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INTRODUCTION

The term “inverse problem of nonlinear acoustics”
(IPNA) was used by one of the authors in review [1],
devoted to the 70th birthday of R.V. Khoklov. Later,
this review was published in [2]. In these years, tomo�
graphic problems began do be solved [3], which were
directed at reconstructing the spatial distribution of
the nonlinear elasticity moduli of a medium from
acoustic scattering data. Today, such nonlinear prob�
lems are being actively studied in relation to creating
medical tomographs [4]. The number of inverse prob�
lems also includes estimation of the contact roughness
of abutting surfaces [5], methods for profiling chan�
nels of variable cross section [6], and nonlinear diag�
nostics of media [7]. The stages of formulating the cor�
responding direction—nonlinear acoustic diagnos�
tics—are reflected in reviews [8, 9]. Nonlinear
diagnostics have acquired a special role in medical
applications [10].

However, despite the important applied orienta�
tion, the basic aspects of this direction remain under�
developed. A particular lag behind current require�
ments is observed in studying IPNA related to strongly
distorted high�intensity waves containing shock
fronts. An example is synthesis of the spatiotemporal
structure of a field in a radiating system that ensures
high�density energy of the field in the focal region.

This is related to the important physical problems of
localizing wave energy and to the theory of strongly
nonlinear waves [11]. Below we discuss formulation
and analysis of IPNA.

INTENSIFICATION OF ACTION 
DURING SHOCK FRONT FORMATION

We show using simple examples how to intensify the
action on a medium via shock front formation. We will
proceed from a Burgers�type equation or its generaliza�
tion to wave beams—the KZK equation [12–16].

In order to simplify writing of the formulas that will
appear as a result of calculations, we write the general
equation for an axially symmetric beam in normalized
form:

(1)

When writing (1), dimensionless variables are used:

(2)

Here, p is acoustic pressure and x is a coordinate along
the beam axis. The axis coincides with the direction of
wave propagation. Further, r is a coordinate in the
plane orthogonal to the beam axis, and  is
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time in a coordinate system moving along with the
wave at sound velocity  Variables (2) are normalized
to the amplitude value of pressure  characteristic
wave frequency ω, characteristic beam radius a, and
nonlinear length , the distance at which a disconti�
nuity forms in a plane wave harmonic at the input. In
addition to scale  Eq. (1) has two other parameters
with the dimension of length. These are the character�
istic distances of the manifestation of diffraction and
dissipative effects:

(3)

The ratios of these lengths form two dimensionless
numbers:

(4)

The case of strongly pronounced nonlinearity corre�
sponds to the smallness of numbers (4). Here, the
nonlinear effects manifest themselves at smaller dis�
tances than dissipative and diffraction phenomena.

Let us first consider plane waves. Ignoring the
dependence of acoustic field on transverse coordinate
R, we obtain the Burgers equation from Eq. (1) [13,
14]. Hence follows the integral relation

(5)

Here, the overbar means averaging over the period (if
the signal is periodic in time) or integration over the
entire domain of variable θ in which the signal at a
given point in space differs from zero. Since the mean
from the derivative  is equal to zero, relation (5)
transforms to

(6)

The left�hand side of (6) is proportional to the
decay rate of the volumetric density of energy E trans�
ferred by the wave, or of its intensity I:

(7)

For the harmonic initial wave propagating in a dissipa�
tive medium according to the laws of linear acoustics,
from (6) follows the obvious result: amplitude 
attenuates by an exponential law:

(8)

For a single shock wave with a normalized pressure
jump , we obtain from formula (6) [13]
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In contrast to linear attenuation (8), which depends
on the dissipative properties of the medium (or on
number Γ), nonlinear attenuation is determined only
by the pressure jump  at the shock front; it does
not depend on number Γ. In addition, in contrast to a

periodic signal having a finite energy  =  for

shock wave (9), integral  should be calculated in
infinite limits. Here, the integral diverges, whereas the

energy decay rate with distance Q =  is finite.
Thus, when using relation (6) in different cases, it is
convenient to calculate either its left� or right�hand
side.

In cases when the dissipation is weak  and
there is no discontinuity, it is possible to approximately
calculate losses after substituting into the right�hand
side of (6) the solution for a nonlinear Riemann (sim�
ple) wave:

(10)

Here,  is an arbitrary function giving the initial
waveform for  The result for periodic

 and aperiodic  signals has
the form

(11)

As an example, let us consider a periodic signal in
the form of an “inverse saw.” One of its periods is shown
by curve 1 in Fig. 1. During propagation, the profile
sequentially takes the shape shown by curves 2–4. After
a steep leading edge forms (curve 3), nonlinear atten�
uation begins—a decrease in the peak pressure (curve 4)
and wave energy independent of the dissipative param�
eters of the medium.
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Fig. 1. Nonlinear evolution of “inverse saw” (curve 1)—its
transformation into a common saw�tooth wave (curve 3)
attenuating due to shock front formation. The increase in
the number of curves 1–4 corresponds to an increase in
distance passed by the wave in a nonlinear medium.
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The wave profile is described by the Riemann solu�
tion, which for the positive half�period of the wave in
Fig. 1 has the form

(12)

Calculation of losses using formula (11) yields

(13)

Clearly, the loss rate has two peculiarities: for  and
 which result from the infinitely large values of

derivative  In the vicinity of these peculiarities,
it is necessary to take into account that the steepness of
the front in a medium with finite attenuation, which is
determined by its duration  =  

cannot exceed  From (11), we find that the finite
value for Q, which can be estimated as Q ≈

 does not depend on viscosity coeffi�
cient Γ. If we consider that for , the shape of the
shock front of the wave coincides with the shape of sta�
tionary shock front (9), then we obtain 

At distances , a saw�tooth wave forms, which
attenuations due to nonlinearity. For it,

(14)

The latter result is obtained from formula (9) under
the assumption that for small attenuation coefficients,
the wave front of the attenuating wave coincides with
the stationary wave front. Since for , the ampli�
tude of the jump  and averaging over the
period is performed, i.e., result (9) needs to be divided
by  we obtain 
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This is exactly the formula that is obtained from
expression (14) if we set in it  Since the curvature
of the front, which is determined by its duration  =

 cannot exceed values of  the singularities
for  and  should be replaced by the finite
value  obtained above.

Dependence (13), (14) of the loss rate on distance
is shown in Fig. 2 for different values Γ = 0.05, 0.1,
0.15. The ratio of the maximum rate of nonlinear
losses (achievable for ) to the minimum rate of
linear losses is

(16)

For a value of the inverse acoustic Reynolds number

, we obtain  i.e., nonlinear losses are
substantially stronger than linear losses, and the peak
in Fig. 2 for  is well pronounced.

Let us now consider a wave harmonic at the input
 and set in the first formula (11)  For

the loss rate in the domain up to the formation of a dis�
continuity  we obtain

(17)

At small distances  as also follows from linear
theory (8). With an increase in z, higher harmonics are
generated, which are absorbed more strongly, and
quantity Q increases.

For , at the leading edge of the wave, a discon�
tinuity forms, and formula (17) becomes useless. At
distances , it is possible to use solution (9), but it
must be taken into account that the Riemann wave
profile is “cut” by the shock front. In the case of

, the front occupies the position  in the
coordinate system accompanying the wave. Therefore,
the “amplitude”  of the discontinuity is found
from Eq. (9):

(18)

It is easy to see that  With an increase in
distance z from 1 to  amplitude  increases
from zero to the maximum value  Then, it
asymptotically tends to zero for  At distances
somewhat exceeding unity, and at large distances 
approximate formulas [14] are valid:
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Taking this into account, we calculate the mean wave
energy:
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The position of the front  is determined from the
equation

(21)

Taking into account (21), we calculate energy (20):

(22)

Differentiating (22) over z and taking into account the
expression for the derivative of the amplitude,

(23)

which is obtained from formula (18), we find

(24)

Result (24) differs from (9) and (14) only by the fact
that here, as the function , it is necessary to use
the specific solution to Eq. (18). Figure 3 shows the
distance dependence of the attenuation rate of the
wave energy density, the initial shape of which is har�
monic.

INVERSE PROBLEM OF NONLINEAR TIME 
FOCUSING

In dispersive media, when the wave propagation
velocity depends on frequency, the decrease in the
pulse duration (compression) due to a controlled
change in the phase relations between harmonics is
usually called time focusing [13].

In nonlinear acoustics, it makes sense to use this
term as applied to a somewhat different phenomenon.
It is well known that for vanishingly small viscosity, the
solution to the Burgers equation can be interpreted as
a flow of noninteracting particles with perfectly inelas�
tic collisions [15, 16]. As well, the formation of a dis�
continuity corresponds to adhesion of particles and
the formation of a heavy macroparticle, the position
and velocity of which coincide with the discontinuity
velocity, and the mass is proportional to the amplitude
of the discontinuity. Here, the inverse problem of opti�
mal focusing reduces to finding the initial profile,
when all the particles in the wave period merge simul�
taneously [17]. In [18], it was shown that simultaneous
merging of all particles in the period corresponds to a
boundary condition in the form of an inverse saw�
tooth wave. A peculiarity of the inverse saw�tooth wave
is the formation of a discontinuity of finite amplitude
and the universality of the wave profile before and after
formation of the discontinuity. In [18], based on these
properties, an acoustic turbulence model was con�
structed as the superpositions of inverse saw�tooth
waves of different scale with the Weierstrass–Mandel�
brot spatial spectrum.

Let us rewrite the solution for a Riemann wave as
follows:
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On the plane of variables , formula (25) gives the
family of characteristics of the equation for simple
(Riemann) waves:

(26)

For this equation, the characteristics of (25) are
straight lines. The parameter for the family of straight

lines is perturbation V. The  value determines
the point of intersection of characteristic (25) with axis
θ for 

The family of characteristics for one period of the
initial sinusoidal signal is constructed in Fig. 4. For
each of the characteristics, with increasing z, the
determined value of perturbation V moves; therefore,
it is easy to follow the distortion of the time profile.
Curves 1, 2, and 3 correspond to distances

 Since the inclination of straight lines
(25) to the z axis increases with increasing V, the steep
areas of the leading edge in the wave profile are more
strongly distorted. Intersection of the characteristics
corresponds to discontinuity formation. Clearly, a dis�
continuity begins to form at a distance of  The
size of the jump reaches a maximum for 
Comparing Figs. 4 and 3, we see that the shock front
formation process, just like nonlinear energy losses, is
not concentrated in a narrow region of z values, but
“smeared” over a sufficiently extended region. There�
fore, a harmonic signal cannot be time�focused well.

The case of “ideal” focusing of the leading half�
period of the wave is shown in Fig. 5. The initial profile
is composed of segments of straight lines forming the
periodic sequence of triangles. Clearly, the character�
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istics coming from the domain  intersect the
z axis at one point; i.e., there is no “aberration” of the
characteristics. This means that the amplitude of the
shock front at point  immediately assumes the
maximum value. During subsequent propagation, it
begins to decay due to nonlinear attenuation. The
thermal and radiation action of the wave on the

− < θ <1 1,

= 1z

medium will take place in the domain  with the
maximum at point z = 1 (cf. Fig. 3).

We now consider an IPNA for time focusing in the
same sense as follows from Figs. 4 and 5, i.e., as the
problem of reconstructing the time profile ensuring
“aberrationless focusing” of the characteristics. We
require that the characteristics intersect at one point

 =  for any values of parameter V. This
means that the two relations

(27)

should coincide. However, this is possible only if Φ is a

linear function of time θ:  i.e., 

Here,   Thus, the characteristics of the
leading edge of the wave in Fig. 5 are optimally
focused.

INVERSE PROBLEM OF OPTIMAL FOCUSING

As is known, ultrasound action is intensified by
increasing its intensity. For this, many industrial and
medical applications use focusing devices. However,
in a number of problems, the main factor determining
the result of the action is not the intensity, but other
wave field parameters. Examples are the peak positive
pressure of a pulse signal or pressure gradients respon�
sible for ultrasound�induced destruction, e.g., of kid�
ney stones [19] or subcellular structures of cancer cells
[20]. The minimum pressure in the wave rarefaction
phase determines the development of cavitation in flu�
ids [21]. In addition to the listed parameters, the
kinetics of the processes is affected by the duration of
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compression and rarefaction zones, the time of shock
front growth in the profile of a signal distorted by non�
linearity, and the characteristic frequencies of the har�
monics forming this signal. Clearly, for the most effec�
tive action on a medium or a target, it is necessary to
decide which wave parameters are determining and to
synthesize the spatial and temporal structure of the
radiated wave that will maximize these parameters in
the needed spatial domain.

Ultrasound therapy [22] makes wide use of wave�
focusing devices. In the energy concentration process,
the role of nonlinear effects significantly increases. In
addition to nonlinearity, it is necessary to take into
account the complex frequency�dependent dissipative
properties of biological tissues, as well as diffraction in
the focal region. The role of these factors when calcu�
lating the coefficient of field intensification at the
focus is discussed in detail in review [23] (sections 5
and 6).

Let us recall that during the propagation of intense
acoustic waves, shock fronts form in their profiles,
after which wave attenuation sharply intensifies. In
modern focusing devices used in medicine, field
intensities at the focus reach several kW/cm2; here,
nonlinear wave absorption is larger than linear absorp�
tion by an order of magnitude. In many situations, sat�
uration occurs; i.e., far from the source, the wave
intensity cannot exceed a certain limit, no matter how
much its initial value increases [23].

In nonlinear focusing problems, it is convenient to
use the dimensionless form of the KZK equation,
which differs from (1):

(28)

Here, the following notation is used

(29)

In contrast to formula (2), the dimensionless distance
is now counted in units of length d (this is the distance
from the surface of the source to the geometrical focus
point). The dimensionless numbers in Eq. (28) are
equal to
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For these formulas, like before, formulas (3) give the
characteristic scales of manifestation of nonlinear, dis�
sipative, and diffraction effects.

Let us present and discuss the solution to Eq. (28)
obtained by the successive approximation method for
the problem of second harmonic generation. The for�
mulas given below are a simple generalization of the
results explained in [24]. The solution of the first
approximation has the form
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In the second approximation, we find the expres�
sion for the field at the frequency of the second har�
monic. In complex representation, it has the form
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When there is no dissipation in the medium, i.e.,
 solution (33) is expressed via elementary func�
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In the presence of attenuation, when  solu�
tion (33) can be expressed via special functions:

(38)

Here,  is the integral exponential of the complex
argument:

For small values of the arguments, the expansion

 –  –  is valid, where γ is the
Euler constant. Using this expansion, we obtain a sim�
ple expression for the amplitude of the second har�
monic on the beam axis:
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ond harmonic at the focus can be calculated by the
formula

(40)

Here, Si, Ci are the integral sine and cosine. Using
formula (40) and special function tables, we can calcu�
late the ratio of the amplitudes of the second and first
harmonics at the focus:

(41)

The corresponding curves are shown in Fig. 7. Based
on these data, we can easily estimate the limits of
applicability of the successive approximation method.
We use the criterion  For example, for val�
ues of   we find the limiting value

 for which calculation by the successive
approximation method yields reliable results.

This method has a drawback: it can only calculate
weak lower harmonics. The paraxial approach is more
fruitful, making it possible to describe near the beam
axis strongly distorted wave profiles containing a large
number of harmonic spectral components. The solu�
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tion to KZK equation (28) using the paraxial approach
is sought in the form of an expansion into a series of
coordinates orthogonal to the beam axis [25]. Here,
we will use the results of the latest modified version
[26, 27] of the paraxial approximation. For the wave
intensity, in particular, the following formula is
obtained:

(42)

Here, an auxiliary spatial coordinate η was used,
related to the normalized distance z along the beam
axis by

(43)

Note that η formally coincides with expression (32)
for the phase of the first harmonic on the beam axis.
Other notation in formula (42) is as follows:

(44)

Numbers N, D introduced earlier (30) increase with
the corresponding increasing nonlinearity or diffrac�
tion.

Integrating intensity (42) over the beam cross sec�
tion, we find the total power:

(45)

Formulas (42) and (45) can be modified by introduc�
ing absorption. Here, the power will be equal to

(46)

and the intensity on the beam axis

(47)

Let us now analyze the radiation force. Averaging
with the solutions presented in [26] and modifying
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them for the case of an absorbing medium [27], we
obtain

(48)

Here we denote

(49)

The domain of applicability of formula (48) is limited
by the condition  Since the validity of this solu�
tion for the radiation force can be violated near the
focus, we set  (or ) in formula (49) for γ,
after which the condition  reduces to the follow�
ing restriction:

(50)

In particular, in the most interesting case of weak dif�
fraction and mild attenuation, the nonlinearity can be
quite strongly pronounced. For example, for values of

 and , from formulas (50) we obtain

The behavior of power (46), intensity (47), and
radiation force (48) for an increase in axial coordinate
z is shown in Fig. 8 The parameter values are assumed
equal to   Manifestations of nonlin�
earity are intensified with increasing curve number:
N = 0.01 (curve 1), 0.3 (2), 0.4 (3), and 0.5 (4). Sim�
ilar curves are shown in Fig. 9 for different parameter
values:    0.4, 0.7, and 1
(curves 1–4, respectively).

In Fig. 8a one can see that the gradual decrease in
power caused by dissipation occurs only at the initial
focusing stage. Near the geometric focus , a dip
occurs, related to the “switching on” of nonlinear
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absorption owing to the sharp increase in the wave
amplitude during its convergence. This dip worsens
with increasing nonlinearity—with increasing num�
ber N.

Figure 9a was constructed for a large value of dif�
fraction parameter D. Here, the amplification of the
field at the focus is not as significant. Therefore, the
dip on the curve for the power turns out to be not as
sharp or deep.

The intensification of the field in the focal region
can be judged from Figs. 8b and 9b, constructed for the
mean wave intensity on the beam axis.

Figures 8c and 9c show the behavior of the radia�
tion force with an increase in distance z. An increase in
nonlinearity leads to an increase in the peak value of
the force and a decrease in the area of its spatial local�
ization.

Figure 10 shows how the data of Figs. 8 and 9 can
be used for the specific problem of radiation action on
liver tissue [2], e.g., for measuring its shear elasticity by
the SWEI method [28]. The curves show the change

along the axis of the total power W in the beam focused
on an absorbing biological tissue (liver) and the radia�
tion force F. The temperature increment appearing as
a result of ultrasound absorption qualitatively behaves
the same as F. The influence of nonlinearity (solid
curves) is characterized by the ratio of focal distance d
to the length of discontinuity formation  0.5.
Clearly, the power first gradually decreases with dis�
tance due to linear dissipative losses; near the focus, a
dip appears, caused by nonlinear attenuation. The
intensity at the focus reaches a maximum; its value
decreases due to nonlinear losses at the shock front. In
contrast, the values of the peaks of the radiation force
and temperature increase with an increase in nonlin�
earity, and their widths characterizing the locality of
the action, decrease.

If shock fronts form in the region between the
transducer and the focus, nonlinear losses lead to a
decrease in the linear (for weak waves) value of the
focuser amplification coefficient K. However, in the
presence of diffraction, nonlinearity may not only
decrease, but also increase K due to the “sharper”
focusing of higher harmonics generated by the wave of
the main frequency [29]. This occurs when nonlinear
attenuation going to the focus does not lead to appre�
ciable energy losses, i.e., a saw�tooth wave, if one
forms, directly before the focus. Hence it follows that,
to obtain large K values, the nonlinear focusing
parameters should be optimized by solving the IPNA.

In many applications, a high locality of ultrasound
is required. For this, it is necessary to create the largest
radiation forces, temperature increments, or steep
shock fronts in a small volume of a medium. Mean�
while, diffraction phase shifts between the harmonics
can increase the width of the shock front, thereby
decreasing the maximum of the radiation force (tem�
perature) and increasing the dimensions of its local�
ization area. This undesirable effect can be compen�
sated by synthesizing on the transducer a profile of
complex form with certain relations of the amplitudes
and phases between the components of its frequency
spectrum. These relations are chosen such that the
joint effect of nonlinearity, diffraction, and dissipation
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leads to the formation of a shock front directly at the
focus. Thus, it is possible to transport high energy den�
sities (without substantial losses on the way from the
transducer to the focus) and organize local energy dis�
charge in the focal region, having “switched on” here
nonlinear absorption.

To synthesize the special shape of the profile, it is
necessary to solve the nonlinear inverse problem [1, 2].
Figure 11 shows the corresponding example. Clearly,
the anharmonic smooth profile (one period is shown)
is transformed during propagation, becoming discon�
tinuous as it approaches the focus.

Modern focusing systems ensure rapid heating of
tissue in the focal region by tens of degrees within
times on the order of seconds, so that natural cooling
by intensified blood flow (perfusion) cannot occur. At
high temperatures denaturation of protein molecules,
embolism of blood vessels, and destruction of tissues,
including tumorous neoplasms, occur. A change in the
structure of irradiated tissues and an increase in
“hardness” lead to intensification of their scattering
properties and an increase in shear elasticity. In principle,
temperature can also be measured remotely in undam�
aged tissues by acoustic thermography [30] (by thermal
acoustic radiation at frequencies on the order of mega�
hertz) and insonification of the heated region [31].

CONCLUSIONS

Nonlinear inverse problems, especially those
related to the use of strongly distorted nonlinear
waves, is a new important direction, which, in the
authors' opinion, should attract the attention of not
only acousticians, but also mathematicians and spe�
cialists in the field of nonlinear wave theory and med�

ical ultrasound. The aim of this review is to interest
readers in continuing this research.

ACKNOWLEDGMENTS

This work is supported by the Russian Science
Foundation. Studies performed at Nizhny Novgorod
University are supported by grant no. 14�12�00882, and
at Moscow University, by the grant no. 14�12�00042.

REFERENCES

1. O. V. Rudenko, High�power focused ultrasound: Non�
linear phenomena, shear wave excitation and medical
diagnostics, in Khokhlov Readings (Moscow State
Univ., 1996) [in Russian].

2. O. V. Rudenko, Moscow Univ. Phys. Bull., 51, 18
(1996).

3. V. A. Burov, I. E. Gurinovich, O. V. Rudenko, and
R. Ya. Tagunov, Acoust. Phys., 40, 816 (1994).

4. V. A. Burov, A. A. Shmelev, and D. I. Zotov, Acoust.
Phys. 59, 31 (2013).

5. O. V. Rudenko and Chin An Wu, Acoust. Phys. 40, 668
(1994).

6. Yu. R. Lapidus and O. V. Rudenko, Sov. Phys. Acoust.
36, 589 (1990).

7. O. V. Rudenko and S. I. Soluyan, Dokl. Akad. Nauk
298, 361 (1988).

8. O. V. Rudenko, Rus. J. Nondestructive Testing, 29, 583
(1993).

9. O. V. Rudenko, Phys.�Usp., 49, 69 (2006).

10. O. V. Rudenko, Phys.�Usp., 50, 359 (2007).

11. O. V. Rudenko, in Nonlinear Waves (Inst. Appl. Phys.
Russ. Acad. Sci., 2012), pp. 189–204 [in Russian].

12. O. V. Rudenko, Acoust. Phys., 56, 457 (2010).

0.5

0

–0.5

4

2

0

–2

–4 0
0.5

1.0

1.5

2.0

Fig. 11. Example of solution to nonlinear inverse problem of synthesizing profile of wideband periodic wave, which as a result of
joint action of nonlinearity, diffraction, and dissipation near focus transforms to a discontinuous saw�tooth wave.



428

ACOUSTICAL PHYSICS  Vol. 62  No. 4  2016

RUDENKO, GURBATOV

13. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukho�
rukov, Theory of Waves, (Lenand, Moscow, 2015), 3rd
ed., [in Russian].

14. O. V. Rudenko, S. N. Gurbatov, and C. M. Hedberg,
Nonlinear Acoustics through Problems and Examples,
(Trafford, Canada, 2010).

15. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev,
Waves and Structures in Nonlinear Nondispersive
Media, (Fizmatlit, Moscow, 2008) [in Russian].

16. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev,
Waves and Structures in Nonlinear Nondispersive
Media: General Theory and Applications to Nonlinear
Acoustics, (Springer�Verlag, Berlin 2011).

17. S. N. Gurbatov and O. V. Rudenko, Radiophys. Quant.
Electron., 58, 463 (2015). 

18. S. N. Gurbatov and A. V. Troussov, J. Phys. D: Appl.
Phys. 145, 47 (2000).

19. V. G. Andreev, V. Yu. Veroman, G. A. Denisov,
O. V. Rudenko, and O. A. Sapozhnikov, Sov. Phys.
Acoust. 38, 325 (1992).

20. V. A. Burov, N. P. Dmitrieva, and O. V. Rudenko,
Dokl. Biochemistry and Boiphysics, 383, 101 (2002).

21. V. A. Akulichev, in High�Intensity Ultrasonic Fields,
Ed. by L. D. Rozenberg, (Plenum, New York, 1971).

22. O. V. Rudenko, Herald Russ. Acad. Sci. 78, 7 (2008).

23. O. V. Rudenko, Phys.�Usp., 38, 965 (1995).

24. O. V. Rudenko, and S. I. Soluyan, Theoretical Founda�
tions of Nonlinear Acoustics, (Plenum, New York,
1977).

25. O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Sov.
Phys. Dokl., 20, 836 (1975).

26. M. F. Hamilton, V. A. Khokhlova, and O. V. Rudenko,
J. Acoust. Soc. Am., 101, 1298 (1997).

27. O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov,
J. Acoust. Soc. Am., 99, 2791 (1996).

28. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson,
J. B. Folwkes, and S. Y. Emelianov, Ultrasound Medic.
Biol., 24, 1419 (1998).

29. K. Naugolnykh and L. A. Ostrovskii, Nonlinear Wave
Processes in Acoustics (Cambridge Univ., Cambridge,
1998).

30. V. A. Burov, P. I. Darialashvili, S. N. Evtukhov, and
O. D. Rumyantseva, Acoust. Phys., 50, 243 (2004).

31. V. G. Andreev, A. V. Vedernikov, A. V. Morozov, and
V. A. Khokhlova, Acoust. Phys., 52, 119 (2006).

Translated by A. Carpenter


		2016-07-15T15:19:58+0300
	Preflight Ticket Signature




