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Abstract—The concept of a dynamically self-similar structure (dynamic fractal) is introduced, consisting in
the similarity of the dynamic parameters of the cell generatrices. Elastic wave propagation in unbranched
dynamically self-similar structures is investigated. It is shown that such structures are equivalent in frequency
to a periodic structure with additional fixation; however, the nature of wave propagation in them significantly
differs. A dynamic fractal can feature both attenuated waves and waves that increase along the length of the
structure; the intensity of wave attenuation is stronger than in a periodic structure.
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INTRODUCTION

Currently, there is increasing interest in the wave
properties of periodic structures consisting of complex
cells. Such structures include, in particular, metama-
terials possessing unusual wave properties not found in
nature, such as acoustic invisibility [1, 2]. Therefore,
the study of wave propagation in such media is of par-
amount importance.

However, the class of periodic structures can be
significantly expanded and supplemented with a class
of self-similar fractal structures. According to B. Man-
delbrot [3], distinctive features of fractals are “self-
similarity, invariance with respect to zooming or scaling,
and invariance with multiplicative changes in scale. In
short, a self-similar object appears unchanged after both
increasing and decreasing its size”.

Mandelbrot’s well-known geometric fractals [3, 4]
describe structures that are similar in their geometric
parameters. Their distinguishing feature is nonintegral
dimensionality. Fractals can generally be considered
as systemically relating local and global orders. It is
this class of structures that prevails in nature and tech-
nology. Works by L.M. Lyamshev, V.V. Zosimov, and
I.A. Urusovsky are devoted to the study of the wave
and acoustic properties of fractal structures [5—7]. In
these studies, elastic oscillations and waves in materi-
als with a geometrically fractal structure were studied
and their dispersion equations were found. Oscilla-
tions of fractal clusters are also studied, which are
characterized by dependence of elastic properties on
the scale of strain.

Nevertheless, the dynamic properties of a system
determine its elastic—inertial parameters. Therefore, it
is of interest to study the wave properties of structures
consisting of cells similar in dynamic parameters, not
geometric. For this, it is necessary to introduce the
dynamic fractal concept, in contrast to Mandelbrot’s
geometric fractals. To this end, scaling of the system
parameters that determine its dynamic properties is
logically required, i.e., the elastic and inertial parame-
ters [8, 9].

SELF-SIMILAR STRUCTURE
AND MATERIALS IN MECHANICS:
DYNAMIC FRACTALS

First, let us consider the simplest discrete
unbranched one-dimensional structure consisting of
masses connected by elastic elements.

Definition. We call structures in which the elastic
and inertial parameters change with the same scale y
for each cell of the structure (or subsystem) dynami-
cally self-similar (dynamic fractal):

Ks = YKS—]’ Js = YJs—l’ (1)

K, is the stiffness and J, is the inertial parameter of the
sth cell. This definition of a dynamic fractal is also true
for structures in which the number of degrees of free-
dom of the cell generatrices is greater than unity.
Moreover, each coordinate can have its own scaling
factors (point 5).
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(b)

Fig. 1. (a) Dynamically self-similar rod structure with concentrated masses, (b) equivalent periodic structure with same eigen-
frequencies, (c) partial subsystem of dynamically self-similar structure.

A necessary consequence of conditions (1) is the
equality of the partial frequencies for all cell gener-
atrices:

Vi = (Ks + Ks—l)/']s = V§+l = (Ks+l + Ks)/']sﬂ

= const = v’ (s =1....N).

(2)

The condition for equality of partial frequencies (2)
is the condition of the dynamic self-similarity of struc-
ture (dynamic fractal).

We now consider an infinite discrete one-dimen-
sional chain in which the sth cell consists of a concen-
trated mass m, and springs with stiffness k,. Let the
elastic and inertial parameters change with the same
scale y from cell to cell (Fig. 1a). Then, the stiffness
and mass for the element s + 1 is

kx+1 = Yks’ me, = Ym. (3)

Therefore, such a structure is a dynamic fractal.
The elastic coefficients needed to determine the
partial frequencies of the cell generatrix are found with
fixed cell boundaries (Fig. 1c). (If compliance coeffi-
cients are used in the equations, then the partial fre-

quencies are determined for free cell boundaries.) For
this chain

Vg = (ks—l + ks)/ms .

Condition (2) for the equality of the partial frequen-
cies for each cell is fulfilled:

V? = (ksfl + ks)/ms = VA2“+1
= (k, + k) /myy = V* = const.

Comment. Note that conditions (2) for a dynamic
fractal do not always coincide with the geometric sim-
ilarity (scaling) conditions used in Mandelbrot geo-
metric fractals. Indeed, let the elastic elements simu-
late longitudinal stiffness of a rod equal to Ef,//,, and
the inertial element be represented as a stiff ball of

radius R (Fig. la), i.e., m; = 4anf/3 (here F; is the
cross-sectional area of the sth cell; / is its length). The
geometric scaling conditions are F, ,,= V*F,, [, = vl
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R, =7YR,. Obviously, in this case, conditions (2) for a
dynamic fractal are not satisfied:

> 3 EFyY”

2
vy
T = — # const.

4V LR Y
The inverse is also true: conditions (1), (2) can be

satisfied without geometric similarity of all elements,

only some of them. Let, e.g.,

R, =v"R

2
Fs+1 =Y Fs» ls+1 = ’Yls, s
Despite the fact that the radius of the ball varies
with a different similarity coefficient, y'/3, conditions (2)
are satisfied:

2 _ EF.,
" ol 4nR 3
2
= i% = v? = const.
ol (v R))

Thus, fulfillment of conditions (1), (2) for a
dynamic fractal requires different scaling of the geo-
metric parameters, which is a certain generalization of
a geometric fractal.

FREQUENCY EQUIVALENCE
OF DYNAMIC-SELF-SIMILAR
AND PERIODIC STRUCTURES:
DISPERSION EQUATION

The equation of the dynamically self-similar dis-
crete structure shown in Fig. 1a can be written as finite
difference equations. Thus, the equation for the s + 1st
cell is

_ksxs + (_’/nerl(D2 + ks(l + Y))xsﬂ - Yksxs+2 =0. (4)

Where X' = [x1, %5, X3...X,, ], X, + | is the displacement
of the s + 1st mass and w is natural oscillation fre-
quency.

Equation (4) is the general form of the equation of
a discrete dynamically self-similar chain structure
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Fig. 2. (a) Dispersion curve for y= 0.5: @y = 0.41v, ®* = 2.41v; (b) dispersion surface as function of similarity coefficient.

(Fig. 1). Fory< 1, we obtain a structure with decreasing
parameters along the length, and fory > 1, increasing.

We replace the variables in (4):

x =%/ (V)" 5)

As a result, we find the equation for the s + 1st cell
in new variables:

kx/\/?+( —myw +k(1+Y)j ol
Y
_ksis+2/\/?:0

Assuming k, = k;y’, m; = myy’, we see that this
equation is valid for any number s, since the ratio of its
coefficients does not depend on s. It is convenient to
write it in a form that describes the sth cell:

—kl)zs,l/& + (—ml(Dz + Mj )’ES

Y

— kFon /v = 0.

Equation (6) describes the periodic structure in
Fig. 1b. The partial frequencies of each mass

(6)

= (ko + k) / my, are identical by virtue of condition

(3), the rigidity between the masses is k; / \/?(, but at the
same time there is additional fixation of the masses
w2 kY 2k _ k(=Y

Y Jy Y
value of the elastic elements in the structure in Fig. 1b
is the same for each cell and is determined only by the

similarity coefficient.! In the range 0.16 <Y< 6.76, the

. Therefore, the

! Generally speaking, we obtain a family of equivalent periodic
structures with proportional parameters and the same frequency
spectrum

stiffness of the additional fixation is less than the stiff-
ness connecting the masses: k* < k; / \/:y
The partial solution to Eq. (6) has the form [10, 11]

X, = Cexp(i(us — 1)), @)

o is the eigenfrequency and W is the wave parameter
characterizing the phase change upon transition from
element s to s + 1. Here @ = «/, where « is the wave-
number and / is the cell length.

Substituting (7) into (6), we find the dispersion
equation for the periodic structure in Fig. 1b:

U+Y)_ ok

—for real L —m1w2 + cosu =0,
Y Y
ml/k1 = m, [k, =v* = const;
—for purely imaginary w=iu'"
_}/nl(D2 + M — 2&01’1“' = 0
Y Y

Figure 2a shows the dispersion curve for y = 0.5
(wy = 0.41v, o* = 2.41v); Fig. 2b, the dispersion sur-
face as a function of parameter 7.

The linear transformation of coordinates (5) does
not change the frequency properties; therefore, the
dynamic fractal in Fig. 1a and the periodic structure in
Fig. 1b have the same frequencies. The periodic struc-
ture is a mechanical bandpass filter with a harmonic
signal passband: m, < ® < ®* (Fig. 2a), where

wp =V’ —<1 — \/?)2 , 0 =V —(1 i &)2 . (8)
Y Y

The passband is Aw = w* — w,. Here,

—for a chain decreasing in length, as follows from
(8), Aw = 2v, i.e., the passband width is independent
of parameter y and coincides with the that of the peri-
odic structure without additional fixation. However,

ACOUSTICAL PHYSICS Vol. 66
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Table 1. Boundaryfrequencies of passbands for various coefficients y
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v>1 v<1 Y= 1 (periodic chain)
r 1.2 1.5 2.0 4.0 0.2 0.5 0.8 1
(1)0/\’ 0.1 0.17 0.3 0.5 1.24 0.41 0.1 0
co?;/v 1.91 1.82 1.70 1.5 3.24 2.41 2.11 2

the boundary frequencies themselves, and therefore
the location of the passband, depend on ;

—for a chain increasing in length, Aw = w* — |(o0| =
2v/ J;, i.e., the passband width is inversely propor-

tional to ﬁ and o* + w, = 2v. For sufficiently large v,
the passband in the limit becomes very narrow and is
located near the partial frequency v; i.e., the system is
tuned to only one specific frequency.

These results are confirmed by Table 1, which pres-
ents the boundary frequencies of the passband
depending on coefficient y. It follows from the table
that in a chain decreasing in length (y < 1), the lower
passband boundary decreases with increasing y and
tends to 0, as in a periodic chain without fixation. In a
chain increasing in length (y > 1), conversely, as y
increases, the lower passband boundary increases.

However, the difference in the squares of the cutoff
frequencies does not depend on the type of chain
4k, > 4

ml\/§ \/?

where Aw®, is proportional to the difference in the
kinetic energy of the system in the passband.

Transformation of coordinates (5) is the transfor-
mation of quadratic forms describing the potential and
kinetic energy: x' Kx = X' KX, X' Mx = X' Mx. There-
fore, the dynamic fractal and corresponding periodic
structure are equivalent in energy.

)
Ao, =

WAVE PROPAGATION IN DYNAMICALLY
SELF-SIMILAR STRUCTURES

The nature of wave propagation in periodic and
dynamically self-similar structures (dynamic fractal)
is significantly different. Therefore, it is of interest to
study the wave behavior of a dynamic fractal in and
outside of the passband. The wave in such a structure,
as can be seen from coordinate transformation (5), is
obtained from the corresponding wave in the periodic
structure in Fig. 1b by proportionally changing the

oscillation amplitude of each section by 1/ \/§ times.
Figure 3 shows the higher natural oscillation form of a
dynamic fractal with fixed ends. For the periodic
structure in Fig. 1b, this is known to be a sinusoid in
which adjacent masses are in antiphase. In a dynamic
fractal (Fig. 1a), the oscillation amplitude is obtained
by increasing (for y < 1) the corresponding amplitude

of the periodic structure by 1/ \/:/ times (or decreasing
amplitude for y > 1). Therefore, we obtain a wave with
constantly increasing (decreasing) amplitudes
(Figs. 3a, 3b). The envelope of this wave is the expo-
nent. Thus, in a dynamic fractal with increasing length
parameters in the passband, the level of oscillations
decreases, while in a fractal with decreasing parame-
ters, conversely, significant gain of the input signal can
be achieved.

Unexpected wave properties acquire dynamic fractals
in the opacity band. For a periodic structure (y = 1), in

Fig. 3. Natural oscillation forms of dynamically self-similar structure for 0y < ® < ®*: (a), (b) chain with parameters decreasing
with length, ¥ < 1; (c), (d) chain with parameters increasing with length, y > 1.

ACOUSTICAL PHYSICS Vol.66 No.3 2020



254

these bands, as is known, exponential attenuation of the
harmonic signal occurs along the chain [11]:

X, = A-1'e™, chu=(1-0’/2v).

However, in dynamic fractals, not only attenuation
is possible, but also amplification of the harmonic sig-
nal and even transformation of the opacity band into a
passband. Indeed, the solution for the dynamic frac-
tal, taking into account the transformation of coordi-
nates (5), has the form

%, = Cexp(i (us — (m))/ (Vv)
= Cexp(i(u + ia)s — wt), ia= —%ln Y.

Therefore, the wavenumber is complex and the
wave is inhomogeneous. Figure 2b can be considered
as a dispersion surface in the complex plane, assuming
v = exp(2a). In this case, the phase velocity becomes
a complex quantity c,, = 0/K = @/I(L + o).

For a dynamic fractal with increasing parameters
(y> 1) (Fig. 3b), both in and outside of the passband
of the periodic structure, only an increase in the atten-

uvation rate equal to U + Jo is possible:
X = A(-1) exp(- (utia)s).
However, a dynamic fractal with decreasing

parameters has the following features: in such a system
v < 1; therefore a < 0, which means essentially nega-
tive damping. In this case, three different situations
arise:

—if'|o > u, then the opacity band disappears and
waves appear in it, the amplitude of which increases
along the chain with speed exp((|o] — W)s),

—if o] < W, then attenuated waves arise; the atten-

uation rate is XS* = A(-1)" exp(—(u —lal)s),

—if|of = > 1, then frequency Q of transparency of
the harmonic signal appears.

Table 2 shows the values of Q for a chain with
decreasing parameters in the opacity bands for various
scale factors Y= 0.2, 0.5, 0.8.

As calculations show, in the first opacity band, 0 <
o < o, and for all values y the inequality |o > . There-
fore, this reject opacity band for the dynamic fractal
disappears and the oscillation amplitude increases in
proportional to exp(|of — W), while W decreases when
approaching the boundary frequency of interval ®,.

In the second opacity band (®w > @*) an excitation
frequency C exists that is unique for each value 7y for
which |of = p > 1. This is the frequency of the har-
monic signal. Then, for ®* < o < Q, the coefficient
|of > W. In this range, the passband also disappears and
waves appear that increase along the length of the
structure with intensity exp(jo — w). However, as fol-
lows from Table 1, this range is very small, the fre-
quencies Q are located quite close to the boundary in

BANAKH

opacity ranges, and this range decreases with an
increase in Y < 1. For > €, the opacity band remains,
but the attenuation intensity in it is equal to exp(U — |o/]),
which is less than in the periodic system y = 1.

Webster’s Equation. We note a certain analogy with
the acoustic wave propagation in waveguides of vari-
able cross section, which are described by Webster’s
equation [12]:

19 (g22) = L0p
S(x)0x (S(X) ax) ot ©)

Let the cross-sectional area change exponentially
S(x) = S, exp(Bx). Depending on the sign of 3, we
obtain a structure decreasing or increasing in length.
From (9), we find

s, 010

ox ox’ cor
Thus, a dissipative equation was obtained. The dis-
persion equation

o - 2B = K’c.
The phase velocity in this case depends on fre-
quency and, in addition, is complex [13]. Depending

on the sign of B, there will be either damped or
increasing oscillations:

-1/2
cph=9=c(1+2z‘§) .
% ()

The acoustic wave propagation in more complex
systems with variable acoustic wall conductivity was
studied in [14, 15]. It has been proven that the velocity
of the wave can decrease and even vanish not reaching
the edge of tube. The wave equation in this case is the
generalized Webster equation.

DYNAMIC FRACTALS
WITH MULTIDIMENSIONAL CELLS

In the preceding sections, one-dimensional chain
structures were considered with cells having only one
degree of freedom. However, in exactly the same way,
we can investigate unbranched structures with multi-
dimensional cells. As an example, let us consider
propagation of bending waves in dynamically self-sim-
ilar step section beam with disks attached (Fig. 4). We
examine the waves in the vertical plane, taking into
account the inertia of rotation of the cross section. We
assume sectors of the beams are weightless; the inertial
elements of the disks are mass m, and inertia J;.. Move-
ment of the sth node is described by a two-dimen-
sional vector X, with coordinates [y,0], where y is
node motion and 0 is the angle of rotation. We use a
finite element model of the beam; in this case, each
element of the beam system will be represented as one
finite element. Such idealization is permissible for the

ACOUSTICAL PHYSICS  Vol. 66
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Fig. 4. Dynamically self-similar beam with step section.

low-frequency range if the length of the section does
not exceed one-quarter of the wavelength [8].

The stiffness matrix of a planar beam finite element
has the form [8, 16]

12E1 6EI
K:|:K” K12:|‘ K = l3 l2
K, Ky | "' | 6EI 4EI|
o
[ 12EI _6EI
3 2
K,=Ky,=| L/
12 21 6EI 2EI > (10)
L2 /
12EI _6EI ]
K,=| ” Plomk.T T=|
2= _6EI 4EI = 1t = 1l
S

K ; are the blocks of stiffness and inertia matrices of
the finite element for the first and second end faces of
the beam, respectively. The equation for the sth node
of a beam of variable section is

KX, + (K + Kp)x, + Ky x, =P (11)
Let the bending stiffness for each section 12E1 / L
vary with the similarity coefficient y. A fractal beam
with geometric self-similarity satisfies this condition if
the radius of the section and its length vary in the same

y ratio. Then, 12EL /1’ = DEI_v'[vE, =
YI2EL_ [I2,, 4EL I, =v* 4EI /I,

Each block of the stiffness matrix K, for the sector s
can be written as

K

if,s

Y
2 2. .
= FS/ Kij,lrS/ @,j=12), I'= |: 3},
Y

where K;; ; are the corresponding matrix blocks of the
sth element.

To satisfy the dynamic fractal conditions, it is nec-
essary that the inertial elements of the disk—weight m,
and moment of inertia J.—change at the same scale,

. 3
e, mg=ymy_,J, =vJ,.
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Fig. 5. Equivalent regular structure for dynamically self-
similar beam.

Thus, in contrast to a one-dimensional cell, here
each degree of freedom can have its own similarity
coefficient; therefore, now we need to introduce the
similarity matrix G. Then, Eq. (11) for the fractal
beam in matrix form is

F(S_l)/sz 1’5_11-,(5—1)/2)(S_l

+ (—o'M, + Tk, 1
+ 7K, T)x, + 7K, I, =0,

i)

This is a finite difference equation with variable
coefficients depending on s. We apply, as above, trans-

2

mS
where M = [

. . * /2
formation of coordinates x, = x,I" */2_Then, under

the new coordinates, we find for the sth node of the
beam

7K, x,, + (M + T "°K,,r"? )

* —1/2_ %
+ Kll)XS + Kl2r XS+1 = 0.

Thus, we have obtained a finite difference equation
with coefficients independent of the cell number, i.e.,
the equation of a periodic structure. For a physical
interpretation of the elastic part of Eq. (12), we repre-
sent the expression in parentheses as

K, +I77K,I™? =T72(K, + Kl + AK,
AK =K, -T"’K, I~

Note that Eq. (12) describes a regular structure
consisting of identical beam elements of form (10), but
with additional fixation AK at each node. This addi-
tional fastening is the beam, the stiffness of which is
proportional to the difference between the stiffnesses
of the beams of the first and second sectors.

Table 2. Values of passband frequency Q of harmonic signal
in the second opacity band (@ > w*)

v 0.2 0.5 0.8
lod 0.8 0.35 0.1
02/y? 10.47 5.83 4.49
(Qz/vz) 12.0 6.3 4.9
a=p
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In conclusion, note that the dynamic fractals dis-
cussed above can be considered elements of a meta-
material. They can find successful application due to
their compactness, as well as an increase in damp-
ing/amplification of the input signal.

CONCLUSIONS

(1) The concept of a dynamically self-similar struc-
ture (dynamic fractal) is introduced, which consists in
similarity of the dynamic parameters of the cell gener-
atrices.

(2) The frequency equivalence of the dynamic frac-
tal and the periodic structure with additional fastening
of the mass is proved.

(3) In dynamic fractals with parameters increasing
in length, a stronger attenuation in the oscillation level
occurs compared to periodic structures, which is
important for vibroisolation systems.

(4) In dynamic fractals with decreasing parameters
in length:

—there are inhomogeneous waves with amplifica-
tion of the input signal, which distinguishes a dynamic
fractal from a periodic structure in which signal ampli-
fication does not occur;

—the passband of the harmonic signal of the
dynamic fractal is in the region the opacity band of the
periodic structure, but quite close to its boundary.

(5) In multidimensional unbranched chains, each
degree of freedom can have its own similarity coeffi-
cient; therefore, it is necessary to consider the similar-
ity matrix.
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