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Abstract⎯This paper presents a method for measuring the thickness and velocities of body waves and the
density of an isotropic layer by a pulse scanning acoustic microscope. The method is based on recording the
microscope signal as a function of the displacement magnitude of the focused ultrasonic transducer along its
axis perpendicular to the sample surface and on the decomposition of the recorded 2D spatiotemporal signal
into the spectrum of plane pulse waves. The velocities of the longitudinal and transverse waves and the layer’s
thickness are calculated from the relative delays of the components of the spectrum of plane waves reflected
from the surfaces of the layer and the density is computed by the amplitudes of these components. An exper-
imental investigation of a test sample in the form of a glass plate carried out in the 50-MHz range shows that
the error in measuring the thickness and velocities of body waves does not exceed 1% and the density mea-
surement error does not exceed 10%.
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1. INTRODUCTION

An acoustic microscope uses a high-frequency
focused ultrasonic echo-pulse transducer [1]. Acous-
tic images are generated in the microscope by the
mechanical scanning of the transducer in the plane
parallel to the surface of the sample. The acoustic
images make it possible to visualize the spatial distri-
bution of the acoustic heterogeneities by the investi-
gated volume. At the same time, in practice, in the
investigated objects, there are often regions in the form
of homogeneous layers, the determination of the
unknown thicknesses and acoustic parameters of
which is an important task.

It is possible to determine the velocities of the lon-
gitudinal and transverse waves in the material of the
layer, if its thickness is known, by the relative delay of
the pulses reflected from the boundaries of the layer
and received by the microscope [2]. It is also possible
to determine the layer’s thickness if the values of the
speed of sound in it are known. However, focused
ultrasonic beams are used in the acoustic microscope;
thus, the shape of the reflected pulses depends on the
distance between the transducer and the sample and
on the parameters of the layer itself, which leads to a
less accurate measurement of the delay. The method
based on the digital correction of the shape of the first
pulse makes it possible to increase the measurement

accuracy [3]. However, this method does not make it
possible to simultaneously determine the velocity and
thickness of the layer.

The velocity of longitudinal waves and the layer’s
thickness can be determined by measuring the differ-
ence between the positions of the transducer when it is
displaced perpendicular to the surface of the sample in
the region of the maximum echo-pulse values and the
upper and lower boundaries of the layer [4–6]. How-
ever, the relationships that make it possible to find the
velocity and thickness by the displacement of the
transducer and relative delay of the pulses are obtained
in a paraxial approximation, which leads to significant
errors in the study of layers with high values of the
speed of sound. At the same time, it is often difficult to
accurately measure the position of the signal’s maxima
because of the low signal-to-noise ratio for signals
reflected from the lower surface of the layer. This
method is also inapplicable for determining the veloc-
ity of a transverse wave, since in this case the paraxial
approximation is not valid.

In this paper, a method is proposed to measure the
velocities of the longitudinal and transverse waves in
the material layer and its thickness, as well as the den-
sity. The method is based on recording the micro-
scope’s response as a function of time and the dis-
placement magnitude of the transducer along its axis
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in a direction perpendicular to the surface of the sam-
ple and processing the recorded spatiotemporal signal
by decomposing it into the spectrum of responses of
pulse plane waves.

2. THEORETICAL ANALYSIS
OF THE METHOD

In the considered method, the focused broadband
transducer 1 and isotropic sample 2 with thickness d
are placed in an immersion liquid with a known veloc-
ity of ultrasonic waves CW (Fig. 1). The transducer can
move perpendicular to the sample plane along the z
axis. When the transducer is excited with a pulse ,
several responses are observed in the received signal.
The response D is generated by the wave reflected
from the upper surface of the sample. Responses L and
T are generated by the longitudinal (solid lines) and
transverse (dashed lines) waves that propagate in the
layer and are reflected from the bottom surface. The
response of the mixed mode LT is generated by com-
binations of longitudinal and transverse waves propa-
gating in the layer in opposite directions.

Assuming that the measuring system is linear, is
spatially and temporally invariant, its output signal as
a displacement function of the focus z and time t0 can
be represented as a superposition of the responses of
plane harmonic waves [7]:

(1)

where ω is the frequency and kz is the wave vector
component in the liquid related to the angle of inci-
dence of the wave θ by the relation 
The function R(kz, ω) denotes the reflection coeffi-
cient of plane harmonic waves from the liquid–sample
interface, and H(kz, ω) is the effective transfer func-
tion of the microscope that depends on the properties
of the transducer and the characteristics of the trans-
mit-receive path. The factor exp(2ikzz) takes into
account the phase advance acquired by a plane wave
when propagating in an immersion liquid from the
focal plane of the transducer to the sample and back.
By introducing the notation for the double scan coor-
dinate  the signal  can be expressed as a

2D inverse Fourier transform  with respect to
the variables (kz, ω) of the product of the transfer func-
tion and the reflection coefficient.

The delay of the reflected pulses is determined
mainly by the distance  traveled by the wave in the
liquid. Therefore, it seems rational to compensate this
delay by considering the signal as a function of time
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Assume that the duration of ultrasonic pulses is
sufficiently short so that the responses reflected from
the upper and lower boundaries of the layer are not
superimposed by the delay time. Then the reflection
coefficient and the recorded spatiotemporal signal can
be represented as a sum of the components corre-
sponding to the waves γ = D, L, LT, T:

(2)

(3)

The term RD(kz, ω) is equal to the reflection coeffi-
cient of a plane harmonic wave from the interface
between the liquid with a half-space, the acoustic
parameters of which coincide with the layer parame-
ters. The analytical expression for the reflection coef-
ficient is well known [7]. While passing the layer, the
plane harmonic waves acquire a phase delay that
depends on the vertical component of the wave vector
in the material:

(4)

where CL and CT are the velocities of the longitudinal
and transverse waves in the material, respectively.

Neglecting the ultrasound absorption in the layer,
the components of the coefficient Rγ(kz, ω) γ = L, LT,
T for the waves that passed through the layer can be
written as

(5)
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Fig. 1. Measurement design: (1) focused transducer and
(2) test sample.
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where TLL, TTL, TLT and    are the transmis-
sion or transformation coefficients of the wave modes
on the upper surface of the layer when propagating
downward and upward, respectively, and WLL, WTT,
and WLT are the reflection or transformation coeffi-
cients on the lower surface [8]. The maximum aper-
ture angle of the transducer θm is usually selected to be
smaller than the critical angle for the longitudinal
wave in the investigated materials. In this case, for the
angles of incidence θ < θm, all the coefficients T and W
are independent of frequency and are real.

Thus, taking into account the introduced assump-
tions, the longitudinal wave response is written as

(6)

The responses of the components γ = LT and T are
represented by similar relations. By substituting the
variable

(7)

this equation is reduced to the inverse Fourier trans-
form with respect to the variables (k, ω). Thus, the 2D
spectral density of the signal is

(8)

For the other components of the signal  and
their spectra , similar equations can be written.

The recorded signal (z, t) in the spectrum of plane
pulse waves can be decomposed by integrating it in the
spatiotemporal region along the line 

(9)

The integration of the values of the spatiotemporal
signal along the line leads to the accumulation of the
response of the plane wave, the propagation direction
of which is specified by the slope coefficient s and to
the suppression of the responses of the plane waves
propagating in other directions. The time parameter τ
specifies the delay in the response of the plane waves
propagating in one direction. From a mathematical
point of view, this transformation can be interpreted as
the Radon transformation widely used in tomography
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plane waves W(s, τ) can be represented as the inverse
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the values of the spectral density of the signal 
taken in the region (k, ω) along the straight line

 [9, 10]:

(10)

Thus, the parameter s is associated with the propa-
gation angle θ and the vertical slowness vector compo-
nent sz of the plane wave in the liquid by the following
equations:

(11)
Based on Eq. (10), the spectral decomposition of a

wave reflected from the upper surface of the layer is as
follows:

(12)

Similarly, the response spectrum formed by the
reflection of the longitudinal wave from the lower sur-
face of the layer can be written as

(13)

Thus, for each s the spectrum WL(s, τ) is a weak-
ened and delayed copy of WD(s, τ):

(14)
where δ is the delta function, and the asterisk denotes
a convolution with respect to the time variable. The
coefficient

(15)

is equal to the ratio of the amplitudes of the plane
waves reflected from the lower and upper surfaces of
the layer, and the quantity

(16)
determines their relative time shift. For the longitudi-
nal-transverse mode of the spectrum WLT(s, τ), there
is a similar equation, where the amplitude coefficient
and the relative delay are, respectively,

(17)
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In the proposed method, the spectrum of plane
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and amplitude coefficients  as functions of the
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signal . Since the form of the spectral responses
is the same for a fixed value of s, it is easy to find the
relative delays and amplitudes. Next, using nonlinear
estimation methods, the thickness and speed of the
ultrasound are determined based on the obtained
dependences , and based on the dependences

 it is possible to estimate the density if the values
of the velocity in the material are known.

3. EXPERIMENTAL
A focused broadband ultrasonic transducer with a

nominal central frequency of the piezoelectric ele-
ment of 50 MHz was used in the experiment. Water at
the temperature of 22 ± 1°C was used as the immer-
sion liquid. The focal length and the half aperture
angle of the transducer were F = 13 mm and θm = 11°,
respectively. Excitation of acoustic pulses and recep-
tion of signals reflected from the sample was carried
out by an ultrasonic data acquisition system with the
continuous motion of the transducer along the z axis.
The received analog signals were digitized with a 12-bit
resolution at a sampling rate of 500 MHz.

Figure 2 shows a spatiotemporal signal (z, t) writ-
ten for a glass plate as a halftone image. The plate
thickness measured with a set of end measures and a
dial gauge with a scale interval of 1 μm was 1.155 ±
0.003 mm. The longitudinal wave velocity measured in
the echo-pulse mode using a f lat contact transducer
(15 MHz) was 5800 ± 30 m/s. In the recorded data,
the response (z, t) reflected from the upper surface
of the plate and the responses (z, t) and (z, t)
formed by the reflections of the waves from the lower
boundary of the layer are distinguished. Since for the
represented data the delay  obtained by a nor-
mally incident wave in the immersion liquid was sub-
tracted, these responses have a predominantly hori-
zontal orientation in the figure.

It can be seen that the signal (z, t) reaches its
maximum when the focus is on the surface of the sam-
ple z ≈ 0, and the phase of the signal changes quite
sharply by approximately 90° as it passes through this
focal region. In addition, when the focus moves away
from the surface in the region z > 0, an additional
response, which is ahead of the main pulse, is observed.
This response is generated by a boundary wave with the
source at the edge of the focused transducer [11].

Figure 3 shows the amplitude of the 2D spectrum
of this response VD(k, ω). Since the data are presented
depending on the parameter k, the spectrum is in the
range of its negative values limited approximately by
the straight lines OA and OB. Along the vertical line
OA, there are spatiotemporal signal spectrum compo-
nents normally incident on the surface of the sample.
The straight line OB corresponds to components with
an angle of incidence of θ ≈ 10°. This value is close to the
aperture angle of the used transducer determined by its
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design features. The phase of the spectrum VD(k, ω) (not
shown in the figure) is a smooth function in the region
where the amplitude has a significant value.

The signal (z, t) has a structure similar to the
considered response (z, t) (Fig. 2). However, it has
a large delay due to the propagation of waves through
the layer, and its maximum is achieved at a negative
value of z, when the converging ultrasonic beam is
focused on the lower surface of the layer. Similarly, the
response of the longitudinal-transverse mode (z, t)
has a maximum at negative z. However, since normal-
incidence waves do not participate in its formation,
the response amplitude decreases rapidly when mov-
ing away from the maximum point.

vL
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Fig. 2. Signal (z, t) recorded for glass plate. Amplitude of
responses   is tripled.
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The result of the decomposition of the recorded
signal into the plane wave spectrum W(s, τ) by
directed summation in accordance with (9) is shown
in Fig. 4. For s > 0, the straight line along which the
signal is integrated (for example, line a) intersects the
alternating response  which causes the result to be
small. For s ≈ 0, the straight line is located approxi-
mately parallel to the constant phase lines, which leads
to a significant integration result. For s < 0, the inte-
gration yields a near-zero result in regions remote from
the focus. In the focus region, the amplitude and
phase of the signal undergo sharp changes. Constant
phase lines are inclined. The integration of the signal
along these lines (for example, b) gives a significant
response WD(s, τ) with the delay τ approximately equal
to the delay of the response (0, t), while remaining
constant at different slope angles determined by the
parameter s.

The generation features of the response W(s, τ) can
also be illustrated by the consideration in the region
(k, ω) (Fig. 3). Based on (10), the time spectrum W(s, τ)
is determined by the values of the spectrum of the
measured spatiotemporal signal VD(k, ω) that lie on
the OC lines and that satisfy the equation k = sω. Thus,
the experimental response W(s, τ) is in the region of
negative values of the parameter s, which agrees with
theoretical representation (11).

Responses WD, WL, and WLT are determined by the
transfer function of the measuring system H. There-
fore, for one value of the parameter s, they have the same
shape but different amplitudes and delays (Fig. 5). The
amplitudes of the responses WD and WL take the max-
imum values in the case of the normal incidence of the
plane waves’ spectral components on the surface of
the sample (s = 0). Transverse waves are involved in

v ,D

vD

the WLT response generation. Thus, its amplitude is
zero at normal incidence, and the maximum is shifted
toward smaller values of parameter s.

The dependences τL(s) and τLT(s) were measured in
order to determine thickness d and the values of the
velocities CL and CT by the obtained spectra. The
delays were determined by the position of the extrema
of the correlation functions using the time variable of
the WD response with the WL and WLT responses. First,
the parameters d and CL were nonlinearly estimated
using model equation (16). Then, using the obtained
values of these quantities, the velocity of the transverse
wave CT was found from Eq. (18). Multiple recording
of the signal (z, t) with subsequent processing by the
described method made it possible to obtain the statis-
tical data given in Table 1. It can be seen that the
obtained values are in agreement with the reference
data and the results of independent measurements,
and the accuracy of the measurements of the thickness
and velocities of the body waves can be estimated by
the proposed method at a level of up to 1%.

It follows from Eq. (14) that the amplitude of the
spectral components of plane waves is determined not
only by the amplitude of the system response but also
by the coefficients of reflection, transmission, and
mode transformation at the boundaries of the layer.
Figure 6 shows the relative amplitudes of the responses
of the longitudinal mode ξL(s) and the longitudinal-
transverse mode ξLT(s) measured by the W(s, τ) spec-
trum (Fig. 4). If the ultrasonic absorption in the layer
can be neglected, these amplitudes depend on d, CL,
CT, and CW, as well as on the layer material’s density ρ
and the immersion liquid (water). Assuming that d,
CL, and CT were found earlier by delays and the prop-

v

Fig. 4. Spectrum of plane waves W(s, τ). Amplitude of
responses WL, WLT is tripled.
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erties of water are known, it is possible to determine
the density ρ by the dependences ξL(s) and ξLT(s).

The minimum value of the following form was
sought in order to determine the density:

(19)

this shows the proximity of the experimental and
model data. The model values (s, ρ) and (s, ρ)
were calculated by the well-known analytical expres-
sions for the coefficients of reflection, transmission,
and transformation of the modes at the boundaries of
the half-spaces [8]. Residual (19) was calculated in the
range of –9 < s < –1 μs/m, in which the experimental
data are the least distorted. The relative amplitude
coefficients  and  calculated for the found den-
sity value ρ are shown in Fig. 6. The relative error in
estimating the density is about 8% (see Table 1), and
its average corresponds to the published value.

4. MEASUREMENT ERROR ANALYSIS
The following should be singled out among the fac-

tors affecting the accuracy of the method: the bound-
edness of the recording interval of the initial spatio-
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temporal signal, the error in the transducer position-
ing, the variations of immersion liquid parameters, the
magnitude of the angular aperture of the focused
transducer, the interference in the form of radioelec-
tronic noise, and the parasitic rereflections of ultra-
sonic waves.

The signal detection range is limited by zm ≈
Fcos(θm) when the transducer is displaced toward the
sample. Then, for small s and τ that are approximately
equal to the delays of the responses  and  the
integration line can intersect the boundary of the
recording interval of the signal z = zm (z = –zm) beyond
which there is no signal. The distortions in the integra-
tion result caused by an abrupt signal step at the
boundaries take place at |s| < T/2zm, where T is the
response time. For the experimental data (Fig. 2), the
estimate of the size of this region is |s| < 1.5 μs/m. In
this region, there is a strong deviation of the amplitude
coefficient ξL from the expected one (Fig. 6). There-
fore, it was excluded when finding the parameters of
the layer. It should be noted that the response  is
localized. The amplitude coefficient ξLT is small for
small s. Thus, the distortions of the considered type
are uncharacteristic for it.

It is possible to use the approximation of model
equation (16) to quantitatively estimate the error in
determining the speed of sound and the thickness of
the investigated layer. For small values of the parame-
ter s, the approximate dependence

(20)

is linear, which is confirmed by the experimental
observations (Fig. 4). The desired speed CL and thick-
ness d are solutions of the system of equations

(21)

where the coefficients a and b are determined from the
experimental dependence of τL(s). The solution of sys-
tem (21) is as follows

(22)
Let the speed of sound in water be known with an

error  and the error in determining the scanning
coordinate increase linearly with a displacement from the
focus:  Then the variations in the speed of sound
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Table 1. Measurement results
Parameter Measured values Known and reference data

Thickness d, mm 1.15 ± 0.01 1.155 ± 0.003
Longitudinal wave velocity CL, m/s 5830 ± 45 5800 ± 30 (measured by echo-pulse method)

5770 glass, sheet [12]
Transverse wave velocity CT, m/s 3450 ± 25 3430 glass, sheet [12]
Density ρ, g/cm3 2.6 ± 0.2 2.51 glass, sheet [12]

Fig. 6. Relative response amplitudes: measured ξL (–),

ξLT (---) and calculated (···), (·-·-).
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in the water lead to a time error in the recording of a signal
linearly dependent on the spatial coordinate:

(23)

and, consequently, to a shift of the spectrum of plane
waves with respect to the parameter s by the quantity

 The stretching of the measured spatiotem-
poral signal by a factor of  with respect to the z
coordinate leads to a contraction of the spectrum by a
factor of . Thus, taking the errors into account,
model Eq. (20) becomes

(24)

Errors in determining coefficients a and b (21) can
be estimated as follows:

(25)

Then the relative error in determining the velocity
 can be expressed in terms of the partial derivatives

of Eq. (22) with respect to the parameters a and b:

(26)

Taking into account relations (21), the error  is

(27)

Similarly, it can be shown that the relative error in
determining the layer thickness has the same value:

The obtained equations make it possible to numer-
ically estimate the measurement errors. For example,
the error of the mechanical scanner is 10 μm when the
transducer is displaced from the focal plane by 10 mm,
and the relative errors in measuring the velocity and
thickness will be 0.1%. At the same time, the deviation
of the speed of sound in water,  = 3 m/s, and the
ratio of the speeds,  ensure a measurement
error of  Thus, the measurement result
is very sensitive to a change in the speed of sound in the
immersion liquid. Given that the temperature coefficient
of the speed of sound in water in the temperature range of
20–30°C is approximately 2 m/(s °C) [1], during the
measurements it is necessary to stabilize and measure
the temperature of the immersion medium.

CONCLUSIONS
A method was developed to measure the parameters

of an isotropic layer by the spatiotemporal signal of a
pulse acoustic microscope recorded as a function of the
time and magnitude of the displacement of the focused

ultrasonic element of the microscope perpendicular to
the sample surface. The decomposition of the data by the
pulse plane waves used in the work makes it possible to
measure their delays in the layer and relative amplitudes
depending on the direction of propagation without
knowing the transfer function of the ultrasonic element.
The velocities of the longitudinal and transverse waves, as
well as the layer thickness, are calculated from the delays
of the plane waves’ spectral components, and the density
is computed from the amplitudes of these components.
The performed analysis of the measurement error
showed that the boundedness of the spatial range of the
signal recording distorts the plane waves’ spectrum in the
region of small angles of incidence, which it is expedient
to exclude when determining the required parameters. It
was also found that the measurement error is strongly
influenced by the variation of the speed of sound in the
immersion medium. The results of the theoretical sub-
stantiation of the method were confirmed experimentally
by examining the test sample using an acoustic micro-
scope with a central frequency of 50 MHz.
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