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Abstract⎯The effectiveness of the projection minimal polynomial method for solving the problem of deter-
mining the number of sources of signals acting on an antenna array (AA) with an arbitrary configuration and
their angular directions has been studied. The method proposes estimating the degree of the minimal poly-
nomial of the correlation matrix (CM) of the input process in the AA on the basis of a statistically validated
root-mean-square criterion. Special attention is paid to the case of the ultrashort sample of the input process
when the number of samples is considerably smaller than the number of AA elements, which is important for
multielement AAs. It is shown that the proposed method is more effective in this case than methods based on
the AIC (Akaike’s Information Criterion) or minimum description length (MDL) criterion.
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1. INTRODUCTION
At present, methods for estimating the parameters

of signal sources with antenna arrays (AAs) are widely
applied in different branches of science and technol-
ogy: hydroacoustics, radio detection and location,
radio communications, etc. [1–4]. The angular coor-
dinates of closely spaced sources are estimated by
superresolution methods. This term is related to the
fact that their use makes it possible to exceed Rayleigh
angular resolution limit, which is equal to the width of
a ray of the AA. These methods can be divided into
two classes—nonparametric and parametric [5–7].
For parametric methods, it is necessary to construct a
mathematical signal model based on available a priori
data. For example, assumptions are often made about
the small angular size of signal sources (discrete
sources), the type of wave front (plane, cylindrical, or
spherical), and the character of multipath propagation
and scattering in the spatial channel. The unknowns
are the number of signal sources, their powers, and
angular directions, which are numerical parameters in
the model. The problem of parametric methods is to
estimate these parameters by implementing the input
process in the AA. Nonparametric methods do not
involve construction of a signal model but are based on
direct analysis of the AA input process.

One of popular superresolution methods is the
nonparametric Capon method [6, 7]. Among the
rather large number of parametric methods, projec-
tion methods that construct the matrix projector onto

the noise subspace are the most effective. They can
include methods of maximum likelihood estimation
and MUSIC (MUltiple SIgnal Classification) with its
modifications [3, 6, 7], as well as the projection
method based on estimation of the degree and roots of
the minimal polynomial of the correlation matrix
(CM) of the input process in the AA; below, we call it
the minimal polynomial method (MPM) [8, 9].

The maximum likelihood estimation and MUSIC
methods cannot estimate the number of signal
sources, which is one of parameters of the mathemat-
ical signal model and must be known or estimated
beforehand. Since the likelihood function has no
extreme values in the number of sources, it is proposed
to modify this function by adding a certain correcting
(penalty) function to it. The modified likelihood func-
tion has a maximum depending on the number of
sources; the position of the maximum is just the esti-
mate of the number of sources. However, there is no
statistically rigorous justification for the correcting
function. This function is usually formed based on the
AIC (Akaike’s information criterion) or MDL (mini-
mum description length) [7, 10].

The projection MPM makes it possible to simulta-
neously estimate the number of sources and construct
the matrix projector onto the noise subspace, which
can be used to determine the directions of arrival of
signals and their powers. The number J of the sources
is determined by the degree m of the minimal polyno-
mial of the CM М of the input process (J = m − 1). In

ACOUSTIC SIGNAL PROCESSING
AND COMPUTER SIMULATION



84

ACOUSTICAL PHYSICS  Vol. 64  No. 1  2018

ERMOLAEV et al.

practice, however, the estimating CM  of the input
process is available. It is obtained from sample of the
input process in AA elements. Since the sample has a
finite length, the CM  elements are random values
and the minimal CM  polynomial consists of N
multipliers and coincides with the characteristic 
polynomial, where N is the number of AA elements.
Therefore, when passing from the exact CM М to the
sample CM , the degree of the minimal polynomial
increases from J + 1 to N and now does not depend on
the number of signal sources. In [9], a root-mean-
square error (RMSE) functional for the estimate of the
degree and roots of the minimal polynomial was pro-
posed and statistically validated. This functional
makes it possible to approximate the minimal polyno-
mial of the exact CM М by a polynomial in which the
degree is minimum and the difference from the mini-
mal polynomial does not exceed a given value which
can be determined based on a priori information about
the intrinsic noise of the AA receivers.

In practice, AAs with a large number of elements
are frequently used, when it is difficult to have a long
sample of the input process whose number L of sample
vectors is larger than the number N of AA elements,
e.g., due to the unsteadiness of the signal–noise envi-
ronment. For this reason, the case of a short sample,
when L < N, is very important. It is well known [7] that
adaptive noise suppression methods are highly effec-
tive in this case. It is of interest to analyze the effective-
ness of the superresolving MPM under conditions of a
short sample of the input process. Moreover, for mul-
tielement AAs, the sample can become “ultrashort”
when the length L is considerably less than the number
N (L  N).

The signal sources can be both uncorrelated and
correlated between each other. For example, in a
hydroacoustic channel with multipath signal propaga-
tion , one source creates several wave fronts arriving at
the AA from different directions. Such situation can be
considered as reception of signals from several cor-
related sources. At the same time, some of signal
eigenvalues of the exact CM M become close to the
noise eigenvalue, which impedes estimating the num-
ber of sources due to the separation of the eigenvalues
of the sample CM  into signal and noise ones.

The effectiveness of the MPM for solving the
superresolution problem was analyzed in [9] for
uncorrelated sources. It was shown that this method
ensures a considerably higher resolution than the
Capon method. However, it is interesting to compare
its effectiveness with that of the MUSIC method. The
question of estimating the number of signal sources
with the MPM was not considered in [9] either, and
cases of an ultrashort sample of the input process and
correlated sources were not analyzed. This paper stud-
ies these problems.
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2. MATHEMATICAL SIGNAL MODEL
The main aim of the work is to compare the effec-

tiveness of the MPM and AIC or MDL criteria in esti-
mating the number of signal sources at the input of a
multielement AA in the case of an ultrashort sample of
the input process, when the number of samples is con-
siderably less than the number of AA elements. For
this purpose, it is sufficient to consider a relatively
simple signal model in which it is supposed that the
AA receives narrowband signals from J discrete
(point) sources. Then, the sample X(l) of the vector of
the input process in an N-element AA at the lth time
instant can be represented as

(1)

where aj(l) is the complex amplitude of the jth source
in the elements of the AA, which is assumed to be a
Gaussian noise process; Sj is the vector of the ampli-
tude–phase distribution of the signal from the jth
source; and Z(l) is the vector of additive Gaussian
noise of the receivers with a zero mean and variance

 Below, without any loss of generality, we assume
 The sample vectors X(l) are taken with a time

interval reciprocal to the bandwidth of the receivers Δt ≈
(1/Δf) to ensure their mutual uncorrelatedness.

The statistical relation of the sources is specified by

a matrix B with elements  =

 where  is the power of a signal from the
jth source in the AA elements, ρjq is the coefficient of
correlation between the complex amplitudes of the jth
and qth sources, (⋅)* is the complex conjugation, and 〈⋅〉 is
the statistical average. In the case of uncorrelated sources,
the matrix B is diagonal: B = diag{   …, }.

The statistical properties of the set of Gaussian
complex quantities X(l) are determined by the CM of
the input process M = 〈X(l)X(l)H〉 ((⋅)H is Hermitean
conjugation), which is as follows [5–7]:

(2)
where I is the unit CM of uncorrelated intrinsic noise
and S(0) = [S1, S2, …, SJ] is the matrix of wave fronts
of signal sources in AA elements. The columns of the
matrix S(0) are vectors Sj (j = 1, 2, …, J) depending on
the angular position of the corresponding signal
sources with respect to the AA. In the case of uncor-
related sources, the CM is a sum of CMs of individual
sources and, instead of (2), we have

(3)

In practice, instead of the exact CM (2), its maxi-
mum likelihood estimate  by L sample vectors X(l)

1

( ) ( ) ( ),
J

j j

j

l a l l
=

= +∑X S Z

2
0.σ
2
0 1.σ =

*( ) ( )jq j qa l a l=B

,j q jqρv v jv

1,v 2,v Jv

(0) (0) ,H= +M I S BS

1

.
J

H
i i i

i=

= +∑M I S Sv

M
�



ACOUSTICAL PHYSICS  Vol. 64  No. 1  2018

MINIMAL POLYNOMIAL METHOD FOR ESTIMATING PARAMETERS 85

of the input process in AA elements is used. It is equal
to [11]

(4)

Elements of the sample CM are random numbers
and the probability of the appearance of multiple
eigenvalues is negligibly small. The sample of the input
process can be long or short depending on the relation
between the number L of samples of the input process
and number N of AA elements.

Let us specify the vector Sj of the amplitude–phase
distribution of the jth signal in AA elements. We
assume that the sources are point-like and are posi-
tioned sufficiently far from the AA aperture, i.e., the
wave fronts are plane. For an AA of an arbitrary con-
figuration, the nth component of the vector Sj is

 where the vector  specifies
the position of the nth AA element in a three-dimen-
sional coordinate system (x, y, z), the origin of which
is brought into coincidence with the first element,  is
the wavevector specifying the wave propagation direc-
tion, and  is the dot product of the vectors 
and . For a linear and equidistant AA,

  where ϕj
is the angular coordinate of the jth source (the coordi-
nate is reckoned from the normal to the AA), d is the
AA period, and λ is the wavelength.

3. MINIMAL POLYNOMIAL METHOD

The exact CM М has the eigenvalues λ1 ≥ λ2 ≥ … ≥ λN
and the characteristic polynomial ψN (λ) of degree N.
When the number of signal sources is less than the
number of AA elements (J < N), the polynomial ψN
(λ) has multiple roots. Then, there exists a minimal
polynomial ψJ + 1 (λ) = (λ – λ1) (λ – λ2) … (λ – λJ + 1)
that has no multiple roots, divides the characteristic
polynomial, and has the smallest degree m [12]. The
degree of the polynomial ψJ + 1 (λ) is m = J + 1; i.e., it
is determined by the number of signal sources, and its
roots are eigenvalues of the CM М (λ1 > λ2 > … > λJ + 1),
which are not equal to each other. The last (smallest)
eigenvalue is equal to the power of the intrinsic noise
(λJ + 1 = 1) and is called the noise eigenvalue; other
(signal) eigenvalues depend on the parameters of the
signal sources.

The CM М can be represented as the sum of matrix
projectors on the signal subspace (dimension J) and
noise subspace (dimension N − J): М = Psignal + Pnoise.
The matrix Pnoise can be represented in the form [9]

(5)
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The AA output power fraction corresponding to
the subspace of the intrinsic noise during scanning by
an AA ray is  where S(ϕ) is the vector of an
arbitrary direction ϕ with an nth component of

  Let us form
the following inverse function of the angle ϕ:

(6)

If the AA is matched with the jth source (S(ϕ) = Sj),
or, in other words, the maximum of the AA directivity
diagram is oriented in the direction to this source, the
vector S(ϕ) belongs to the signal subspace and has a
zero projection onto the noise subspace. Therefore,
the function ηMPM (ϕ) at the point ϕ = ϕj tends to
infinity (ηMPM (ϕ) → ∞ as ϕ → ϕj). Using this peak, we
can find the angular coordinate of the jth source. The
function ηMPM (ϕ) can be considered the spatial spec-
trum. Since application of projection methods is usu-
ally aimed not at estimating the spectrum but at deter-
mining the angular directions of signal sources, the
dependence ηMPM (ϕ) obtained by them for the signal
level as a function of the angular coordinate is called
the spatial pseudospectrum.

In the case of a long sample of the input process
(L > N), the sample CM  has N positive eigenvalues
μ1 > μ2 > … > μN > 0, not equal to each other. The
noise eigenvalue which has multiplicity N − J and is
equal to unity for the exact CM М is split into N − J
eigenvalues of the sample CM  The spread of noise
eigenvalues increases with a decrease in the sample
length. Some of them can be considerably less than
unity. The minimal polynomial of the CM  consists
of N multipliers and coincides with the characteristic
polynomial of the CM  of degree N. Thus, with the
passage from the exact CM to the sample CM, the
degree of the minimal polynomial increases from J + 1 to
N and, therefore, does not depend anymore on the
number of sources J.

IN the case of a short sample (L < N), the CM  is
degenerate and has L positive eigenvalues and N − L
eigenvalues are zero (μ1 > μ2 > … > μL > 0, μL + 1 = μL + 2 =
… = μN = 0). The subspace corresponding to the zero
eigenvalues is orthogonal to the subspace of sample
vectors X(l). The minimal polynomial of the sample
CM  has a degree equal to L and the degree also no
longer depends on the number of signal sources.

Such differences in properties of the exact and
sample CMs are essential for solving the posed prob-
lems and are caused by the appearance of a set of noise
eigenvalues instead of a single one in the sample CM
(the splitting of the noise eigenvalue). Therefore, the
number and angular coordinates of signal sources can-
not be estimated using (5). It is necessary first to esti-
mate the minimal polynomial of the sample CM 
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and then to construct the matrix projector onto the
noise subspace.

Let us consider the statistical root-mean-square
criterion proposed in [9]. According to this criterion, a
matrix polynomial  of smallest degree with the
Euclidean norm not exceeding a certain threshold Th
is found for the sample CM . Using this polyno-
mial, we can obtain an approximation for the minimal
polynomial of the sample CM by a polynomial whose
degree is minimal and the difference from the charac-
teristic polynomial yielded by it does not exceed (in
the root-mean-square sense) a given value determined
from a priori information about the CM of the intrin-
sic noise.

Let us form a functional I(m) equal to

(7)

and find first the coefficients γn and then the degree of
the minimal polynomial of the CM  The coeffi-
cients γn are quantities reciprocal to eigenvalues of the
sample CM  (μn = 1/γn) and are found from solving
the system of nonlinear equations

(8)

where Sp(⋅) is the spur of this matrix.

To solve this system, the iteration procedure begin-
ning from m = 1 can be used. We consider the m num-
bers γn calculated for the functional I(m) as the initial
approximations for calculating the (m + 1) numbers γn

for the functional I(m + 1).

For m = 1, the functional I(1) =
 Hence we have

 If the functional I(1) < Th, the
iteration process terminates and the estimate for the
degree of the minimal polynomial  It means that
the AA contains only the intrinsic noise and the esti-
mate of the number of sources is zero 
If I(1) > Th, we continue the iteration process and
assign m = 2.

At m = 2, the functional  ×
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respect to γ1 and γ2 and equating the derivatives to
zero, we obtain a system of nonlinear equations:

(9)

For the initial value, we choose γ1 obtained at the
first step of the iteration procedure for m = 1 and sub-
stitute it into the second formula in (9) to find the
coefficient γ2. Then, we substitute this value γ2 into the
first formula of (9) and find the next approximation of
γ1. Such mutual substitutions are carried out several
times until γ1 and γ2 are unchanged. Then, the func-
tional I(2) is found and compared with the threshold
Th. If I(2) < Th, the iteration procedure stops and a
conclusion is made that the degree of the minimal
polynomial  i.e., there is a single source

 If I(2) > Th, the procedure continues
and m = 3 is assigned.

This procedure continues until the value of the
functional I(m) for a certain  becomes less than
the threshold. Computational practice shows that the
iteration process converges rather quickly. For exam-
ple, no more than four or five iterations are sufficient
to the calculate values of γn with an accuracy of 10−4 at
m = 4. The obtained  value is taken as the estimate
for the minimal polynomial degree and the obtained
numbers γn yield estimates of quantities reciprocal to
eigenvalues of the sample CM  (μn = 1/γn). Thus, we
have obtained the estimate for the minimal polyno-
mial of the exact CM M. The estimate for the number
of sources is determined by the degree of this polyno-
mial 

The threshold Th can be found based on the a pri-
ori information about the CM of the intrinsic receiver
noise. If the noise has a unit CM, it is a priori known
that the degree of the minimal polynomial in the
absence of sources (J = 0) is m = 1. Let the functional
I(1) in the presence of noise alone be denoted as 
and the threshold be chosen equal to

 where σ1 is the root-mean-square

deviation of the functional  and the parameter χ
can be found by specifying the probability of a false
alarm caused by the influence of noise. As a rule, the
number of AA elements N 2  1. Then, setting m = 1 in
(7), we have [8]
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from (10) we have  and  With
an increase in the sample length (L → ∞), the thresh-
old Тh → 0.

Let us now construct the estimate for the matrix
projector onto the noise subspace in the form

(11)

Expression (11) passes into (5) as L → ∞ with
allowance for the fact that   
and after easy transformations. Formula (6) for the
spatial pseudospectrum takes the form

(12)

4. CORRELATED SIGNAL SOURCES
The expressions for the eigenvalues λ1 and λ2 of the

exact CM M in the case of two sources with different
powers (  ≠ ) and arbitrary correlation coefficient

 are rather cumbersome [13]. In
superresolution problems, sources of equal power are
usually considered. Therefore, we assume that

 Then, the eigenvalues λ1 and λ2 are

(13)

where  is the mismatching factor of
wave fronts from two sources.

If the sources are uncorrelated (|ρ12| = 0), the signal
eigenvalues λ1, 2 = 1 + N (1 ± |g12|). If the sources are
fully correlated (|ρ12| = 1), we have from (13) λ1 = 1 +
2 N (1 + |g12|cosα12) and λ2 = 1. Therefore, the second
signal eigenvalue becomes equal to the noise eigen-
value. It also follows from (13) that the eigenvalues are
invariant to the simultaneous replacement of |g12| by
|ρ12| and |ρ12| by |g12|. Thus, the infuence of an increase
in the degree of source correlation (|ρ12|) on the esti-
mate for the number of sources can be interpreted as
the influence of the angular approach of the sources
(|g12|).

To increase the effectiveness of the projection min-
imal polynomial method under consideration, we can
use the well-known procedure for smoothing the CM:
the spatial smoothing technique (SST) [7, 10]. There
are several modifications of this procedure. We con-
sider spatial smoothing implemented by AA partition-
ing into K = N − Q + 1 overlapping subarrays consist-
ing of Q < N elements and shifted relative to each other
by one element. For each subarray, the CM is esti-
mated and, therefore, K matrices are obtained. Then,
the average CM MSST with dimensions Q × Q is found.
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The form of the CM MSST is similar to (2), but ele-
ments of matrix B consist of the coefficients (ρSST)jq of
correlation between the jth and qth sources [7]:

(14)

It follows that |γjq| < 1; i.e., the smoothing proce-
dure leads to a decrease in the coefficient of correla-
tion between signal sources at the output of the subar-
ray.

The Q × Q CM at the output of the ith subarray can
be represented as  where

  is a matrix which
has first i − 1 and last N − Q − i + 1 zero columns and
a unit matrix with dimensions Q × Q in the middle; 0l
is the lth zero column.

Then, it is necessary to replace the CM  in (11)
with the smoothed CM  

(15)

Thus, the SST leads to a decrease in the coeffi-
cients of correlation between sources at the output of
the subarray, which increases the effectiveness of the
superresolving methods. However, the dimension of
the smoothed CM  is smaller than that of the
CM  which is equivalent to a decrease in the AA
aperture and leads to a decrease in the effectiveness of
these methods.

5. ESTIMATING THE NUMBER OF SOURCES 
BASED ON THE AIC OR MDL CRITERIA
The projection MPM makes it possible to con-

struct the matrix projector onto the noise subspace
and to implement the resolution of closely positioned
signal sources. At the same time, to use the MUSIC
method, one should preliminarily estimate the num-
ber of signal sources, which is usually done based on
the AIC or MDL criteria. According to these criteria,
the position of the minimum of the modified likeli-
hood function with respect to variable J is taken as the
estimate for the number of sources. The modified like-
lihood function has the form [7, 10]
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where the functions f1 (J) and f2 (J) are the arithmetic
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After estimating  of the number of sources, to find
their angular coordinates by the MUSIC method,
function (6) of the spatial pseudospectrum is used.
This function involves the noise projector

(17)

where  are eigenvectors of the sample CM  cor-
responding to signal eigenvalues of this matrix [7].

6. SIMULATION RESULTS
Let us consider a linear AA with a number of ele-

ments N = 50 and period d = 0.5 λ. The half-power
width of the directional diagram is Δϕbeam = 2.0°. The
vector X(l) of the input process is specified in form (1),
where the random value aj(l) has a zero mean and vari-
ance  and the power of intrinsic noise is equal to
unity. In each experiment we form L samples of the
input process by use of (1) and the number of experi-
ments for averaging the simulation results is taken to
be 500. Special attention is paid to the problem of esti-
mating the number of signal sources in the case of an
ultrashort sample of the input process (L  N).

1. One signal source. Figure 1 shows the histograms of
the functionals I(1) and I(2). The source power  = 5 dB
and the number of samples L = 5, 10, and 20 (histo-
grams 1−3, respectively, for I(2)). The right histogram
was constructed for the functional I(1) and is almost
similar for all L. Histograms of the functional I(2) are
shifted to the left with an increase in L. The dashed
lines show the thresholds  obtained
using (10) at χ = 0.1. It follows from Fig. 1 that values
I (1) > Th and I (2) < Th with a probability close to unity.
Therefore, the probability of a correct estimate for the
number of sources is also close to unity ( ). In
what follows, we suppose that χ = 0.1.

Figure 2 shows the comparative probabilities of
correctly estimating the number of sources as a func-

J
�

noise 1 1 2 2( ... ),H H H
J J= − + + +P I U U U U U U� �

� � � � � � �

jU
�

M
�

jv

!

v

(1)
0 1Th I= + χσ

1J =
�

tion of the 1source power v for the MPM and MDL
and AIC criteria (curves 1−3, respectively) for length L =
10. It is seen that the MPM yields a higher probability
of correctly estimating the number of sources in the
region of low  (  < −2 dB).

Figure 3 presents the RMSD of the estimate for the
angular coordinate of the signal source as a function of
the power v for the MPM and MUSIC methods
(curves 1 and 2, respectively) for an input process
length L = 10. The curves were constructed in a region
where the probability of a correct estimate exceeds 80%.
Only experiments in which a correct estimate for the
number of sources was ensured were taken into account
( ). It is seen that both methods give almost equal
RMSDs. Curve 3 yields a potential RMSD (Cramér–
Rao bounds) of  [5, 6]. It follows
from the figure that the results are close to potentially
achievable ones.

2. Two uncorrelated sources. Let Δ denote the nor-
malized angular distance between sources (Δ =
Δϕ/Δϕbeam) and let these sources be arranged symmet-
rically with respect to the normal to the AA (ϕ1 =
−ϕ2). The power of sources  = 5 dB and the number
of samples L = 10. Figure 4 shows the histograms for
the functionals I(1), I(2), and I(3) (histograms 1−3,
respectively). The dashed line shows the threshold

 found using (10). It follows from
Fig. 4 that I(1) > Th, I(2) > Th, and I(3) < Th with a
probability close to unity. Therefore, the probability of
correctly estimating the number of sources is also close
to unity ( ). Figure 5 shows the probabilities of
correctly estimating the number of sources depending
on their power for an input process length L = 10
according to the MPM and MDL and AIC criteria
(curves 1−3, respectively). The parameter Δ is 0.25
(solid curves) and 0.5 (dashed curves). It is seen that
the MPM and MDL criterion have an approximately
similar effectiveness that exceeds that of the AIC.

v v

1J =
�

beam 10.2 NLΔϕ v

v

= + σ(1)
0 1Th 0.1I
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�

Fig. 1. Histograms of the functionals I(1) and I(2).
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Fig. 2. Probability of correctly estimating the number of
sources for different methods.
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3. Two correlated sources. Let us estimate the num-

ber of sources using the MPM. Figure 6 shows the

probabilities of correctly estimating the number of

sources depending on their power  for different abso-

lute values of coefficients of correlation between

sources |ρ1,2| = 0, 0.7, 0.9, and 0.95 (curves 1−4,

respectively) for an input process length L = 10. The

solid curves were obtained using the spatial smoothing

procedure; the dashed curves, without it. The phase of

the correlation coefficient was specified as constant in

each experiment and uniformly distributed in the

interval [0, 2π] for different experiments. The normal-

ized angular distance between the sources was Δ = 1.0,

and the size of the subarray during the spatial smooth-

ing procedure was K = 30. The threshold was chosen

with allowance for additional averaging of intrinsic

noise according to (15). It is seen that the spatial

smoothing procedure is effective for high correlation

coefficients (|ρ1,2| > 0.7), when the effect of the

decrease in the correlation coefficient prevails. For

lower correlation coefficients, a decrease in the

dimension of the smoothed CM is a decisive factor

v

and leads to a decrease in the effectiveness of the

smoothing procedure.

6. CONCLUSIONS

The effectiveness of the projection MPM for solv-

ing the problem of determining the number of sources

of signals acting on an AA with arbitrary configuration

has been investigated. The method estimates the

degree of the minimal polynomial of the sample CM

of the input process in the AA by using a statistically

validated root-mean-square criterion. Cases of uncor-

related and correlated sources have been considered.

The simulation results are presented for the case of an

ultrashort sample of the input process when the num-

ber of samples is considerably less than the number of

AA elements. It has been shown that the proposed

method is more effective as compared to methods

based on the AIC and MDL criteria. In the case of

correlated sources, using the MPM with the spatial

smoothing procedure increases the probability of a

Fig. 3. Root-mean-square deviation of the estimate for the
angular coordinate of the source.
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Fig. 4. Histograms of the functionals I(1), I(2), and I(3).
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Fig. 5. Probability of correctly estimating the number of
sources using different methods.
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Fig. 6. Probability of correctly estimating the number of
sources using the MPM.
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correct estimate for the number of sources at high cor-
relation coefficients (>0.7).
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