

Ūρ

ρ̄

)
− ∂Dt

∂ρ

∂Bρ

∂z
= 0,

D̄t

(
∂2Bρ

∂z̄2
+

∂2Bρ

∂ρ̄2

)
+

∂Bρ

∂ρ̄

(
D̄t

ρ̄
− Ūρ

)
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Table 4. Bρ(z̄, ρ̄) (kn kG), taking into account the right-hand side and with M8 = 1, h = 1.3 × 1013M8 cm, and
m = 4.4 × 1045 G cm3

ρ̄\z̄ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

10.0 0.000 0.052 0.105 0.159 0.213 0.269 0.327 0.387 0.450 0.516 0.585

11.0 0.000 0.036 0.073 0.110 0.147 0.186 0.225 0.266 0.309 0.354 0.401

12.0 0.000 0.026 0.052 0.078 0.105 0.132 0.160 0.189 0.220 0.251 0.284

13.0 0.000 0.019 0.038 0.057 0.077 0.097 0.117 0.138 0.160 0.183 0.207

14.0 0.000 0.014 0.028 0.043 0.057 0.072 0.088 0.103 0.120 0.137 0.154

15.0 0.000 0.011 0.022 0.033 0.044 0.055 0.067 0.079 0.091 0.104 0.117

16.0 0.000 0.008 0.017 0.025 0.034 0.043 0.052 0.061 0.071 0.080 0.091

17.0 0.000 0.007 0.013 0.020 0.027 0.034 0.041 0.048 0.055 0.063 0.071

18.0 0.000 0.005 0.011 0.016 0.021 0.027 0.033 0.038 0.044 0.050 0.057

19.0 0.000 0.004 0.009 0.013 0.017 0.022 0.026 0.031 0.036 0.041 0.046

20.0 0.000 0.004 0.007 0.011 0.014 0.018 0.021 0.025 0.029 0.033 0.037

21.0 0.000 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.031

22.0 0.000 0.002 0.005 0.007 0.010 0.012 0.015 0.017 0.020 0.023 0.025

23.0 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.015 0.017 0.019 0.021

24.0 0.000 0.002 0.003 0.005 0.007 0.009 0.010 0.012 0.014 0.016 0.018

25.0 0.000 0.001 0.003 0.004 0.006 0.007 0.009 0.010 0.012 0.014 0.015

26.0 0.000 0.001 0.002 0.004 0.005 0.006 0.008 0.009 0.010 0.012 0.013

27.0 0.000 0.001 0.002 0.003 0.004 0.005 0.007 0.008 0.009 0.010 0.011

28.0 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

29.0 0.000 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.008

30.0 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.007

− Bρ
Ūρ

ρ̄
− D̄t

Bρ

ρ̄2
= 0,

D̄t

(
∂2Bϕ

∂z̄2
+

1
ρ̄

∂Bϕ

∂ρ̄
+

∂2Bϕ

∂ρ̄2
− Bϕ

ρ̄2

)

− Ūϕ
Bρ

ρ̄
− ∂

∂ρ̄
(ŪρBϕ) + Bρ

∂Ūϕ

∂ρ̄

+
∂D̄t

∂ρ̄

1
ρ̄

∂

∂ρ̄
(ρ̄Bϕ) = 0.

We adopt the velocity components

Uϕ =
√

GM/ρ ⇒ Ūϕ =

√
GM

ρ̄h3
, (47)

where G is the gravitational constant and M the mass
of the central object. We adopt for Uρ the classical

value from accretion theory

Uρ = − Ṁ

4hπρgasρ
⇒ Ūρ = − Ṁ

4h3πρgasρ̄
, (48)

where Ṁ ≈ 1.4 × 1025M8 g/s is the accretion rate.
Recall that M8 = M/108 M�. Based on the charac-
teristic turbulence scales, we adopted Dt = |Uρ|h/3,
i.e., D̄t = |Ūρ|/3. This is valid for an accretion disk
with Rossby wave instability [25], and also for ADAF
models [26]. In these models, the density can be
written ρden = Σ/2h, where Σ ∼ ρ−3/2 is the surface
density [25, 27].

We solved the equations using the grid method of
Liebmann [28]. We adopted the solution of the homo-
geneous equation obtained earlier as the boundary
conditions. Tables 3–5 present the results of our
computations for Bz , Bρ, and Bϕ for M8 = 1, h =
1.3 × 1013M8 cm, and m = 4.4 × 1045G cm3 [25].
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Table 5. Bϕ(z̄, ρ̄) (in kG), taking into account the right-hand side and with M8 = 1, h = 1.3 × 1013M8 cm, and
m = 4.4 × 1045 G cm3

ρ̄\z̄ 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

10.0 0.000 –0.009 –0.018 –0.028 –0.037 –0.047 –0.057 –0.067 –0.078 –0.077 0.000

11.0 0.000 –0.005 –0.010 –0.016 –0.021 –0.027 –0.032 –0.038 –0.044 –0.044 0.000

12.0 0.000 –0.003 –0.006 –0.009 –0.013 –0.016 –0.019 –0.023 –0.026 –0.026 0.000

13.0 0.000 –0.002 –0.004 –0.006 –0.008 –0.010 –0.012 –0.014 –0.016 –0.016 0.000

14.0 0.000 –0.001 –0.003 –0.004 –0.005 –0.006 –0.008 –0.009 –0.011 –0.010 0.000

15.0 0.000 –0.001 –0.002 –0.003 –0.003 –0.004 –0.005 –0.006 –0.007 –0.007 0.000

16.0 0.000 –0.001 –0.001 –0.002 –0.002 –0.003 –0.004 –0.004 –0.005 –0.005 0.000

17.0 0.000 0.000 –0.001 –0.001 –0.002 –0.002 –0.002 –0.003 –0.003 –0.003 0.000

18.0 0.000 0.000 –0.001 –0.001 –0.001 –0.001 –0.002 –0.002 –0.002 –0.002 0.000

19.0 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001 –0.001 –0.002 –0.002 0.000

20.0 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001 –0.001 –0.001 0.000

21.0 0.000 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001 –0.001 0.000

22.0 0.000 0.000 0.000 0.000 0.000 0.000 –0.001 –0.001 –0.001 –0.001 0.000

23.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 –0.001 –0.001 0.000

24.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

27.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

28.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

29.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

30.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Recall that Bz is symmetrical with respect to z, while
Bρ and Bϕ are anti-symmetrical.

8. CONCLUSION

We have considered the magnetic-field structure
in planar accretion disks assuming a stationary state,
when the time derivative in the induction equation can
be neglected. The induction equation (1) transforms
into a diffusion equatiaon for the magnetic field (2)
with sources (right-hand sides of the equaton) related
to stationary plasma motions. We have assumed that
the magnetic field at the boundaries of the planar disk
(z = ±h) coincides with the field of a magnetic dipole
located at the center of the disk, with the magnetic
dipole oriented perpendicular to the plane of the disk.

The general solution of the induction equation was
represented as a sum of the solutions of the homoge-
neous equation with specified boundary values of the
magnetic field and the solution of the equation with its

right-hand side and zero boundary conditions. The
use of a Hankel transform with Bessel functions of
zeroth and first order makes it possible to reduce the
problem to solving an ordinary differential equation
using a Green’s function.

In many models, the half-width of the accretion
disk does not depend on the distance ρ when ρ 	
3rg [29].

Table 1 shows that the solution of the homoge-
neous equation (4) leads to a comparatively small
increase in the field Bz,hom(z̄, ρ̄), compared to the
boundary value Bz,hom(1, ρ̄). This increase disap-
pears when ρ̄ 	 1, and the field Bz,hom(z̄, ρ̄) coincides
with the boundary value throughout the disk thick-
ness. A negative sign for a magnetic-field component
indicates that it is directed opposite to the direction in
which the corresponding coordinate increases.

Table 3 shows that the magnetic field Bz(z̄, ρ̄)
decreases with distance from a boundary. For ex-
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ample, Bz(0, 10) = 0.882Bz(1, 10) when ρ̄ = 10, and
Bz(0, 30) = 0.959Bz(1, 30) when ρ̄ = 30. Note that
the decrease in Bz(z̄, ρ̄) for a specified distance ρ̄ is
not linear in the variable z̄.

Table 4 shows that the magnetic field Bρ(z̄, ρ̄)
decreases with distance from a boundary, and van-
ishes when z̄ = 0. This decrease is not linear, in dis-
agreement with the formula Bρ(z, ρ) = Bρ(h, ρ)z/h
adopted in [6].

It is interesting that, like the function ρ̄, Bz(0, ρ̄)
decreases more slowly than Bz(1, ρ̄) ∼ ρ̄−3 when
ρ̄ 	 1. The same is true for Bρ(z̄, ρ̄) ∼ ρ̄−4 (for
z̄ = 0.5).

It is also interesting that the azimuthal field
Bϕ(z̄, ρ̄) decreases roughly as ρ̄−6 with increasing
distance ρ̄. Note that including the term with ∂Dt/∂ρ
has virtually no effect on the values of the magnetic-
field components.

The magnetic-field values presented in Tables 3–5
could be verified using polarimetric observations.

According to [30–32], the magnetic field strongly
influences the polarization arising as a result of scat-
tering of the radiation on electrons. This gives rise
to a strong wavelength dependence of the Stokes
parameters, as a result of the Faraday rotation of the
plane of polarization occuring over a mean-free path
of a photon in the scattering medium. The degree of
polarization Pl(B,μ) and polarization position angle
χ are defined as follows, if Bz > Bρ [30–32]:

Pl(B,μ) =
Pl(μ)√
1 + a2

; tan 2χ = a, (49)

where μ = cos i, i is the inclination of the region of
scattering to the line of sight, and Pl(μ) is the degree
of polarization of the radiation emerging from a plane-
parallel atmosphere with no magnetic field [33, 34].

The Faraday-depolarization parameter a has the
form

a = 0.8λ2
ownμBz(ρ̄(λ)), (50)

where λown is the wavelength of the radiation in its
own coordinate system, and ρ̄(λ) = Rλ/h. Rλ is
the characteristic radius of the accretion disk, which
depends on the wavelength.

The decrease in Bz(z̄, ρ̄) with distance from
a boundary (and the corresponding decrease in
Bρ(z̄, ρ̄)) could lead to the appearance of a strong
wavelength dependence of the polarizaton angle χ,
in accordance with (49). Of course, this situation
is realized if there is a sufficient magnetic field B(z)
over a length of two mean-free paths for a photon,
measured from the disk boundary.

We have obtained numerical solutions for the
range of accretion-disk radii R = (10−30)Rg (Ta-
bles 3–5), which could correspond to the region of
generation of hard electromagnetic radiation. Recall
that Rg = GM/c2 � 1.5 × 105(M/M�) cm. There-
fore, the detection of a strong wavelength dependence
for the degree of polarizaton and polarization position
angle is expected for future UV and X-ray polariza-
tion measurements.
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