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Abstract—The paper presents the experimental results of an acoustic impedance study of low-frequency (105 Hz)
shear elasticity of a colloidal SiO2 suspension of differently sized particles in polyethylene siloxane liquid
PES-2. The agreement of the experimental results obtained by different variants of the acoustic resonance method
confirms that the low-frequency shear elasticity of colloidal nanoparticle suspensions is a bulk property.
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Studies [1, 2] describe the acoustic impedance
method for measuring the low-frequency (105 Hz)
shear elasticity of liquids. At one end of the horizontal
surface of a rectangular prism of piezoelectric quartz,
a layer of the studied liquid is applied, which is covered
with a hard cover-plate. During tangential oscillations
of the piezoelectric quartz, the liquid layer undergoes
shear deformations and standing shear waves are occur.
As the thickness of the liquid interlayer changes, so do the
resonance frequency and resonance curve width of the
piezoelectric quartz. Shifts of the resonant frequency of
the piezoelectric crystal were obtained from acoustic res-
onance method theory [1–3]:

(1)

(2)

where G' and G" are the real and imaginary shear mod-
uli, H is the thickness of the liquid layer, M is the mass
of the piezoelectric quartz, S is the contact area
between the liquid and piezoelectric quartz, and β and
α are the real and imaginary components of the com-
plex wavenumber. Figure 1 shows the theoretical
dependences of the real Δf' and imaginary Δf" fre-
quency shifts on the thickness of the liquid layer for a
liquid with G'= 3 × 104 Pa and tanθ = 0.3 calculated
by these formulas [1, 2].

Clearly, with an increase in the thickness of the liquid
interlayer, frequency shifts yield damped oscillations.
When the shear wave has completely attenuated, the fre-
quency shifts take the limiting values  and .

From analysis of expressions (1) and (2), three
methods follow for determining the low-frequency
shear elasticity of liquids [1–8]. The first method is real-
ized for small liquid layer thicknesses, when H  λ. In
this case, the frequency shifts exhibit a linear depen-
dence on the inverse thickness of the liquid layer 1/H.
The second method is based on determination of G'
from the length of the shear wave, which is determined
from the attenuation maxima. The third method, sim-
ilar to Mason’s well-known impedance method [9],
measures the limiting values of the frequency shifts to
which they tend with increasing liquid layer thickness.
Since for H → ∞ the shear wave is completely attenu-
ated, the need for the cover-plate vanishes and the
entire horizontal surface of the piezoelectric quartz
can be loaded with a thick layer of the studied f luid.

In this case, from expression (1) for G' it is possible
to obtain the following calculation formula [1–3]:

(3)

where S is the area of the entire horizontal surface of
the piezoelectric quartz. From expression (3), as well
as from Fig. 1, it is clear that in the presence of shear
elasticity in liquids, Δf" should be greater than Δf ′. All
three methods for determining low-frequency shear
elasticity were used with conventional and polymer
liquids as an example, which gave quite consistent
results [1–8].
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Fig. 2. Profiles of resulting liquid layer: 1, piezoelectric
quartz; 2, liquid.
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Fig. 1. Theoretical dependences of real (1) and imaginary
(2) frequency shifts on liquid layer thickness. 
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Paper [10] studied the low-frequency shear elastic-
ity of colloidal suspensions of SiO2 nanoparticles in
polyethylsiloxane liquid PES-2 by the acoustic reso-
nance method for thicknesses H much shorter than
the wavelength λ. In these experiments, the layer
thickness of the studied suspensions varied within a
few microns. Therefore, the presence of low-fre-
quency shear elasticity in the studied nanosuspensions
can be attributed to the special properties of the
boundary layers under the action of the field of surface
forces.

This paper presents the experimental results of a
study of shear elasticity of suspensions of SiO2
nanoparticles in PES-2 by the impedance method for
Table 1. Values of shear moduli of suspension of SiO2/PES-2

SiO2/PES-2 G' × 10–5 Pа, for H  λ [10]

20 nm 0.09

50 nm 0.17

100 nm 1.08

!

H  λ. In the experiments, a piezoelectric quartz of X-
18.5° cut was used, with a resonant frequency of 73.2 kHz,
a mass of 6.82 g, and dimensions of 35 × 12 × 6 mm.
Colloidal SiO2 nanosuspensions in PES-2 were
obtained by prolonged dispersion using ultrasonic
methods [10].

On the thoroughly cleaned horizontal surface of
the piezoelectric quartz, a thick layer of the suspension
was applied, in which the shear wave is completely
attenuated (Fig. 2). The limiting imaginary  and

real frequency shifts  were then measured. The lim-
iting value of the real frequency shift  can be
neglected, since its contribution is negligible, not
exceeding 3% [1–3].

For the suspension studied, 0.5% by mass fraction
of SiO2 nanoparticles in polyethylsiloxane liquid PES-
2 with dimensions of 100 nm, the imaginary shift limit
value  amounted to 8 Hz. Calculation according to
formula (3) for the real shear modulus G' gives a value
of 1.06 × 105 Pa. The results obtained for other suspen-
sions with different sizes and concentrations c =
0.5 wt % are given in Table 1. The density of these sus-
pensions is 0.94 g/cm3.

Comparison of the results obtained with small liq-
uid layer thicknesses H  λ [10] and the results
obtained by the impedance method for H  λ demon-
strates their good agreement. This confirms that the
low-frequency (105 Hz) shear elasticity of colloidal
nanosuspensions is a bulk property. The low-fre-
quency viscoelastic behavior of low-molecular-weight
liquids is also discussed by other researchers [11–14].

Nanosuspensions are used in various nanotechnol-
ogies, in particular, the development of drugs, intensi-
fication of heat transfer, in of new functional materi-
als, lubricants, paints, etc. The use of various rheolog-
ical liquid media in many technological processes is
responsible for the great interest in studying their
mechanical properties [15–19].
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 with different nanoparticle sizes.

tanθ G ' × 10–5 Pа, for H  λ

0.73 0.08

0.18 0.15

0.10 1.06
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