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Abstract—The transfer matrix method was used to analyze the acoustical properties of stepped acoustic reso-
nator in the previous paper. The present paper extends the application of the transfer matrix method to ana-
lyzing acoustic resonators with gradually varying cross-sectional area. The transfer matrices and the resonant
conditions are derived for acoustic resonators with four different kinds of gradually varying geometric shape:
tapered, trigonometric, exponential and hyperbolic. Based on the derived transfer matrices, the acoustic
properties of these resonators are derived, including the resonant frequency, phase and radiation impedance.
Compared with other analytical methods based on the wave equation and boundary conditions, the transfer
matrix method is simple to implement and convenient for computation.
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1. INTRODUCTION
This paper is a sequel to the previous paper [1], in

which the transfer matrix method was applied in the
analysis of stepped acoustic resonator, and the merits of
this method in calculating the acoustic properties of
stepped acoustic resonator were revealed. Compared
with other analytical methods based on the wave equa-
tion and boundary conditions, the transfer matrix
method is simple to implement and convenient for com-
putation. Based on the derived transfer matrix method,
important acoustic properties of stepped acoustic reso-
nator, such as the resonant frequency, phase and radia-
tion impedance, were calculated quite efficiently.

A stepped acoustic resonator is composed of two or
more sub-tubes with different diameters and has one or
more abrupt variations of cross-sectional area in the axial
direction. With such a simple geometric construction,
the stepped acoustic resonator can be manufactured eas-
ily and cheaply. However, with the increase of sound
pressure level, especially when the sound field becomes
nonlinear, much more energy loss occurs at the location
of abrupt variation of cross-sectional area compared with
that in a smooth transition with gradually varying cross-
sectional area. Hence a sub-tube with gradually varying
cross-sectional area is often inserted between two sub-
tubes with different diameters to reduce energy loss, and
the stepped acoustic resonator is transformed into a
stepped acoustic resonator with gradually varying cross-
section along the axial direction [1–5].

In practice, four types of gradually varying geometric
shape are commonly used: tapered, trigonometric, expo-

nential and hyperbolic [6, 7]. Among these four types of
variation, the tapered variation is the easiest type for
manufacture. Even though, compared with stepped
acoustic resonators with abrupt cross-section, the manu-
facturing of all types of gradually varying resonators is
time-consuming, especially for large-size resonators.
Nonetheless, in order to obtain standing waves with long
wavelength and large amplitude, a stepped acoustic reso-
nator with gradually varying cross-sectional area in the
axial direction is a good choice [2–5].

This paper extends the transfer matrix method to ana-
lyzing four types of acoustic resonators with gradually
varying cross-sectional areas. For brevity, the four types
of variation are labeled as “tap”, “tri”, “exp”, and “hyp”
in the following figures, equations and tables. This paper
is organized as follows: firstly, the mathematical repre-
sentations of each type of shape variation and the sound
field in each types of sub-tube are introduced in section 2;
next, the transfer matrix and the resonant condition for
each type of acoustic resonator are derived in section 3;
then, based on the derived transfer matrix, the acoustic
properties of each type of acoustic resonator are calcu-
lated, such as the resonant frequency, phase and radia-
tion impedance in section 4 and 5; finally, conclusions
are given in section 6.

2. GRADUALLY VARYING SHAPE
AND SOUND FIELD

2.1. Gradually Varying Geometric Shape
Four types of gradually varying geometric shape:

taper, trigonometric function, exponential form and
hyperbola, are shown in Fig. 1. The cross-sectional1 The article is published in the original.
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area  at location  in the axial direction of any
gradual shape is mathematically described by [6, 8]

(1)

where  is an undetermined constant and  is the shape
factor. The radius of the cross sectional area at  is 
and the diameter is . The specific cross-sectional area

 and shape factor  for the four types of variation
under consideration are shown in Table 1.

2.2. Sound Field

The sound field  in an acoustic sub-tube
with cross-sectional area  is governed by the
Webster horn equation [8]

(2)

Let  be the angle frequency and ,
and we have

(3)

where the subscript  in  represents the forward
traveling wave and  in  represents the backward
traveling wave; and  are undetermined func-
tions and satisfy
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where  is the wave vector. Consequently, the particle
velocity is

(5)

Equations (3) and (5) give the general expression
for the acoustic pressure  and particle velocity

 in a gradually varying acoustic sub-tube,
respectively. For each kind of variation, the expres-
sions of acoustic pressure  and particle velocity

 are then derived:
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Fig. 1. Gradual geometric shapes: (a) tapered, (b) trigonometric, (c) exponential, and (d) hyperbolic.
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Table 1. Shape factor  and cross-sectional area  of four kinds of gradually varying shape
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3. TRANSFER MATRIX AND RESONANT 
CONDITION

3.1. Transfer Matrix

Following Eq. (3) and Eq. (5), the acoustic pres-
sure and particle velocity at two ports, i.e. the input

port at  and the output port at , in a gradu-

ally varying acoustic sub-tube can be given by:

(10a)

(10b)
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where M, m, N and n are undetermined coefficients.
As a result, the transfer matrix that connects the two
ports becomes [1–5, 9]
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(12)

where the attenuation coefficient

 and 

[1–5, 10]. For a standing-wave resonator,

 and , so the coefficients in

matrix (12) are

, ,

, ,

and

, ,

, .

Based upon the matrix in Eq. (12), the transfer
matrix for each kind of area variation is derived:
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.
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, .

Hyperbolic
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,

,

.

3.2. Resonant Condition

Let the acoustic resource be mounted at the open

end of the input port at . Since the output port at

 is a closed end, such a sub-tube is an acoustic
resonator/standing-wave tube with gradually varying
cross-sectional area. For a gradually varying acoustic

resonator whose length is roughly odd times of a quar-
ter of the wave length and without considerable acous-

tic attenuation, we have  and  in the

transfer matrix Eq. (12) when the sound field is reso-
nant. As a result, the resonant condition is [1, 5]
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The resonant condition calculated with Eq. (17) for

each gradually varying acoustic resonator is given in

Table 2. Since all the derived resonant conditions are

transcendental equations, these acoustic resonators

are dissonant. Hence, these gradually varying acoustic

resonators could be used to obtain a high-amplitude

acoustic standing-wave field [1–5].

4. TRANSFER FUNCTION AND PHASE

In this section, the transfer functions and phases of

the four kinds of gradually varying acoustic resonator

are computed numerically.

In the previous paper, the transfer function of
sound pressure (SPTF) of a gradually varying acoustic
resonator was defined as [1–5]

(18)

where  is the acoustic pressure at the input port

( ) and is that at the output port ( ).

In the numerical simulation in this study, four
gradually varying acoustic resonators are considered,
which have the same diameter at the input port (49 mm)
and the same diameter at the output port (15 mm),
and they also have the same length (330 mm).
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The transfer matrices in Eq. (14)–(16) are then
used to calculate the transfer functions and phases of
the four acoustic resonators with gradually varying
shapes, and the results of the transfer functions are
shown in Fig. 2 and the results of the phases are shown
in Fig. 3. For comparison, the transfer function and
the phase of a two-step acoustic resonator with
abruptly varied cross-sectional area are also shown in
Fig. 2 and Fig. 3, respectively. For brevity, the two-
step acoustic resonator is labeled as Stas [1, 2]. The
diameter of one sub-tube is 49 mm and that of the sec-
ond sub-tube is 15 mm, corresponding to the size of
the input port and the output port of the four simu-
lated gradually varying acoustic resonators, respec-
tively. Moreover, both sub-tubes have the same length
(165 mm), so the total length of the two-step acoustic
resonator (330 mm) is the same as the lengths of the
four gradually varying acoustic resonators.

Figure 2 shows that, unlike the two-step acoustic
resonator, the resonant frequencies of the four gradu-
ally varying acoustic resonators at the peaks and the
valleys of SPTF do not distribute evenly in the fre-
quency domain. All the four gradually varying acous-

tic resonators are dissonant: at peak resonant frequen-
cies, the length of the resonator is about odd times of a
quarter of the wavelength; at valley resonant frequen-
cies, the length of the resonator is about even times of
a quarter of the wavelength. In addition, for all resona-
tors, the SPTF at the peak resonant frequency
decreases with frequency, and for each resonator, the
maximum SPTF located at the first peak resonant fre-
quency exceeds 40 dB. Furthermore, for the two-step
acoustic resonator, some of the SPTFs at the valley
resonant frequencies are zero, but for the four gradu-
ally varying acoustic resonators, all the SPTFs at val-
ley resonant frequencies are greater than zero.

Figure 3 shows that for all resonators, including the
two-step acoustic resonator and the four gradually
varying resonators, the absolute values of phase at the

peak resonant frequencies are about , and those at

the valley resonant frequencies are about  or .

In addition, an acoustic sub-tube with tapered
shape and the simulated sizes is also manufactured,
since this shape variation can be most easily machined
among the four kinds of gradually varying acoustic

90°
0° 180°

Fig. 3. Phase of gradually varying acoustic resonator and two-step resonator.
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Fig. 4. Impedance of gradually varying acoustic resonator and two-step resonator: (a) amplitude, (b) real part and (c) imaginary
part.
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resonators. The simulated and measured acoustic
properties of a stepped acoustic resonator formed by
the sub-tube with tapered shape will be reported in the
next paper.

5. IMPEDANCE

The radiation impedances at the input ports of the
four gradually varying acoustic resonators and the
two-step acoustic resonator are also calculated with
the transfer matrixes in Eqs. (14)–(16), and the results
are shown in Fig. 4.

Figure 4a shows that the amplitudes of radiation
impedance at the valley resonant frequencies of the
four gradually varying acoustic resonators decrease
with frequency, but those of the two-step acoustic res-
onator display different behavior. The maximum

amplitude exceeding  is located at the

second valley resonant frequency. However, the
amplitudes at the peak resonant frequencies all
approach zero for all resonators, including the four
gradually varying resonators and the two-step acoustic
resonator.

Figure 4b shows that for the four gradually varying
resonators, the real parts of radiation impedances at
the valley resonant frequencies also decrease with fre-
quency, and the real parts of the radiation impedances
of all resonators, including the two-step acoustic reso-
nator, are very close to the corresponding amplitudes
shown in Fig. 4a. Interestingly, the real parts of radia-
tion impedance at the peak resonant frequencies of all
acoustic resonators are zero.

Figure 4c shows that for each acoustic resonator,
the absolute values of the imaginary parts of radiation
impedances at the valley resonant frequencies are
much smaller than both the amplitudes and the real
parts of radiation impedances, but the imaginary parts
of radiation impedances at the peak resonant frequen-
cies are not zero.

6. CONCLUSIONS

The transfer matrix method was extended to ana-
lyze the acoustical properties of acoustic resonators
with gradually varying cross-sectional areas in this
paper. For each one of four kinds of gradually varying
acoustic resonator: tapered, trigonometric, exponen-
tial and hyperbolic, the transfer matrix is first derived,
and then the resonant condition is determined, along
with other acoustic properties such as resonant fre-
quencies and radiation impedance.

Numerical simulation of four acoustic resonators
with gradually varying cross-sectional areas and a two-
step resonator with abrupt variation in cross-sectional
area shows that for each resonator, the transfer func-

tion in sound pressure and the resonant frequencies is
unevenly distributed in the frequency domain, and the
gradually varying acoustic resonators are dissonant.

For all resonators, the transfer functions at the
peak resonant frequencies decrease with frequency;
moreover, the absolute values of phase at the peak res-

onant frequencies are all about , and those at the

valley resonant frequencies are about  or .
However, the transfer functions at the valley resonant
frequencies are all greater than zero for the four grad-
ually varying acoustic resonators, but for the stepped
resonator, the values at some valley resonant frequen-
cies are zero.

The variation of radiation impedance at the input
port shows similar pattern of variation of the transfer
function of sound pressure. Both the amplitudes and
the real parts of radiation impedances at the valley res-
onant frequencies decrease with frequency for each
gradually varying acoustic resonator, but not for the
two-step acoustic resonator. The real parts of radiation
impedances at the peak resonant frequencies of all
acoustic resonators are zero, but the imaginary parts of
radiation impedances at the peak resonant frequencies
are not zero.
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