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The Generic Solution with Isotropic Big Bang∗
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Abstract—It is shown that inclusion of the shear stresses to the cosmological evolution can stabilize the
Friedmann Big Bang. This results in the existence of the generic solution with isotropic cosmological
singularity.
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1. INTRODUCTION

Observations show that the early Universe was
isotropic, homogeneous, and thermally balanced. A
number of authors [1–3] expressed the point of view
that the initial cosmological singularity should also be
in conformity with these properties. In other words,
the singularity should be isotropic which ensures that
the solution is increasingly well approximated dy-
namically by a Friedmann model as the singularity is
approached. But it is well known that the Big Bang
in an exact Friedmann model is unstable. This insta-
bility is due to the sharp anisotropy (in general of an
oscillatory character [4]) which develops unavoidably
near the cosmological singularity. Then the spacetime
cannot start expanding isotropically at the beginning
unless there is an artificial fine-tuning of unknown
origin. However, an intuitive understanding suggests
that anisotropy can be damped by shear viscosity,
which might result in the existence of a generic so-
lution with an isotropic singularity.

To search for the solution of this type, it would
be inappropriate to use just the Eckart or Landau–
Lifshitz approaches to the relativistic hydrodynamics
with dissipative processes. These theories are phys-
ically acceptable provided the characteristic times of
the macroscopic motions of the matter (like periods
of cosmological oscillations) are much bigger than
the time of relaxation of the medium to the equilib-
rium state. However, it might happen that this is not
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the case near the cosmological singularity since all
characteristic macroscopic times (first of all periods
of oscillations) in this region go to zero.1

The reason why the Eckart and Landau–Lifshitz
approaches [5, 6] become unacceptable when internal
relaxation times of the material and characteristic
external times reach the same order of magnitude
is existence in these theories of the supraluminal
propagation of exitations of the viscous (and heat)
stresses. These effects are of no importance for the
“normal” physical scales around us but they turn
into the real pathologies in extreme situations (as,
for example, near cosmological singularity) when they
can not be neglected more. In such extreme cases one
needs a macroscopic theory which takes into account
Maxwell’s relaxation times on the same footing as all
other transport coefficients. In a literal sense such a
theory does not exist, however, it can be constructed
in an approximate form for the cases when a medium
does not deviate too much from equilibrium and re-
laxation times do not noticeably exceed the charac-
teristic macroscopic times.2 It is reasonable to expect
that these conditions will be satisfied automatically
for a generic solution (if it exists) near an isotropic
singularity describing the beginning of the thermally
balanced Friedmann Universe accompanied by the

1 We use the synchronous system where −ds2 = −dt2 +

gαβdxαdxβ. It is known that in synchronous time t periods
of cosmological oscillations indeed go to zero and their fre-
quencies go to infinity.

2 This approximative character is due to the fact that no exact
theory of this kind can be deduced from kinetic. However, in
the vicinity to the cosmological singularity there is no any
kinetic. This follows from the circumstance that in super-
dense state can not be any notion of particles (L.D. Landau,
1953). In this situation one can take a liberty to consider such
approximation as an exact phenomenological theory of a
medium without any microscopic structure (Ya.B. Zeldovich,
private discussion, 1976).
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arbitrary infinitesimally small corrections. It turns out
that this indeed is the case for construction we are
proposing in this paper.

The main target of the efforts of many authors
(starting from the first idea of Cattaneo [7] up to the
final formulation of the generalized relativistic theory
of a dissipative fluid by Israel and Stewart [8, 9]) was
to bring the theory into line with relativistic causality,
that is, to eliminate the supraluminal propagation of
the thermal and viscous excitations. This was done
by including into the theory the Maxwell’s relaxation
times.

One of the first applications of the Israel–Stewart
theory to the problems of cosmological singularity
was undertaken in 1979 in paper [10]. In this work
the stability of the Friedmann models under the in-
fluence of the shear viscosity has already been in-
vestigated and it was found that relativistic causal-
ity and stability of the Friedmann singularity are in
contradiction to each other. Then the final conclusion
was “Relativistic causality precludes the stability of
isotropic collapse. An isotropic singularity cannot be
the typical initial or final state.” However, in my recent
paper [11] it was shown that this “no go” conclusion
was too hasty, since it was the result of a range for
the dependence of the shear viscosity coefficient on
the energy density that was too restricted.

As usual, in the vicinity to the singularity where
the energy density ε diverges, we approximate the
coefficient of viscosity η by the power law asymptotics
η ∼ εν with some exponent ν. In our old work (due
to some more or less plausible thoughts) we choose
the values of this exponent from the region ν > 1/2.
For these values of ν, the old negative result remains
correct, but recently it was made known that the
boundary value ν = 1/2 leads to a dramatic change
in the state of affairs. It turns out that for this case
there exists a window in the space of the free parame-
ters of the theory in which the Friedmann singularity
becomes stable and at the same time no supralumi-
nal signals exist in its vicinity. This possibility was
overlooked in our 1979 work.

It is worth adding that the case ν < 1/2 also was
analyzed in paper [11] but it is of no interest since it
leads to strong instability of a Friedmann singularity
independently of the question of relativistic causality.

2. THE OUTLINE OF THE BASIC
EQUATIONS

Shear stresses generate an addend Sik to the stan-
dard energy-momentum tensor of a fluid:

Tik = (ε + p)uiuk + pgik + Sik, (1)

and this additional term has to satisfy the Landau–
Lifshitz constraints:

Sik = Ski, Sk
k = 0, uiSik = 0. (2)

Besides we have the usual normalization condition for
the 4-velocity:

uiu
i = −1. (3)

If the Maxwell’s relaxation time τ of the stresses is not
zero then do not exists any closed expression for Sik

in terms of the viscosity coefficient η and 4-gradients
of the 4-velocity (like it was in the Landau–Lifshitz
approach [6]). Instead the stresses Sik should be de-
fined [8, 9] from the following differential equation:

Sik + τ (δm
i + uiu

m) (δn
k + uku

n) Smn;lu
l (4)

= −η
(
ui;k + uk;i + ulukui;l + uluiuk;l

)

+
2
3
η (gik + uiuk) ul

;l,

which due to the normalization condition for velocity
is compatible with the constraints (2). In case τ =
0 expression for Sik, following from this equation,
coincides with that one introduced by Landau and
Lifschitz [6]. If the equations of state p = p(ε), η =
η(ε), τ = τ(ε) are fixed then the Einstein equations

Rik = Tik − 1
2
gikT

l
l (5)

together with above differential equation for the
stresses Sik gives the closed system where from all
quantities of interest, that is gik, ui, ε, Sik can be
found.

Since we are interesting in behaviour of the system
in the vicinity to the cosmological singularity where
ε → ∞ the viscosity coefficient η in this asymptotic
domain can be approximated by the power law
asymptotics

η = const · εν , (6)

with some constant exponent ν. Beforehand the value
of this exponent is unknown then we need to in-
vestigate its entire range −∞ < ν < ∞. As for the
relaxation time τ the choice is more definite. It is well
known that η/ετ represents a measure of velocity of
propagation of the shear excitations. Then we model
this ratio by a positive constant f (in a more accurate
theory f can be a slow varying function on time but in
any case this function should be bounded in order to
exclude the appearance of the supraluminal signals).
Consequently we choose the following model for the
relation between relaxation time and viscosity coeffi-
cient:

η = fετ, f = const. (7)
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For the dependence p = p(ε) we follow the stan-
dard approximation with constant parameter γ:

p = (γ − 1) ε, 1 � γ < 2. (8)

Now equations are closed and we can search the
asymptotic behaviour of solution in the vicinity to the
cosmological singularity. It is convenient to work in
the synchronous reference system where the interval
is

−ds2 = −dt2 + gαβdxαdxβ . (9)

Our task is to take the standard Friedmann solu-
tion as background and to find the asymptotic (near
singularity) solution of the equations for the linear
perturbations around this background in the same
synchronous system.

The background solution is

−ds2 = −dt2 (10)

+ R2
[(

dx1
)2 +

(
dx2

)2 +
(
dx3

)2
]
,

R = (t/tc)
2/3γ ,

ε(0) = 4
(
3γ2t2

)−1
, u

(0)
0 = −1, (11)

u(0)
α = 0, S

(0)
ik = 0,

where t > 0 and tc is some arbitrary positive constant.
We have to deal with the following linear perturba-
tions:

δgαβ , δuα, δε, δSαβ . (12)

In the linearized version of the equations around the
Friedmann solution will appear only these variations.
The variations δu0 and δS0k can not be of the first
(linear) order because of the exact relations uiu

i =
−1 and uiSik = 0 and properties u

(0)
0 = −1, u

(0)
α = 0,

S
(0)
ik = 0 of the background. The variations δτ and

δη of the relaxation time and viscosity coefficient,
although exist as the first order quantities, will disap-
pear from the linear approximation since they reveal
itself only as factors in front of the terms vanishing for
the isotropic Friedmann seed.

To find the general solution of equations for small
perturbations we apply the technique invented by
Lifshitz and used by him to analyze the stability of
the Friedmann solution for the perfect liquid [12].
Since all coefficients in the differential equations for
perturbations do not depend on spatial coordinates we
can represent all quantities of interest in the form of
the 3-dimensional Fourier integrals to reduce these
equations to the system of the ordinary differential
equations in time for the corresponding Fourier co-
efficients. These coefficients can be expanded in the
Lifshitz basis in which the system of equations splits

in the three separate and independent subsets (scalar,
vectorial and tensorial). However, now equations are
more complicated since each type of perturbations
contain the terms due to the presence of the shear
stresses (δSαβ also consists of the scalar, vector and
tensor excitations).

In what follows we will not show these equations
and procedure for obtaining their solutions near sin-
gularity. An interested reader can find the comprehen-
sive calculations in the article [11]. Below we describe
the main results avoiding the mathematical details.

3. SHORT WAVES PULSES

The conformally flat version of the Friedman met-
ric after the transformation dT = dt/R to the time T
is −ds2 = R2(T )[−dT 2 + (dx1)2 + (dx2)2 + (dx3)2].
Then in the limit of large values of the absolute values
k of the wave vectors equations for the Fourier ampli-
tudes of each types of perturbations have solutions of
the form of slow varying amplitudes multiplied by the
factor exp(iυkT ) but for different types of excitations
with different propagation velocity:

υ2
scalar = γ − 1 + 4f/3γ, (13)

υ2
vector = f/γ, υ2

tensor = 1.

This result we obtained already in 1979 and it
shows that gravitational waves propagate with ve-
locity of light but in order to exclude the supralumi-
nal signals for two other types of perturbations it is
necessary to demand υ2

scalar < 1 and υ2
vector < 1. Both

of these conditions in the region 1 � γ < 2 will be
satisfied if

f <
3
4
γ (2 − γ) . (14)

4. DIFFERENT CASES FOR VISCOSITY
COEFFICIENT

In case ν < 1/2 the perturbations near singularity
(t → 0) contain the strongly divergent mode of the
order of exp(t2ν−1). This mode destroys the back-
ground regime. Consequently the values ν < 1/2 are
of no interest since in this case does not exists a
generic solution of the gravitational equations with
the Friedmann singularity.

For ν > 1/2 near to the singularity t → 0 the so-
lutions for perturbations represent the superposition
of two power law modes of orders ts1 and ts2 where
exponents s1 and s2 are functions on the parameters
γ and f . For stability of the Friedmann solution it
is necessary for both these exponents to be posi-
tive. It turnes out that this condition is equivalent
to the restriction f > 3

4γ(2 − γ) for the constant f .
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However, this restriction is exactly opposite to the
causality condition (14) which has been obtained
previously. Consequently, also for ν > 1/2, assuming
the absence of the supraluminal excitations, there is
no way to provide stability of the Friedmann solution
near singularity. This result has been known already
in 1979.

For ν = 1/2 the model contains three arbitrary
constans f , γ, β and asymptotic behaviour of the
viscosity coefficient η, relaxation time τ and energy
density ε are:

η =
4f

3γ2β

1
t
, τ =

t

β
, ε =

4
3γ2

1
t2

. (15)

The result is that in the space of parameters f ,
γ, β there is the window (of finite volume, that is
of nonzero measure) in which all time-dependent
perturbations tend to zero when t → 0 and also no
supraluminal signals exist, that is the causality condi-
tion f < 3

4γ(2 − γ) take place. This window consists
of two different regions: one corresponds to smooth
power law behavior and another to damping oscil-
lations (see detailed discription of these regions in
paper [11]). This means that in the non-perturbative
context a generic solution exists with the following
asymptotics for the metric near singularity:

gαβ = R2
(
aαβ + ts1b

(1)
αβ + ts2b

(2)
αβ (16)

+ ts3b
(3)
αβ + ...

)
,

where R = (t/tc)2/3γ and exponents s1, s2, s3 are
definite functions on the three parameters f , γ, β. The
exponent s3 is always positive while exponents s1 and
s2 are either positive (smooth behavior) or complex
conjugated to each other but with positive real parts
(damping oscillations). The additional terms denoted
by the triple dots are small corrections which contain
the terms of the orders t2s3 , ts1+s3 , ts2+s3 as well as
all their powers and cross products.

In the main approximation the velocity compo-
nents uα are the linear superposition of the three pow-
ers ts1+1, ts2+1, ts3+1 and energy density are going as
superposition of t−2 and t−2+s3 (energy density never
oscillates).

The main addend aαβ in (16) represents six arbi-

trary 3-dimensional functions. Each tensor b
(1)
αβ and

b
(2)
αβ consists of the six 3-dimensional functions sub-

jected to the restrictions aαβb
(1)
αβ = 0 and aαβb

(2)
αβ = 0

(aαβ is inverse to aαβ), consequently b
(1)
αβ and b

(2)
αβ

contain another ten arbitrary 3-dimensional func-
tions. In case of complex conjugated s1 and s2 the

components b
(1)
αβ and b

(2)
αβ are complex but in the way

to provide reality of the metric tensor. The last term

b
(3)
αβ and all corrections denoted by the triple dots

are expressible in terms of the aαβ, b
(1)
αβ , b

(2)
αβ and their

derivatives then they do not contain any new arbitrari-
ness.

The shear stresses, velocity and energy density
follows from the exact Einstein equations in terms
of the metric tensor and its derivatives and all these
quantities also do not contain any new arbitrary pa-
rameters. In result the solution contains 16 arbitrary
3-dimensional functions the three of which repre-
sent the gauge freedom due to the possibility of the
arbitrary 3-dimensional coordinate transformations.
Then the physical freedom in the solution corresponds
to 13 arbitrary functions. This is exactly the number
of arbitrary independent physical degrees of freedom
of the system under consideration, that is 4 for the
gravitational field, 1 for the energy density, 3 for the
velocity and 5 for the shear stresses (five because the
six components Sαβ follows from the six differential
equations of the first order in time with one additional
condition δαβSαβ = 0). Then the solution we con-
structed is generic.

This result is the generalization of the Lifshitz–
Khalatnikov quasi-isotropic solution [13] for the per-
fect liquid constructed in 1961. However, in case of
perfect liquid the isotropic singularity is unstable and
Lifshitz–Khalatnikov asymptotics corresponds to the
narrow class of particular solutions containing only 3
arbitrary physical 3-dimensional parameters.

5. CONCLUDING REMARKS

1. The results presented show that the viscoelas-
tic material with shear viscosity coefficient η ∼ √

ε
can stabilize the Friedmann cosmological singularity
and the corresponding generic solution of the Ein-
stein equations for the viscous fluid possessing
the isotropic Big Bang (or Big Crunch) exists.
Depending on the free parameters f, β, γ of the theory
such solution can be either of smooth power law
asymptotics near singularity (when both power expo-
nents s1 and s2 are real and positive) or it can have the
character of damping (in the limit t → 0) oscillations
(when s1 and s2 have the positive real part and an
imaginary part). The last possibility reveal itself as
a trace of the chaotic oscillatory regime which is
characteristic for the most general asymptotics near
the cosmological singularity and which has no any
analytical form. The present case show that the shear
viscosity can smooth such chaotic behaviour up to
the quiet oscillations which have simple asymptotic
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expressions in terms of the elementary functions of
the type tRes sin [(Ims) ln t] and tRes cos [(Ims) ln t].

2. In the generic isotropic Big Bang described
here some part of perturbations are presented already
at the initial singularity t = 0 which are the three
physical components of the arbitrary 3-dimensional
tensor aαβ(x1, x2, x3). Another ten arbitrary physical
degrees of freedom are contained in the components

of two tensors b
(1)
αβ and b

(2)
αβ in this formula and they

come to the action in the process of expansion. This
picture has no that shortage of the classical Lifshitz
approach when one is forced to introduce some unex-
plainable segment between singularity t = 0 and ini-
tial time t = t0 when perturbations arise in such a way
that inside this segment it is necessary to postulate
without reasons the validity of the exact Friedmann
solution free of any perturbations.

3. It might happen that due to the universal grow-
ing of all perturbations (in the course of expansion) al-
ready before that critical time when equations of state
will be changed and will switched off the action of vis-
cosity the perturbation amplitudes will reach the level
sufficient for the further development of the observed
structure of our Universe. If not we always have that
means of escape as inflation phase which can appear
in the course of evolution after the Big Bang. Here
we are touching another problem. It is known [14, 15]
that no inflation can appear without preceding cos-
mological singularity. Moreover, namely the period of
expansion from singularity to an inflationary stage is
responsible for the generation of the necessary initial
conditions for this inflationary phase. The resolution
of all these problems remains to be seen.

4. In our analysis the case of stiff matter (γ = 2)
have been excluded. This peculiar possibility should
be investigated separately. It is known that for the
perfect liquid with stiff matter equation of state a
generic solution with isotropic singularity is impos-
sible. The asymptotic of the general solution for this
case have essentially anisotropic structure although
of the smooth (non-oscillatory) power low character.
It might be that viscosity will be able to isotropize
such evolution, however, it is not yet clear how the
viscous stiff matter should be treated mathematically.
The simple way to take γ = 2 in our previous study
does not works.

5. Another interesting question is how an evo-
lution directed outwards of a thermally equilibrated
state to a non-equilibrium one can be reconciled with
the second law of thermodynamics. Indeed, it seems
that in accordance with this law no deviation can hap-
pen from the background Friedmann expansion since
in course of a such deviation entropy must increase
but in equilibrium it already has the maximal possible
value. The explanation should come from the fact of
the presence the superstrong gravitational field. This
field is an external agent with respect to the matter
itself, consequently, the matter in the Friedmann Uni-
verse cannot be considered as an isolated system. It
might happen that Penrose [2] is right and the grav-
itational field possess an intrinsic entropy then this
entropy being added to the entropy of matter will bring
the situation into line with conventional physics.
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