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Abstract—A celestial-mechanical model for the motion of two viscoelastic spheres in the gravitational
field of a massive point is considered, treating them as a double planet. The spheres move along quasi-
circular orbits in a single plane, with their rotational axes perpendicular to this plane. The deformation of
the spheres is described using the classical theory of small deformations. A Kelvin–Voigt model is adopted
for the viscous forces. A system of evoutionary equations is obtained and applied to analyze the joint
translational–rotational tidal evolution of the Earth and Moon in the gravitational field of the Sun. This
system has been numerically integrated several billion years into the past and into the future. The results
are compared with the predictions of other theories, paleontological data, and astronomical observations.
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1. INTRODUCTION

The theory of tides originated with work by New-
ton and Laplace. The main achievements in this
area were collected, systematized, and analyzed by
Darwin [1], and further developed by MacDonald [2],
who studied the evolution of the Earth–Moon system
without including the influence of the Sun. Goldreich
[3] used the method of MacDonald to investigate the
oblateness of the Earth and the influence of solar
tides, but neglecting the ellipticity of the lunar orbit,
and correctly averaged the equations of motion using
three time scales.

The method of MacDonald was then used in var-
ious other studies. Beletskii [4] investigated the tidal
evolution of the inclinations and rotations of celes-
tial bodies. Webb [5] studied the evolution of the
Earth–Moon system based on the ocean tides and
compared his results with the model of Goldreich [3].
Krasinsky [6] combined the methods of MacDonald
and Goldreich to reconstruct a dynamical history of
the Earth–Moon system. Touma and Wisdom [7] de-
veloped various models for tidal phenomena in detail.
It was shown that the evolution of the Earth–Moon
system based on the models of Darwin–Mignard and
Darwin–Cowley–Goldreich is essentially equivalent
to that predicted by the model of Goldreich.

Efroimsky and Lainey [8] considered the effective
dissipation function Q, which is proportional to the
tidal frequency to the power α. They studied the tidal
evolution of the Martian moon Phobos for α = 0.2,
0.3, 0.4. Note that α = 0 in the model of MacDonald
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and α = −1 in the model of Mignard [9, 10]. The
main distinguishing property of the approach pro-
posed by Ferraz-Mello et al. [11] is that, in contrast to
many studies based on the theory of Darwin, different
coefficients are introduced for the harmonics of the
tidal wave, instead of one Love number. A critical
analysis of the mathematical formulas in the above
theories describing the tidal moments, slowing of
planetary rotation, and the delay angle, as well as the
accuracy and range of applicability of the theories and
connections with rheological models, are considered
by Efroimsky and Williams [12] and Efroimsky and
Makarov [13]. Note that the qualitative conclusions
derived for the simpler MacDonald theory essentially
remain correct [12].

The subsequent development of tidal theories is
concerned with the creation of rheological models.
Churkin [14–16] established a generalized theory of
the Love number and applied it to the rheological
models of Guk, Maxwell, Voigt, and others. His
theory for the rotation of the inelastic Earth was ap-
plied to a Voigt model for the Earth’s interior, and
numerical estimates of rheological corrections to the
precession, nutation, and axial rotation of the Earth
were obtained. Efroimsky [17] introduced complex
Love numbers as a function of the tidal frequency to
study tides in the case of a rotational–orbital reso-
nance between a planet and one of its satellites.

Vil’ke [18] developed a method for separating mo-
tions and averaging in systems with an infinite num-
ber of degrees of freedom, aimed at studying the
motions of deformable bodies using a classical linear
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elasticity theory for small deformations and a Kelvin–
Voigt model for the viscous forces. This method
was used to investigate the evolution of the orbital
and rotational motions of a viscoelastic planet in a
central Newtonian force field [19, 20]. The model for a
celestial body of Markov and Minyaev [21] includes
an isotropic, viscoelastic layer and a rigid core. A
qualitative analysis of the motion of the moons of
Mars is given, and the model parameters were refined
based on the observations of the secular acceleration
of Phobos. Vil’ke and Shatina [22] studied the tidal
evolution of the motion of the Earth–Moon system in
the gravitational field of the Sun, treating the Moon
as a point mass.

Let us now turn to our model describing a double
planet [23–25].

2. MATHEMATICAL MODEL
FOR THE MOTION OF TWO VISCOELASTIC
SPHERES IN THE GRAVITATIONAL FIELD

OF A FIXED CENTRAL BODY

2.1. Formulation of the Problem

In the unperturbed motion, the barycenter C of the
two uniform rigid spheres O1 and O2 with masses m1

and m2 moves in a circular, Keplerian orbit in a fixed
plane in the gravitational field of a stationary massive
point mass M . The spheres O1 and O2, in turn,
move in circular Keplerian orbits about the barycenter
C in the plane of its motion. The spheres rotate
with specified constant angular speeds about axes
passing through their centers of mass perpendicular
to the plane of their orbital motion. All four motions
are independent of each other. This formulation of
the problem is possible because we have made the
assumptions

m2 � m1 � M ; ri0 � R2 � R1, (1)

where ri0 (i = 1, 2) are the radii of the spheres, R1

is the distance from the gravitating center to the
barycenter, and R2 is the distance between the cen-
ters of mass of O1 and O2 (we will further identify
the names of the spheres with their centers of mass).
These assumptions are satisfied, for example, by the
Sun–Earth–Moon system.

In the perturbed motion, we treat the spheres as
uniform, isotropic, viscoelastic bodies. Perturbations
arise due to the deformation of the bodies in response
to the centrifugal and gravitational forces. Since we
are studying evolutionary motions, we assume that
the centers of mass of the spheres move along quasi-
circular orbits.

To describe the motion, we specify an inertial
coordinate frame OXY Z fixed to the gravitating
center O, with the spheres moving in the OXY
plane. We specify Koenig coordinate systems OiXiYi

with the points Oi (i = 1, 2). The position of the
barycenter C in the OXY Z system is specified by

the vector R1 =
−−→
OC(R1 cos λ1, R1 sin λ1, 0), where

|R1| = R1, and λ1 is the angle between R1 and the
OX axis. The position of O2 relative to O1 in the
O1X1Y1Z1 frame is specified by the vector R2 =
−−−→
O1O2(R2 cos λ2, R2 sin λ2, 0), where |R2| = R2, and
λ2 is the angle between R2 and the OX1 axis. The
deformed state of the bodies is described by the clas-
sical theory of elasticity for small deformations. We
adopted a Kelvin–Voigt model for the viscous forces,
with the dissipation function Di[u̇i] proportional to
the elastic-force function Wi[u̇i], with the coefficient
of proportionality χi (the viscosity coefficient):

Di[u̇i] = χiWi[u̇i], (2)

where ui(ri, t) is the shift in the points of the body Oi

due to the deformations, u̇i = dui/dt (here and below,
a dot above a quantity denotes a time derivative), and
ri is the radius vector of the points in a sphere relative
to the center Oi in the undeformed state.

The rotating spheres are associated with their own
coordinate systems OiXiiYiiZii, where the OiZii axis
is perpendicular to the orbital plane (the OiZi and
OiZii axes coincide). The positions of the points in
the viscoelastic sphere Oi in the OXY Z coordinate
system are determined by the vector field

ζi(ri, t) =
−−→
OOi + Γi(ϕi)(ri + ui(ri, t)), (3)

where

Γi(ϕi(t)) =

⎛
⎜⎜⎜⎝

cos ϕi − sinϕi 0

sin ϕi cos ϕi 0

0 0 1

⎞
⎟⎟⎟⎠ . (4)

Here, Γi is the orthogonal operator for the transla-
tion from the Koenig coordinates OiXiYiZi to the
coordinates OiXiiYiiZii and ϕi is the rotation of the
OiXiiYiiZii system about the OiZii axis (ϕi is the
angle between the OiXi and OiXii axes).

In order to uniquely determine the positions of the
centers of mass of the spheres Oi in the OiXiiYiiZii

coordinate systems as the spheres move by ζi(ri, t),
we imposed the following conditions (relations) on
this motion:∫

Vi

uidvi = 0,
∫

Vi

curluidvi = 0 (5)

(dvi = dxiidyiidzii),

where Vi = {|ri| < ri0} is the region occupied by Oi

in the undeformed state.
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The functional for the kinetic energy of the system
has the form

T =
1
2
mṘ2

1 +
m1m2

2m
Ṙ2

2

+
1
2

2∑
i=1

(Ji[ui]ϕ̇2
i + 2Giϕ̇i + T0i),

where

Ji[ui] =
∫

Vi

[e3 × (ri + ui)]2ρidvi, (6)

Gi =
∫

Vi

[e3 × (ri + ui), u̇i]ρidvi,

T0i =
∫

Vi

(u̇i)2ρidvi,

e3 is the unit vector for the OiZii axis perpendicular
to the OXY plane, and ρi is the density of the sphere
Oi.

The potential energy associated with the gravita-
tional interactions is given by

Π = Π1 + Π2 + Π3, (7)

where

Π1 = −f

∫

V1

{[R1 − (m2/m)R2

+ Γ1(r1 + u1)]2}−1/2ρ1dv1

is the energy associated with the interaction between
the gravitating center and the viscoelatic body O1,

Π2 = −f

∫

V2

{[R1 + (m1/m)R2

+ Γ2(r2 + u2)]2}−1/2ρ2dv2

is the energy associated with the interaction between
the gravitating center and the viscoelatic body O2,

Π3 = −G

∫

V1

∫

V2

{[R2 + Γ2(r2 + u2)

− Γ1(r1 + u1)]2}1/2ρ1ρ2dv1dv2

is the energy associated with the deformable spheres
O1 and O2, f = GM , G is the gravitational constant,
and m = m1 + m2. Taking into account the condition
(1) and neglecting terms of order (R2/R1)3(m2/m)3
and higher order in smallness in the potential energy,
and leaving only terms that are linear ui, we obtain

Π = −fm/R1 − Gm1m2/R2 + Πp, (8)

where

Πp =
2∑

k=1

2∑
i=1

fki/R
3
k

∫

Vi

[riui (9)

− 3(ξki, ri)(ξki,ui)]ρidvi,

f1i = f, f2i = Gm3−i,

ξki = τki[cos(λk − ϕi), sin(λk − ϕi), 0],
τ21 = −1, τki = 1 (k �= 2, i �= 1).

Following [22], we introduced canonical Poincaré
variables λk, Λk (k = 1, 2 to describe the motion of
the barycenter and centers of mass Oi:

Λ1 = m(fR1)1/2, Λ2 = mr(f0R2)1/2, (10)

where mr = m1m2/m, f0 = Gm.
To describe the rotational motion of the bodies, we

used the Andoyer canonical variables ϕi, Ii (i = 1, 2):

Ii = Ji[ui]ϕ̇i + Gi, (11)

where Ji[ui] and Gi is defined in (6).
The equation of motion was written in the form of

the Routh equations

Λ̇k = − ∂�
∂λk

, λ̇k =
∂�
∂Λk

, İi = − ∂�
∂ϕi

, (12)

ϕ̇i =
∂�
∂Ii

,
d

dt
∇u̇i�−∇ui�−∇u̇iDi = 0.

Here, � is the Routh function, which has the form

� = −f2m3

2Λ2
1

− f2
0m3

r

2Λ2
2

(13)

+
2∑

i=1

{
I2
i

2Ai
− I2

i

2A2
i

Ji1[ui]

− Ii

Ai

(
e3,

∫

Vi

(ri × u̇i)dv

)
+Wi[ui]

}
+Πp,

where Ai = 0.4mir
2
i0 is the moment of inertia of the

undeformed sphere Oi,

Ji1[ui] = 2
∫

Vi

[(ri,ui) − (e3, ri)(e3,ui)]ρidvi, (14)

and an expression for Πp is given by (9).
The equations of motion admit the integral of the

angular momentum. When the Routh function (13) is
written out in detail, it can be shown that the angular
variables λk and ϕi appear in this function in the
combination ψki = λk − ϕi. It follows that

İi = − ∂�
∂ϕi

= −
2∑

k=1

∂�
∂ψki

· ∂ψki

∂ϕi
=

2∑
k=1

∂�
∂ψki

, (15)
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Λ̇k = − ∂�
∂λk

= −
2∑

i=1

∂�
∂ψki

· ∂ψki

∂λk
= −

2∑
i=1

∂�
∂ψki

,

İ1 + İ2 + Λ̇1 + Λ̇2

=
2∑

i=1

2∑
k=1

∂�
∂ψki

−
2∑

k=1

2∑
i=1

∂�
∂ψki

= 0,

I1 + I2 + Λ1 + Λ2 = K0 = const.

2.2. Finding the Displacements of Points
in the Bodies due to their Deformation

The system (12) cannot be integrated in explicit
form, since this is a quite complex system of differ-
ential equations. Therefore, we applied the method
for separating motions in systems with an infinite
number of degrees of freedom [18]. Since we assumed
the rigidity of the elastic spheres Oi were high, we
introduced the small parameters εi, proportional to
the ratio of the squares of the angular velocity of
rotation of a sphere at the initial time and of the lowest
frequency for the intrinsic elastic vibrations of the
sphere. The displacements ui are small, and can be
represented as a series in powers of εi:

ui(ri, t) = εiui1(ri, t) + ε2
i ui2(ri, t) + . . . , (16)

εi = ρir
2
i0ϕ̇

2
i (0)/Ei, (17)

where Ei is the Young’s modulus for the body Oi.
If εi = 0, then ui(ri, t) = 0, and the equations of

the unperturbed motion follow from (12):

Λ̇1 = Λ̇2 = İ1 = İ2 = 0, (18)

λ̇1 = ω1, λ̇2 = ω2, ϕ̇1 = ω3, ϕ̇2 = ω4,

where

ω1 =
f2m3

Λ3
1

, ω2 =
f2
0m3

r

Λ3
2

, (19)

ω3 =
I1

A1
, ω4 =

I2

A2
.

In this case, the center of mass of the two bodies C
moves along a circular orbit about the fixed center
O with a constant angular velocity ω1, the bodies
Oi move along circular orbits about their center of
mass C with a constant angular velocity ω2, and the
bodies O1 and O2 rotate on their axes with constant
angular velocities ω3 and ω4, normal to their orbital
plane passing through their centers of mass.

It can be shown that, after the intrinsic vibrations
of the viscoelastic spheres have died away, including
only the first term εiui1 in the expansion of ui(ri, t) in
powers of εi in (16), the last equations in (12) reduce
to the two relations

∇uiWi[εiui1 + χiεiu̇i1] (20)

= ρi

{
ω2

2+i[ri − (e3, ri)e3]

+
2∑

k=1

(fki/R
3
k)[3(ξki, ri)ξki − ri]

}
(i = 1, 2),

where

∇uWi[εiu] = −ρir
2
i0ϕ̇

2
i (0)

2(1 + νi)
(21)

×
(

1
1 − 2νi

∇div u + Δu
)

,

and νi is the Poisson coefficient for the matter in the
sphere Oi.

Equation (20) can be written in the form

εi∇uiWi[ui1 + χiu̇i1] (22)

= ρi

[
ω2

2+i(2ri/3 + B0ri) +
2∑

k=1

3(fki/R
3
k)Bkiri

]
,

where

B0 =

⎛
⎜⎜⎜⎝

1/3 0 0

0 1/3 0

0 0 −2/3

⎞
⎟⎟⎟⎠ ,

Bki =
1
6

⎛
⎜⎜⎜⎝

3 cos 2ψki + 1 3 sin 2ψki 0

3 sin 2ψki −3 cos 2ψki + 1 0

0 0 −2

⎞
⎟⎟⎟⎠ .

All the quantities in the right-hand side of (22) are
calculated for the unperturbed motion.

Taking into account the fact that the stresses on
the surfaces of the deformable bodies Oi are zero (i.e.,
the boundary conditions for the functions ui1(ri, t)
have the form σin = 0), with accuracy to within first-
order terms in the small quantity χi, the solution of
(22) has the form

ui(ri, t) ≈ εiui1 = ui11 + ui12 + ui13, (23)

ui11 = ρi/Eiω
2
2+i[−2/3(di1r2

i + di2r
2
i0)

+ ai1(B0ri, ri) + (ai1r2
i + ai2r

2
i0)B0]ri,

ui12 = 3ρi/Ei

2∑
k=1

fkiR
−3
k [ai1(Bkiri, ri)ri

+ (ai2r2
i + ai3r

2
i0)Bkiri],

ui13 = −3ρi/Ei

2∑
k=1

fkiR
−3
k χi(ωk − ω2+i)

×
[
ai1

(
∂Bki

∂ψki
ri, ri

)
ri + (ai2r2

i + ai3r2
i0)

∂Bki

∂ψki
ri

]
,
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where

di1 =
(1 + νi) (1 − 2νi)

10 (1 − νi)
,

di2 = −(3 − νi) (1 − 2νi)
10 (1 − νi)

,

ai1 =
1 + νi

5νi + 7
, ai2 = −(1 + νi) (2 + νi)

5νi + 7
.

The structure of ui(ri, t) is such that the first term
ui11 describes axially symmetrical, elastic deforma-
tion of the sphere Oi, which is compressed by the
action of the centrifugal force associated with the
rotation about the OiZii axis passing through the
center of mass. The second term ui12 characterizes
the deformation of the body Oi due to the external
gravitational fields of the two other bodies. These
fields also give rise to gravitational tides, given by the
third term ui13, which contains the viscosity coeffi-
cient χi and influences the evolution of the motion.

2.3. Simplification and Averaging
of the Equations of Motion

Let us write the canonical equations (12) in more
detail, taking into account the Routh function and the
displacements ui(ri, t) ≈ εui1:

Λ̇k = 3
2∑

i=1

ρifkiR
−3
k (24)

×
∫

Vi

[(
∂ξki

∂λk
, ri

)
(ξki, εiui1)

+ (ξki, ri)
(

∂ξki

∂λk
, εiui1

)]
dvi,

λ̇k = ωk − 3
2∑

i=1

ρifkiR
−4
k ∂Rk/∂Λk (25)

×
∫

Vi

[(ri, εiui1) − 3(ξki, ri)(ξki, εiui1)] dvi,

İi = 3ρi

2∑
k=1

fkiR
−3
k (26)

×
∫

Vi

[(
∂ξki

∂ϕi
, ri

)
(ξki, εiui1)

+ (ξki, ri)
(

∂ξki

∂ϕi
, εiui1

)]
dvi,

ϕ̇i = ω2+i − 2ρi
ω2+i

Ai
(27)

×
∫

Vi

[(ri, εiui1) − (e3, ri)(e3, εiui1)]dvi

− ρi

Ai

[
e3,

∫

Vi

(ri × εiu̇i1)dvi

]
.

Subsituting the resulting variables (23) into the
equations of motion (24)–(27) and calculating the
necessary cumbersome integrals yields the system of
equations of motion

Λ̇k = −18
2∑

i=1

ρ2
i /EiDi2m3−iω

2
k/m (28)

× {χi(m3−i/m)2k−3ω2
k (ωk − ω2+i)

+ ω2
3−k[(−1)2−k0.5 sin τ + χi(ω3−k − ω2+i) cos τ ]},

İi = 18ρ2
i /EiDi2χi[ω4

1 (ω1 − ω2+i) (29)

+ (m3−i/m)2ω4
2 (ω2 − ω2+i)

+ m3−i/mω2
1ω

2
2 (ω1 + ω2 − 2ω2+i) cos τ ],

λ̇k = ωk + 6
2∑

i=1

ρ2
i /EiDi2(m3−i/m)k−1 (30)

× Λ−1
k ω2

k{ω2
2+i + 6(m3−i/m)k−1ω2

k

+ 3(m3−i/m)2−kω2
3−k[0.5 + 1.5 cos τ

+ 3(−1)k−1χi(ω3−k − ω2+i) sin τ ]},

ϕ̇i = ω2+i − 2ρ2
i /EiA

−1
i ω2+i[Di2(ω2

1 (31)

+ m3−i/mω2
2) + 2/3(2Di1 + Di2)ω2

2+i],

where

Di1 =
8πr7

i0 (1 − 2νi) (4 − 3νi)
525 (1 − νi)

,

Di2 =
4πr7

i0 (1 + νi) (9νi + 13)
105 (5νi + 7)

,

τ = 2 (λ2 − λ1) .

The right-hand sides of these equations do not
depend on ϕi. Since the equations (31) depend only
on Λk and Ii, they can be separated from the remain-
ing equations and integrated after the integration of
(28)–(30). If ω1 �= ω2, the angular variable τ is a rapid
variable, and averaging Eqs. (28)–(30) over τ yields
the evolutionary system of equations

Λ̇k = −18ω4
k

2∑
i=1

χiρ
2
i /Ei (32)

× Di2(m3−i/m)2k−2 (ωk − ω2+i) ,

İi = 18χiρ
2
i /EiDi2[ω4

1 (ω1 − ω2+i) (33)
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+ (m3−i/m)2ω4
2 (ω2 − ω2+i)],

λ̇k = ωk + 6Λ−1
k ω2

k (34)

×
2∑

i=1

ρ2
i /EiDi2

(m3−i

m

)k−1

× [ω2
2+i + (m3−i/m)k−1ω2

k

+ 1.5(m3−i/m)2−kω2
3−k].

The right-hand sides of the averaged equations do
not depend on λk, and Eq. (34) can be separated
from (32)–(33) and integrated after the solution of the
independent system (32)–(33).

Since

Λ1 =
(
f2m3ω−1

1

)1/3
,

Λ2 =
(
G2m3

1m
3
2m

−1ω−1
2

)1/3
,

ω3 = I1/A1, ω4 = I2/A2,

the system (32)–(33) can be written in the more
“intuitive” variables ωj (j = 1−4):

ω̇1 = c1ω
16/3
1 [k1(ω1 − ω3) + k2(ω1 − ω4)] , (35)

ω̇2 = c2ω
16/3
2 [k1 (m2/m)2 (ω2 − ω3)

+ k2 (m1/m)2 (ω2 − ω4)],

ω̇3 = c3k1[ω4
1 (ω1 − ω3) + (m2/m)2 ω4

2 (ω2 − ω3)],

ω̇4 = c4k2[ω4
1 (ω1 − ω4) + (m1/m)2 ω4

2 (ω2 − ω4)],

where

ki = χiρ
2
i /EiDi2, c1 = 54f−2/3m−1, (36)

c2 = 54G−2/3m1/3m−1
1 m−1

2 ,

c3 = 18A−1
1 , c4 = 18A−1

2 .

The system (35) has the first integral

3c−1
1 ω

−1/3
1 + 3c−1

2 ω
−1/3
2 (37)

+ c−1
3 ω3 + c−1

4 ω4 = K0.

Thus, we obtained the independent system of first-
order ordinary differential equations (35) to investi-
gate the evolution of the slow variables: the angular
velocity of the orbital motion of the center of mass
of the binary planet (two viscoelastic bodies) about
the gravitating center ω1, the angular velocity of the
planets about their common center of mass ω2, and
the angular rotational velocities of the two bodies
ω3 and ω4. The right-hand sides of these equations
all contain the viscosity coefficient χi through the
coefficients ki. If χi is zero, there is no tidal evolution
of the system.

3. NUMERICAL INTEGRATION
OF THE EQUATIONS OF MOTION

3.1. Input Data

The system (35) was numerically integrated using
the MATLAB R2013a programme package. We took
the Sun to be the fixed gravitating center, the first
body to be the Earth, and the second body to be the
Moon. We took the following data from [26] for the
current epoch:

—G = 6.67428 × 10−11 m3 kg−1 s−2 is the grav-
itational constant,

—f = GMS = 1.32712442099 × 1020 m3/s2 is
the heliocentric gravitatonal constant,

—GME = 3.986004418 × 1014 m3/s2 is the geo-
centric gravitational constant,

—MM/ME = 1.23000371 × 10−2 is the ratio of
the masses of the Moon MM and the Earth ME .

We also took the following quantities at the cur-
rent epoch from [27]:

—the duration of a single orbit of the
Earth–Moon system around the Sun, equal
to a sidereal year, T1 = 365.25636296 d,

(38)

—the duration T2 of a single orbit of the Moon
about the Earth, equal to a sidereal month and
also equal to the rotational period of the Moon
T4; i.e., T2 = T4 = 27.3216616 d,

—the duration of an Earth day T3 = 86400 s,

—the radius of the Moon r20 = 1737.4 km,

—the radius of the Earth r10 = 6371.032 km.

We used the units of measurement

—for mass the solar mass M = MS = 1, (39)

—for length L = 108 m,

—for time T = 31558 149.759744 s, equal to
one year.

In these new units

G = f = 1.321705528131173 × 1011, (40)

m1 = ME = 3.003489616313853 × 10−6,

m2 = MM = 3.694303371012516 × 10−8,

m = 3.040432650023978 × 10−6,

A1 = 4.876471597254109 × 10−9,

A2 = 4.460588721066945 × 10−12,

where Ai are the moments of inertia (13).
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We find from (36) the values

c1 = 6.844923013835195 × 10−1, (41)

c2 = 2.717213270640726 × 105,

c3 = 3.691193446125189 × 109,

c4 = 4.035341773382441 × 1012.

The initial values for ωi were taken to be ωi (0) =
2π/Ti (i = 1–4), where we took Ti from (38). It
follows [in the new units (39)]:

ω1 (0) = ω10 = 6.283185307179586, (42)

ω2 (0) = ω20 = ω4 (0) = ω40 = 83.99831045063988,

ω3 (0) = ω30 = 2.294973413104126 × 103.

We found k1 from the second equation of (35)
under the condition that the radius of the lunar orbit
R2 is increasing at the rate ΔR20 = 0.038 m/yr at the
current epoch [28]:

dω20 = c2k1ω
16/3
20 (m2/m)2 (ω20 − ω30) dt.

Assuming a time interval dt = 1 (in years) yields:

k1 = dω20/
[
c2ω

16/3
20 (m2/m)2 (ω20 − ω30)

]
. (43)

Since R2 = 3

√
Gmω−2

2 , it follows that dR2 =

−2
3

3

√
Gmω−5

2 dω2. Since the time interval dt = 1 is
very small on evolutionary scales, we have to a high
degree of accuracy dR20 = ΔR20. Therefore,

dω20 = −1.5 3

√
G−1m−1ω5

20ΔR20. (44)

Substituting (44) into (43) yields

k1 = − 1
36

3

√
Gm4ω−11

20 m1m
−1
2 (45)

× ΔR20/ (ω20 − ω30)

Calculations using (45) together with the data from
(40) and (42) give

k1 = 7.661095722418093 × 10−24. (46)

We assumed in these calculations ΔR20 =0.038 L−1,
where L is defined in (39).

We found k2 from the condition that dω2/dt =
dω4/dt at the current epoch, since the orbital angular
velocity of the Moon around the Earth is currently
equal to the angular velocity of the Moon about its
center of mass, and their two rates of variation are so
close that we can take them to be equal. We find from
the second and fourth equations of (35)

c2k1ω
16/3
20 (m2/m)2 (ω20 − ω30) (47)

= c4k2ω
4
10 (ω10 − ω40) .

Equation (47) together with the expressions (36) for
c2 and c4 yield

k2 = 3k1A2 (m2/m1) (48)

× 3

√
G−2m−5ω16

20 (ω20 − ω30) /(ω4
10(ω10 − ω40)).

Substituting all the required quantities from (40),
(42), and (46) into (48) yields

k2 = 2.546031240069387 × 10−26. (49)

The value of the integral of the angular momentum
K0 (37) with the coefficients ci (41) and the input
data (42) is equal to (in the new units)

K0 = 42.75292278673111. (50)

The adequateness of the derived coefficients, in
particular k1, and of our model at the current epoch
can be tested by finding the slowing of the Earth’s
rotation ΔT30. The third equation of (35) yields

dω30 = c3k1[ω4
10 (ω10 − ω30) (51)

+ (m2/m)2 ω4
20 (ω20 − ω30)]dt.

Setting dt = 1 in (51) with the data (40)–(42) and
(46) yields

dω30 = −5.604049652131884 × 10−7. (52)

However, T3 = 2π/ω3. Thus,

dT30 = −2πdω30/ω
2
30T (s) (53)

Substituting the value of dω30 from (52) and T from
(39) into (53), we find dT30 = ΔT30 ≈ 0.002 s/100 yr,
in good consistency with astronomical observations
[29].

3.2. Results of Numerical Integration and Analysis

1. Integration into the Past We integrated the sys-
tem (35) with the input data (42) and the coefficients
from (40), (41), (46), and (49) over time into the past
from zero to −5 billion years using the ode45 soft-
ware, designed to solve non-rigid systems of differ-
ential equations, with a relative error RelTol = 10−13

and an absolute error AbsTol = 10−15 (these errors
did not change in the subsequent computations into
the past and future). The following values of the an-
gular variables were obtained for t = −5 billion years:

ω1 = 6.283149581125962, (54)

ω2 = 3.704491483803059,

ω3 = 2.862809504155766 × 103,

ω4 = −3.740751844225381 × 107.

The integral of the angular momentum was equal to

K0 = 42.75292278673117.
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Fig. 1. Plot of the orbital angular velocity of the Moon ω2

in the time interval from −4.5 billion years to zero.
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Fig. 2. Same as Fig. 1 for the time interval from
−100 million years to zero.

We can see that this differs from the value of K0 at
t = 0 given by (50) by 6 × 10−14.

As a test of the computations, the system (35) with
the input data (54) was integrated from −5 billion
years to zero. This yielded the following values at
t = 0 after this reverse computation:

ω1 = 6.283185307179550,

ω2 = 8.399831045067062 × 101,

ω3 = 2.294973413103788 × 103,

ω4 = 8.399831045066902 × 101.
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Fig. 3. Same as Fig. 1 for the time interval from−4.5 mil-
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Fig. 4. Plot of the rotational angular velocity of the Earth
ω3 for the time interval from −4.5 billion years to zero.

These differ from the original input data (42) in the
digits indicated in bold. The computation from zero
to −5 billion years occupied less than a minute on the
Samsung NP510R5E laptop computer used.

Plots of the angular velocities for integration into
the past in the time interval from 0 to −4.5 billion
years are presented in Figs. 1–9. The horizontal
axes plot the time and the vertical axes the angular
variabiles (in the new units).

The orbital angular velocity of the Moon slowly
increases in the time interval from −4.5 billion
years to −100 million years (Fig. 1). It begins
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to grow especially rapidly from −100 million years
(Fig. 1) and from −10 million years (Fig. 2). At
t ≈ −3.852728 × 106 years, ω2 takes on its maximum
value, ≈84.04385, then begins to decrease (Fig. 3),
as is currently observed. The rotational angular
velocity of the Earth ω3 decreases almost linearly from
ω3 ≈ 2.8005 × 103 to the current value (Fig. 4). The
Moon displayed very rapid and reversed axial rotation
4.5 billion years ago. Further, over a very extended
time, the (negative) rotational angular velocity of the
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Moon ω4 gradually increased (Figs. 5, 6). At t ≈
−3.817 million years, it changed sign, and the lunar
axial rotation became prograde (Fig. 7). Figures 7
and 8 show that ω4 begins to approach ω2, with ω4 ≈
83.9133 and ω2 ≈ 84.0295 at t = −2.5 million years.
These two quantities have essentially become equal
at t = −1 million years: ω2 ≈ 84.0108, ω4 ≈ 84.0107.
This represents a 1 : 1 lunar spin–orbital resonance,
when the lunar “day” is equal to a lunar month. This
resonance is preserved in the future, although the
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values of the angular variables change: ω2 = ω4 with
accuracy to within 2–4 digits after the decimal point;
i.e., the phenomenon of libration is observed. At
t ≈ −1.7330 million years, ω4 reaches its maximum
value of 84.017 and then decreases to the current
value (Fig. 8). The value ω1 changes almost linearly,
growing by ≈3.57× 10−5 from t = −5 billion years to
t = 0 (Fig. 9).

2. Integration into the Future Predicting the evo-
lution of the Earth–Moon system into the future is
even more difficult—both because we do not know the
intrinsic time frame, and because the values obtained
could be erroneous due to imperfections in our model.
Therefore, we adopted the distance between the Moon
and the Earth, taken to vary within some reasonable
limits, as an independent variable (we discuss this
question further in Section 5).

We obtained the following system of equations of
motion from (35):

ω′
1 = c1ω

16/3
1 [k1(ω1 − ω3) + k2(ω1 − ω4)] V, (55)

ω′
2 = −1.5(Gm)0.5(R̃2)−2.5(r̃10)−1.5,

ω′
3 = c3k1[ω4

1 (ω1 − ω3) + (m2/m)2 ω4
2 (ω2 − ω3)]V,

ω′
4 = c4k2[ω4

1 (ω1 − ω4) + (m1/m)2 ω4
2 (ω2 − ω4)]V,

where ω′
i= dωi/dR̃2 (i = 1−4), R̃2 is the distance

between the centers of mass of the Earth and Moon
in Earth radii, r̃10 is the Earth radius in the new units,

V = c5R̃
5.5
2 /[k1 (m2/m)2 (ω2 − ω3) (56)

+ k2 (m1/m)2 (ω2 − ω4)],

c5 = (−1/36) G−1.5m−2.5m1m2r̃
6.5
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Fig. 10. Rotational angular velocities of the Earth ω3 (up-
per) and the Moon ω4 = ω2 (lower) as the Moon recedes
from the Earth, as a function of the distance between the
Moon and Earth (in Earth radii).

r̃10 = 0.06371032.

The system (55) with the initial data (42) and
R̃2(t = 0) = 60.390210643874219 in units of the
Earth radius was integrated into the future using
the ode23t software, designed for the computation of
moderately rigid systems. The integration was ceased
when R̃2 = 79.530836093424753, with a report that
it is not possible to achieve the required accuracy
without reducing the integration step below the
lowest allowed value, equal to 2.825503 × 10−13.
Physically, this is due to qualitative variations in the
motion of our system. The rotational angular velocity
of the Earth ω3 decreases, remaining larger than
ω2 = ω4, then approaches these values, indicating
a passage through the resonance point ω2 = ω3 =
ω4 (Fig. 10). The integration was stopped during
this approach. The passage through this resonance
point using the system (35) shows that the distance
between the Moon and the Earth achieves its maxi-
mum at that time, equal to 506 692 km, and further
monotonically decreases. The values of ω2 and ω4

are very close, and appear as a single solid curve in
Fig. 11.

In order to carry the integration of the system (55)
further, we used the system (35) to obtain new data
for R̃2 = 79.530790508689833 (near, but beyond, the
resonance point):

ω1 = 6.283183444133909, (57)
ω2 = 55.579856169772796,
ω3 = 55.128835732831654,
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ω4 = 55.571553739447416.

The corresponding integral of the angular momen-
tum,

K0 = 42.75292278673107,

differs by 4 × 10−14 from the initial value (50). Here,
we can see that ω3 is now smaller than ω2.

The following values of the angular variables were
obtained when R̃2 = 79.530836093424753:

ω1 = 6.283183446070644, (58)
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ω2 = 55.579808373540935,
ω3 = 56.02657531218837,

ω4 = 55.571559310581840.

The corresponding integral of the angular momen-
tum,

K0 = 42.75292278673108,

differs by 3 × 10−14 from the initial value (50). The
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angular velocity ω1 decreased by ≈2 × 10−6 com-
pared to the initial value (42) (Fig. 12).

We integrated the system (55) with the initial data
(58) as R̃2 varied from 79.530790508689833 to unity;
i.e., as the Moon approached the Earth. Figures 13–
17 show plots of the variations of ω2 and ω3. In
Fig. 13, ω3 sharply decreases, reaching its minimum
value ω3 ≈ 30.668 when R̃2 ≈ 78.854. At this time,
ω2 ≈ 56.297. Further, ω3 begins to grow, remaining
smaller than ω2.
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Fig. 16. Same as Fig. 13 as the Moon approaches the
Earth from 20 to 5 Earth radii.

We observe the same picture in Fig. 14. In Fig. 15,
ω2 and ω3 begin to approach each other, and we
have ω2 ≈ 440.7 and ω3 ≈ 440.6 when R̃2 = 20. We
observe here the resonance ω2 : ω3 : ω4 ≈ 1 : 1 : 1,
when the Earth and Moon both keep the same face
toward each other. The angular velocities ω2 and
ω3 grow, but remain equal. This continues roughly
until R̃2 = 10, after which ω2 and ω3 begin to di-
verge and increase, but with ω2 growing appreciably
faster: we have when R̃2 = 5 ω2 ≈ 3525 and ω3 ≈
2352 (Fig. 16), and ω2 ≈ 39 420 and ω3 ≈ 3800 when
R̃2 = 1 (Fig. 17). The Moon rapidly approaches the
Earth, and collides with it when R̃2 = 1. At that time,
K0 = 42.75292278672882, which differs from the ini-
tial value by 229 × 10−14. The angular velocity of the
barycenter of the Earth–Moon system ω1 decreases
by ≈10−5 compared to the initial value (42) (Fig. 18).

Further, to compute the distance of the Earth–
Moon barycenter from the Sun R1, the distance from
the Earth to the Moon R2, and the current periods of
rotation of the Earth and Moon Tt (for the current ro-
tational angular velocity ωt), we applied the following
formulas:

R1 = 3

√
GMω−2

1 L m, R2 = 3

√
Gmω−2

2 L m, (59)

Tt = 2π/ωtT s,

where the values of the constants are given in (39),
(40). We used the resulting plots of the variations of
the angular velocities to construct the tidal evolution
of the system on cosmological time intervals.
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4. TIDAL EVOLUTION
OF THE EARTH–MOON SYSTEM

4.5 billion years ago, the distance between the
Moon and the Earth was three million kilometers.
The Moon then slowly approached the Earth over a
long time interval. 500 million years ago, the Earth–
Moon distance was 1.9 million kilometers. An in-
terval of more rapid variation of the parameters of
motion of the Moon began about 100 million years
ago. The Moon reached its minimum distance to the
Earth about 3.9 million years ago, with this distance
differing from the distance at the current epoch by
about 150 km. The Moon then began to slowly
recede, as is observed today.

An Earth day 4.5 billion years ago was only a few
hours shorter than the current day, 19.667 hr. Our
theory agrees with all other existing theories that the
duration of the day was shorter in the past due to
the effect of tidal friction, and the length of the day
has gradually increased over the course of the Earth’s
evolution. This is confirmed by paleontological data:
the duration of an Earth day was 21.9 hr 620 million
years ago [30].

The Moon displayed very rapid and retrograde ro-
tation 4.5 billion years ago. The rotational velocity of
the Moon then gradually slowed, until the direction of
the rotation was reversed 3.8 million years ago; i.e.,
the rotation direction became the same as at the cur-
rent epoch. The Moon’s rotation rate then began to
increase, and the length of the lunar “day” to shorten.
About 1.733 million years ago, the duration of the
lunar “day” reached a local minimum, differing from
the value for the current epoch by several minutes.
The lunar “day” then began to gradually increase.

The modern history of the Moon begins roughly
one million years ago, when its orbital angular veloc-
ity became essentially equal to its rotational velocity.
The length of the lunar “day” became equal to the
length of a lunar month; i.e., a 1 : 1 resonance was
achieved. The computations indicate that this reso-
nance has been preserved over the entire evolution of
the Moon.

Laser observations indicate that the Moon is cur-
rently receding from the Earth [28]. In the future,
the duration of the Earth day and the lunar month
(lunar day) will smoothly grow, but the Earth day
will remain shorter than the month. At a distance of
about 506 692 km—the maxinum distance between
the Moon and the Earth —they will become compa-
rable and equal to 41.29 d. Further, the Moon will be-
gin to gradually approach the Earth, and the lunar day
will begin to decrease while the Earth day increases.
At an Earth–Moon distance of 502 380 km, the rota-
tion period of the Earth will reach its maximum value
of 74.8 d and the rotational period of the Moon will
be 40.8 d, after which the Earth day will begin to
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Fig. 18. Plot of the angular velocity of the barycenter of
the Earth–Moon system ω1 as the Moon approaches the
Earth from 79.53 to 1 Earth radii.

decrease, remaining longer than a lunar month. The
motion of the Moon back toward the Earth can be
explained by tidal theory [1, 31]: since the month is
shorter than the rotational period of the Earth, the
effect of tidal friction begins to draw the Moon back
toward the Earth. Our results are also supported by
other theories [2, 3]. Goldreich [3] has written that,
since the lunar tidal torque exceeds the solar tidal
torque at a maximum distance of 75 Earth radii, and
since the Moon’s orbital moment of inertia exceeds
the Earth’s, the rotation of the Earth will begin to
be accelerated while the Moon approaches the Earth,
with the Earth day always remaining slightly longer
than the month.

The approach of the Moon toward the Earth and
the increase in the Earth’s rotation rate will mean
that the Earth day and the lunar month approach
each other and decrease sharply. They both become
equal to about 5.21 d at a distance of about 20 Earth
radii. This testifies to synchronization of the motions;
i.e., ω2 ≈ ω3 ≈ ω4, so that the Earth and the Moon
keep their same faces toward each other. However,
although the angular velocities are equal, they are
not constant, and increase. This synchronization is
unstable, and becomes disrupted at distances of less
than 10 Earth radii. As before, ω2 is equal to ω4. The
Moon approaches the Earth, its orbital velocity ap-
preciably exceeds the rotational velocity of the Earth;
ultimately, the Moon passes inside the Roche limit at
a distance of less than three Earth radii, is disrupted,
and collides with the Earth.

During this expansive evolution, the radial dis-
tance of the barycenter of the Earth–Moon slowly
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increases, increasing by ≈ 224 km by the end of the
evolution, compared to its value at t = 0.

5. DISCUSSION AND CONCLUSION

The evolutionary picture described above is hypo-
thetical, and we do not know exactly to what points in
the past and the future it is correct. We have consid-
ered the evolution only of the four angular velocities
characterizing the distance between the barycenter of
the Earth–Moon system and the Sun and between
the Moon and the Earth, and the axial rotations of the
Earth and the Moon. Let us consider the basis for the
applicability of our model.

Cosmological time intervals of several billion years
are rather long for studies of the evolution of the
Earth–Moon system. Therefore, it is unlikely that
all the variables changed in a continuous fashion
during the evolution of this system. It is known
from paleontological data that there have been several
epochs of mass extinction on the Earth in the past.
This suggests that the tilt of the Earth’s axis could
experience jumps, possibly including a reversal of the
poles. This could lead to changes in the direction and
rate of the Earth’s rotation. This means that, however
accurate a model may be, we cannot be confident
of the correctness of our results further than 12 000
years in the past (the epoch of the latest catastrophe,
the worldwide flood). If we consider a time interval of
4.5 billion years, the mean position of the Earth’s axis
has been perpendicular to its orbital plane.

Another theoretical basis is the fact that, in the
motion of the center of mass of a viscoelastic planet in
a central force field, its rotational axis will tend to be-
come oriented perpendicular to its orbital plane [20].
In relation to this reasoning, the Moon’s rotation axis
is also assumed to be perpendicular to the plane of its
orbit. Since the Earth’s equator could unpredictably
change its position, the angle between the Moon’s
orbital plane and the Earth’s equator could also vary
unpredictably. The mean value of this angle is taken
to be zero.

It is known that the limiting motion of the center
of mass of a viscoelastic planet in a central force
field is circular [19]. Therefore, in our model, the
barycenter of the Earth–Moon system moves around
the Sun in a quasi-circular orbit over cosmological
time intervals, and the Moon likewise moves about
the Earth in a quasi-circular orbit; i.e., along winding
or unwinding spirals.

On the one hand, our celestial mechanical model
is simple in the sense that it has relatively few pa-
rameters, due to the difficulty of the problem that
we wish to solve. On the other hand, it can be
considered complex. A Kelvin–Voigt model has been
adopted for viscous forces. The bodies are spheres in

their unperturbed motion, and compressed along their
rotational axes in their perturbed motion, with their
surfaces taking on complex shapes due to the action
of viscous, dissipative forces. Naturally, the shapes of
the bodies are continually changing as the parameters
of their motion change. The influence of the oceans
on the surface of the Earth has not been taken into
account at all. The study of Krasinsky [32] casts
doubt on the hypothesis that the main contribution
to the tidal dissipation of the Earth is made by the
oceans.

Let us now consider the time scales for the evo-
lution of the Earth and Moon. The coefficients k1
and k2 from (36), which appear in the equations of
motion, are integrated coefficients characterizing the
viscoelastic properties of the Earth and Moon. We
calculated their values at the current epoch, based
on available astronomical data. However, their values
will change with time in reality, and in ways that are
not known. This could not only disrupt the chronol-
ogy, but also provide the main reason for discrepan-
cies between the model and physical reality. In other
theories, lack of knowledge of the true variations in
the dissipative function Q associated with the time-
dependent delay angle, the relative angular velocity
of the rotations of celestial bodies, and other factors
have made it necessary to assume that the delay angle
is constant in a first approximation. As was shown
in [2], the epoch of the maximally close approach of
the Moon to the Earth occurred 1.79 billion years ago,
when this distance was 2.72 Earth radii. This means
that the Moon was inside the Roche lobe, and subject
to disruption. Such a short “lifetime” for the Moon
is in contradiction with available paleontological data
[33] and the results of lunar expeditions. It is noted
in the later work of Kaula [34] concerning dynamical
aspects of the origin of the Moon that, if the rate of
recession of the Moon from the Earth has been con-
stant throughout its history, the Moon should have
been dangerously close to the Earth only 1.75 billion
years ago. Krasinsky [6] suggests that Q must have
grown with time in the past.

Integrating into the past, we restricted our analy-
sis based on available data on the ages of the Earth
and Moon, 4.5 billion years. In this case, we do not
encounter the problem of the small time scale for the
evolution of the lunar orbit, which the theories indi-
cated above cannot resolve. The minimum distance
between the Moon and Earth is only about 150 km
smaller than their current separation. It follows from
the evolution of our system that the origin of the Moon
may not be related to the Earth, and it is quite likely
that it formed in another region of circum-solar space.

For this reason, the hypothesis of Darwin [35]
that the Moon separated off from the Earth and the
giant-impact hypothesis [36] are not supported by
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our results. A number of other theories in which the
age of the Moon is substantially less than 4.5 billion
years are likewise not supported. We have studied
the evolution of the rotational motion of the Moon
for the first time here. Our results suggest that the
axial rotation of the Moon was initially opposite to
its current direction. The current character of the
Moon’s motion developed several million years ago,
when its rotation became prograde, it approached the
Earth to a minimum distance, and then began to
recede, entering into a 1 : 1 resonance at subsequent
times.

Integrating the equations of motion into the future,
we encountered an unrealistic time scale (due to the
above comments concerning the coefficients k1 and
k2), although the qualitative run of events is sup-
ported by theory [2, 3]. Based on this, we can express
some events in terms of others. What should we be
guided by in this case? Our theory yields a maxi-
mum distance between the Moon and Earth of 79.53,
the theory of MacDonald [2] 72.5, and the theory of
Goldreich [3] 75 Earth radii. These values are similar
and realistic. Therefore, we expressed the remaining
three variables in terms of the distance between the
Moon and Earth, and represented the evolutionary
picture into the future as a function of the radius of the
lunar orbit and the recession from or approach toward
the Earth. After reaching its maximum separation of
506 662 km, the Moon begins to approach the Earth.
In the penultimate stage of the evolution, an unstable
1 : 1 : 1 synchronous resonance with the rotation
of the Earth is added to the spin–orbit resonance of
the Moon; this is then subsequently disrupted due
to the sharp increase in the orbital angular velocity
of the Moon. In the final stage, there is a close
approach of the Moon toward the Earth ending with
a collision. The same tidal-evolution mechanism is
moving Phobos closer to Mars. Its orbital angular
velocity, which is synchronized with its rotation, ex-
ceeds the rotational angular velocity of Mars by nearly
a factor of three. This is what is predicted by our
theory in the final stage of approach of the Moon
and the Earth. According to the computations of
Efroimsky and Lainey [8], Phobos will impact Mars
in 40–43 million years. Deimos is currently receding
from Mars, and it would be interesting to try to predict
its evolution into the future.

In contrast to all the theories referred to above, we
have considered the evolution not only of the orbital
motion of the Moon, but also the evolution of the
Earth–Moon barycenter. Tidal evolution led to an
increase in the barycenter distance by 224 km. Based
on an analysis of more than 635 000 observations
of planets and spacecraft, primarily radio-technical
data (1961–2010), Pit’eva and Pie’ev [37] derived
the rate of variation of the heliocentric gravitational

constant. Their results indicate that the barycenter of
the Earth–Moon system is receding from the Sun at
an average rate of 1 cm/year. Tidal evolution clearly
makes a significant contribution to this process.

Thus, we conclude that our celestial-mechanical
model with relatively few parameters is able to sci-
entifically describe the tidal evolution of the Earth–
Moon system over cosmological time intervals in a
first approximation. The model does not include
many physical processes, but nevertheless can pro-
vide qualitatively important results without invoking
other complex theories. The most debatable issue
is the origin of the Moon, which currently remains
unresolved. The main conclusions given by our model
are supported by astronomical observations, paleon-
tological data, and studies based on other theories.
We have also presented the possible evolution of the
rotational motion of the Moon for the first time.

REFERENCES
1. G. H. Darwin, The Tides and Kindred Phenom-

ena in the Solar System (CreateSpace Independent
Publishing Platform, 2013; Nauka, Moscow, 1965).

2. G. J. F. MacDonald, Rev. Geophys. 2, 467 (1964).
3. P. Goldreich, Rev. Geophys. 4, 411 (1966).
4. V. V. Beletskii, Preprint Inst. Prikl. Matem. AN SSSR

No. 43 (IPM AN SSSR, Moscow, 1978).
5. D. J. Webb, Geophys. J. R. Astron. Soc. 70, 261

(1982).
6. G. A. Krasinsky, Celest. Mech. Dyn. Astron. 84, 27

(2002).
7. J. Touma and J. Wisdom, Astron. J. 108, 1943 (1994).
8. M. Efroimsky and V. Lainey, J. Geophys. Res.—

Planets 112, E12003 (2007).
9. F. Mignard, Moon Planets 20, 301 (1979).

10. F. Mignard, Moon Planets 23, 185 (1980).
11. S. Ferraz-Mello, A. Rodriguez, and H. Hussmann,

Celest. Mech. Dyn. Astron. 101, 171 (2008).
12. M. Efroimsky and J. G. Williams, Celest. Mech. Dyn.

Astron. 104, 257 (2009).
13. M. Efroimsky and V. V. Makarov, Astrophys. J. 764,

id. 26 (2013).
14. V. A. Churkin. Preprint Inst. Prikl. Astron. RAN

No. 121 (IPA RAN, St.-Petersburg, 1998).
15. V. A. Churkin, Tr. Inst. Prikl. Astron. RAN, No. 4, 187

(1999).
16. V. A. Churkin, Tr. Inst. Prikl. Astron. RAN, No. 5, 225

(2000).
17. M. Efroimsky, Celest. Mech. Dynam. Astron. 112,

283 (2012).
18. V. G. Vil’ke, Analytical Mechanics of Systems

with an Infinite Number of Degrees of Freedom
(Mekhmat MGU, Moscow, 1997) [in Russian].

19. V. G. Vil’ke, Prikl. Mat. Mekh. 44, 395 (1980).
20. V. G. Vil’ke, S. A. Kopylov, and Yu. G. Markov, Prikl.

Mat. Mekh. 49, 25 (1985).
21. Yu. G. Markov and I. S. Minyaev, Astron. Vestn. 28,

59 (1994).

ASTRONOMY REPORTS Vol. 59 No. 1 2015



TIDAL EVOLUTION OF THE EARTH–MOON SYSTEM 87

22. V. G. Vil’ke and A. V. Shatina, Kosmich. Issled. 39,
316 (2001).

23. A. A. Zlenko, The Equations of Motion of Two
Viscoelastic Spheres in the Central Force Field in
the Double-Planet Problem (Mosk. Avtodorozhn.
Inst. (Gos. Tekh. Univ.), Moscow, 2009) [in Russian];
Available from VINITI RAN No. 581-V2009 (2009).

24. A. A. Zlenko, Kosmich. Issled. 49, 569 (2011).
25. A. A. Zlenko, Kosmich. Issled. 50, 490 (2012).
26. B. Luzum, N. Capitaine, A. Fienda, W. Folkner,

T. Fukushima, J. Hilton, C. Hohenkerk, G. Krasinsky,
G. Petit, E. Pitjeva, M. Soffel, and P. Wallace, Celest.
Mech. Dyn. Astron. 110, 293 (2011).

27. Astronomical Year-Book 2012 (Nauka, St. Peters-
burg, 2011) [in Russian].

28. J. G. Williams and D. L. Boggs, in Proceedings of
the 16th International Workshop on Laser Rang-
ing, Ed. by S. Schillak (Space Res. Centre, Polish
Acad. Sci., Warsaw, 2009), p. 101.

29. F. R. Stefenson and L. V. Morrison, Phil. Trans.
R. Soc. A 351, 165 (1995).

30. G. E. Williams, Geophys. Res. Lett. 29, 421 (1997).
31. C. D. Murray and S. F. Dermott, Solar System Dy-

namics (Cambridge Univ. Press, Cambridge, 2000;
Fizmatlit, Moscow, 2010).

32. G. A. Krasinsky, Soobshch. Inst. Prikl. Astron. RAN
148 (2002).

33. M. R. Walter, Science 170, 1331 (1970).
34. W. M. Kaula, Rev. Geophys. Space 9, 217 (1971).
35. G. H. Darvin, Phil. Trans. R. Soc. London 171, 713

(1880).
36. W. K. Hartman and D. R. Davis, Icarus 24, 504

(1975).
37. E. V. Pitjeva and N. P. Pitjev, Solar Syst. Res. 46, 78

(2012).

Translated by D. Gabuzda

ASTRONOMY REPORTS Vol. 59 No. 1 2015


