
651

ISSN 1063-7710, Acoustical Physics, 2016, Vol. 62, No. 6, pp. 651–658. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © A.I. Korol’kov, A.V. Shanin, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 6, pp. 648–656.

High-Frequency Wave Diffraction by an Impedance Segment
at Oblique Incidence

A. I. Korol’kov and A. V. Shanin
Faculty of Physics, Moscow State University, Moscow, 119991 Russia

e-mail: korolkov@physics.msu.ru
Received December 14, 2015

Abstract—The plane problem of high-frequency acoustic wave diffraction by a segment with impedance
boundary conditions is considered. The angle of incidence of waves is assumed to be small (oblique). The
paper generalizes the method previously developed by the authors for an ideal segment (with Dirichlet or
Neumann boundary conditions). An expression for the directional pattern of the scattered field is derived.
The optical theorem is proved for the case of the parabolic equation. The surface wave amplitude is calcu-
lated, and the results are numerically verified by the integral equation method.
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INTRODUCTION
The plane problem of diffraction by a segment is

one of the classical problems of diffraction theory. The
geometry under consideration represents a section of
the three-dimensional problem of diffraction by a
strip, which is of practical value for acoustics and
radiophysics. Many papers consider a segment with
ideal boundary conditions. A brief review of these
papers can be found in [1]. In addition, in [1], the
problem of diffraction by an ideal segment was solved
by us in the parabolic equation approximation for the
case of oblique incidence. Note that one of the first
attempts to apply the parabolic equation approach to
the problem of diffraction by an ideal strip was made
in [2]. In this paper, we extend the results obtained in
[1] to the case of impedance boundary conditions.

The problem of diffraction by an impedance seg-
ment has been far less studied, and no exact solution to
this problem has been obtained. An attempt to con-
sider the problem analytically was made in [3, 4]. In a
number of publications, the problem was solved by
various approximate methods. In [5, 6], the problem
was solved by constructing a diffraction series; in [7,
8], by numerically solving a pair of integral equations;
in [9–11], by using a hybrid technique combining ana-
lytic and numerical methods; in [12], by the approxi-
mate Wiener–Hopf method; and in [13], by modified
physical optics theory. The results obtained in the
cited publications are cumbersome and mainly derived
by time-consuming calculations. In this paper, we
propose a simple solution to the impedance segment
problem, which is valid in the high-frequency approx-

imation for the case of oblique incidence and relatively
small impedance values.

FORMULATION OF THE PROBLEM
Let, on the  plane, the total field  satisfy

the Helmholtz equation

(1)

everywhere except for the segment  
(see Fig. 1), on the sides of which the following
impedance boundary conditions are satisfied:

(2)

where n is the normal vector to the strip (it points
upward in the upper half-plane and downward in the
lower half-plane) and  is the impedance. The imped-
ance obeys the condition of no energy radiation:

(3)
The time dependence is chosen so that a wave

propagating in the positive direction has the form
 i.e., the time dependence of all the variable

quantities has the form  We assume that the
wavenumber k has a small positive imaginary part
according to the principle of ultimate absorption.

The total field is the sum of the incident field 
and the scattered field 

(4)
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where

(5)

Here,  is the angle of incidence. In addition, it is
necessary to satisfy the Meixner conditions at the ver-
tices and the Sommerfeld radiation conditions at
infinity.

We introduce the directional pattern of the scat-
tered field 

(6)

TRANSITION TO THE PARABOLIC 
APPROXIMATION

Let us consider high-frequency wave diffraction at
oblique incidence; i.e., we assume that the following
conditions are satisfied:

(7)

We study the wave process in which the wave prop-
agation direction is nearly parallel to the x axis and the
angular spectrum of waves is sufficiently narrow. In
this case, the parabolic approximation is valid [14].
The transition to the parabolic approximation is as fol-
lows. From the total field, we separate the oscillating
factor

and replace the Helmholtz equation by the parabolic
equation

(8)

The parabolic approximation is a standard tool of
diffraction theory [15, 16]. Applicability of the para-
bolic approximation to problems of diffraction by
screens is discussed in more detail in [17].

In the parabolic approximation, the incident wave
has the form

(9)

in
in inexp{ cos sin }.ix ku ik y= θ θ−�

inθ

in( ):,f θ θ�

( )( )−= θ +
π

θ = +

θ

=

�

�

�

1 2sc
in

2 2

( , ) , )
2

tan

(

,

,

.

ikr o k
i

k

y x

u x y f
r

x

e r

r y

in1, 1.ka θ@ !

exp( ) ,u ikx u=�

2

22 0.ik u
x y

⎛ ⎞∂ ∂+ =⎜ ⎟∂ ∂⎝ ⎠

2
in in

inexp .
2

u ikx iky
⎧ ⎫θ= − − θ⎨ ⎬
⎩ ⎭

We construct a parabolic analog of Eq. (6). With
distance from the strip, for fixed a and k, the scattered
field has the form

(10)

Here,

(11)

is the Green’s function of the parabolic equation of an
infinite plane. We assume that the quantity S rep-
resents the directional pattern of the parabolic prob-
lem. From comparison of Eqs. (10) and (6), we obtain
the relation between the directional patterns 
and 

(12)
The approximate nature of the above formula is

determined by the fact that the parabolic approxima-
tion is valid for only a narrow angular spectrum region.
Moreover, the formula  is valid for small angles
only.

IMPEDANCE BOUNDARY CONDITIONS:
THE MALYUZHINETS APPROACH

In monograph [18], a method was developed for
reducing impedance boundary problems to problems
with Dirichlet conditions. The idea of the method is
fairly simple. In our case, it can be described as fol-
lows. Instead of the field , we consider the field

(13)

The upper sign corresponds to the field in the
upper half-plane, and the lower sign, to the field in the
lower half-plane. Operators  commute with the par-
abolic equation operator; i.e., the field  satisfies
the parabolic equation. By virtue of Eq. (2), 
satisfies the Dirichlet boundary conditions

Hence, it is necessary to determine the solution to
the diffraction problem for a strip with the Dirichlet
boundary conditions (such a solution was obtained in
[1]) and then to apply the inverse operator  to the
aforementioned solution.

Instead of directly calculating the inverse operator,
we do something simpler; namely, we select a solution
that satisfies the impedance boundary conditions.

SOLUTION TO THE PARABOLIC EQUATION
Let us recall the main properties of the parabolic

equation. First, since Eq. (8) involves the first deriva-
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tive with respect to x, the parabolic equation describes
only waves propagating from left to right. Second, in
any region  without obstacles, the field

 is described by the integral formula

(14)

where  is given by Eq. (11). Hence, if we deter-
mine the field  on the line  
the problem will be solved. We can naturally separate
the plane in four regions. In the region 

, we denote the field as  in the region
 , as  in the region 

, as  and in the region , as  (see
Fig. 2).

Field  represents only incident plane wave
(9). Field  should satisfy the conditions

(15)

(16)

while field  should satisfy the conditions

(17)
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Let us show that the expressions for the fields
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satisfy conditions (15)–(18). As an example, we con-
sider  First of all, despite the presence of expo-
nentially growing factors, convergence of the integrals
is ensured by the small positive imaginary part of k
and, as a consequence, by the superexponential
descent of Green’s function (11). Condition (15) is
ensured by the first row of Eq. (21) and the fact that
superexact formula (18) is continuous in x. Let us pro-
ceed to the second condition. We apply operator  to
Eq. (19). Note that operator  commutes with the
integral operator. Then, we have

(23)

Function  is continuous (this is ensured by the
second term in the second row), and, therefore, 
contains no delta function. Function (23) is odd;
therefore, we obtain
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Formulas (19) and (20) represent the fields  and
 Using the values obtained on the line  we can

calculate the field  according to Eq. (14).

CALCULATION OF THE DIRECTIONAL 
PATTERN S(θ, θin)

The directional pattern can be calculated by the
formula

(25)

The latter expression follows from Eq. (14). Let us
prove this. The field  that forms in the region

 is expressed as

(26)

Now, in the latter expression, we pass to the limit of
large  for constant  We obtain Eq. (10)
with directional pattern (25).

From  and , we select the scattered components
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Now, using Eqs. (28)–(31) and (25), we determine
the directional pattern

(32)

where

(33)

Let us calculate integral (33). For this, we represent
it in the form
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where

Integrating Eq. (34) by parts, we obtain

(35)

Formulas (32) and (35) give the expression for the
directional pattern in terms of single quadratures.

OPTICAL THEOREM
In [1], we introduced the notion of the total scat-

tering cross section for the parabolic problem. We also
proved the optical theorem for a strip with ideal
boundary conditions. Below, we formulate the optical
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tions. The theorem is formulated without proof,
because the latter is analogous to that given in [1].

Theorem. The total scattering cross section Σ =

  is related to the forward scatter-

ing amplitude  as follows:

(36)

The second term appearing on the right-hand side
of Eq. (36) and taken with the minus sign is called the
absorption cross section, which represents the energy
absorbed by the strip. The sum of the absorption cross
section and the total scattering cross section is called
the extinction cross section (see [19, 20]).

THE SURFACE WAVE
We return to the solution given by Eqs. (28) and

(30). The term

corresponds to the surface wave and the surface half-
shadow (i.e., the zone of surface wave formation) in
the region   We represent it in the
form
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The first term appearing in Eq. (39) represents the sur-
face wave, and the second term represents the edge
wave decaying as  along the strip. For

, it is necessary to use the second asymptot-
ics from Eq. (38); i.e., in this case, the expression for
the field contains only the edge wave whereas the sur-

face wave is not excited. The case of  ~  cor-

responds to the transition region between the asymp-
totics, i.e., the half-shadow zone. The length of the

half-shadow along the x axis is on the order of 

We denote the surface wave amplitude as

(40)

In Appendix A, the surface wave amplitude is cal-
culated by solving the exact problem by the Wiener–
Hopf method. Conditions under which the exact
amplitude is close to A are determined.

NUMERICAL RESULTS
The above results were tested for correctness by

numerical simulation. A comparison with the exact
solution obtained by the integral equation method (see
Appendix B) was carried out.

It is well known that the parabolic approximation
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impedance boundary conditions, another important
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approximation also yields results close to exact at the
boundary of its domain of applicability. Figure 3 shows
the results of numerical simulation for 
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expect, with an increase in the impedance value, the
accuracy of the parabolic solution decreases.

CONCLUSIONS
In this paper, we extended the ideas described in

[1] to the case of diffraction by an impedance strip. We
derived an expression in terms of single quadratures
for the directional pattern in the parabolic approxima-
tion. In addition, we numerically verified the results.
We also formulated the optical theorem for the para-
bolic problem and calculated the surface wave ampli-
tude.

APPENDIX A.
SOLUTION OF THE IMPEDANCEHALF-PLANE
PROBLEM BY THE WIENER–HOPF METHOD
Below, we obtain an exact solution to the problem

of diffraction by an impedance half-plane and calcu-
late the surface wave amplitude. The resulting expres-
sion is compared with Eq. (40).

Let the impedance half-line occupy the region
  Let boundary condition (2) be satisfied

on the impedance half-plane. We solve the problem
for Helmholtz equation (1) with incident wave (5).
Using the fact that the impedance is taken as the same
on both sides of the half-plane, we represent the scat-
tered field as the half-sum of symmetric and antisym-
metric components:
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of calculation by Eq. (32).
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An exact solution to Eq. (43) was obtained in [21]
by direct factorization of symbol  Let us write the
formal solution. We assume that

(48)

where function  is analytic and has no zero val-
ues in the upper half-plane and function  has
similar properties in the lower half-plane (in addition,
the growth requirements are satisfied, see [22]). Then,

(49)

(50)

The scattered field formed at the impedance plane can
be calculated by inversion of Eq. (45):

(51)

Now, we proceed to calculating the surface wave
amplitude. We assume that function  has a pole

at  =  Let the residue at the pole be

(52)

The contribution to the field because of the aforemen-
tioned residue is the surface wave

(53)

Thus, the surface wave amplitude is

(54)

We expand  in a Taylor series at the point 

(55)

where  We assume that  and η are

small. In addition, function  is regular near point
–k. Then,
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As a result, we obtain an approximate value of the sur-
face wave amplitude for the antisymmetric problem:

(56)

The Wiener–Hopf equation for the antisymmetric
problem is

(57)

where

(58)

(59)

(60)

The antisymmetric component of the surface wave
amplitude is calculated in a similar way:

(61)

For the total surface wave amplitude, we obtain

(62)

Thus, we have derived an expression for the ampli-
tude, and this expression completely coincides with
Eq. (40); i.e., the parabolic approximation adequately
describes the surface wave contribution under the con-
dition that  and η are small.

APPENDIX B.
INTEGRAL EQUATION METHOD

To verify Eq. (32), we solved the diffraction prob-
lem numerically by the integral equation method. As
in Appendix A, the scattered field was represented as a
combination of symmetric and antisymmetric compo-
nents (see (42)).

In the antisymmetric case, we have the following
integral equation (see [23]):

(63)
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(64)
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 is the Hankel function of the first kind, and
 is the double-layer potential:

(65)

Here,  is the antisymmetric component of the scat-
tered field  At the strip, the double-layer potential

 is related to  by a simple formula:

(66)

The antisymmetric part of the scattering pattern is cal-
culated as

(67)

In the symmetric case, the following integral equa-
tion is valid:

(68)

where  is the double-layer potential:

(69)

Here,  is the symmetric component of the scat-
tered field  The symmetric part of the directional
pattern is calculated as

(70)

Equations (63) and (68) are solved numerically by
standard methods, and Eqs. (67) and (70) are used to
calculate the symmetric and antisymmetric parts of
the directional pattern. The directional pattern

 is calculated according to the formula

(71)
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