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INTRODUCTION

The problem of diffraction by a strip with ideal
boundary conditions is one of the simplest canonical
problems of the diffraction theory. This problem was
solved by separation of variables in [1, 2]. The solution
was represented as a series of Mathieu functions.
Unfortunately, in the high�frequency case, the series
converges rather slowly and laborious computations
should be performed to achieve acceptable accuracy.

Many authors tried, but failed, to obtain a solution
analogous to the Sommerfeld solution for a half�plane
[3, 4].

In the high�frequency approximation, from the
practical viewpoint, it is convenient to use the diffrac�
tion series approach [5–7]. If the strip is large com�
pared to the wavelength of the incident wave, it is suf�
ficient to take into account only several first terms of
the Schwarzschild series. In addition, for high fre�
quencies, the diffraction problem can be considered in
terms of geometric diffraction theory [8]. However, in
the case of oblique incidence, one of the vertices of the
strip is in the half�shadow zone of the other and geo�
metric diffraction theory cannot be applied directly. In
[9], the aforementioned difficulties were overcome by
cumbersome computations.

In this paper, we consider the problem of diffrac�
tion of a high�frequency plane wave by a strip with
ideal boundary conditions (Neumann or Dirichlet) in
the case of oblique incidence. Our study is motivated
by a talk given by I.V. Andronov at the seminar “Dif�
fraction and Propagation of Waves,” held under the
supervision of V.M. Babich at the St. Petersburg
Department of the Steklov Institute of Mathematics,
Russian Academy of Sciences. The author con�

structed the solution for the case of a strip as the limit�
ing case of the solution to the problem of diffraction by
a thin elliptical cylinder [10, 11]. Separation of vari�
ables and rather subtle properties of special functions
were used. We note that the technique developed ear�
lier by us (the properties of the parabolic equation of
diffraction theory for the case of diffraction by
branched surfaces and the embedding formula
method) makes it possible to obtain a solution without
difficulty by using the error function alone. The result
obtained in this way agrees numerically with the data
reported by I.V. Andronov.

The formula closest to our result was given in [12].
There, the field that formed at the strip was deter�
mined using physical diffraction theory. As a result,
the formula obtained for the directivity lacked sym�
metry under permutation of the angle of incidence and
the scattering angle (i.e., it was nonreciprocal). Next,
the formula was made reciprocal by an artificial proce�
dure. In our paper, we actually derive anew the result
reported in [12] by using a simpler and more general
parabolic equation technique.

The structure of the paper is as follows. First, we
formulate a stationary problem for the Helmholtz
equation. We change to the parabolic approximation.
By directly solving the parabolic equation, we con�
struct an expression for the directivity of the scattered
field in terms of unique quadratures. We prove the
optical theorem for the parabolic equation and calcu�
late the total scattering cross section. In the Appendix,
we show that the expression obtained for the directiv�
ity is a particular case of the so�called “embedding for�
mula.”
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FORMULATION OF THE PROBLEM

We assume that the total field  satisfies the
Helmholtz equation

(1)

on the entire (x, y) plane except for the segment 
 (Fig. 1), on the sides of which either the

Neumann boundary conditions

(2)

or the Dirichlet boundary conditions

(3)
are satisfied. The time dependence is chosen so that
the wave propagating in the positive direction has the
form  We assume that the wavenumber k has
a small positive imaginary part in accordance with the
limiting absorption principle.

The total field is represented as the sum of the inci�

dent field  and the scattered field 

(4)
where

(5)

Here,  is the angle of incidence. In addition, it is
necessary to satisfy the Meixner conditions at the ver�
tices and the Sommerfeld radiation conditions at
infinity. We introduce the directivity of the scattered
field 

 (6)

TRANSITION TO THE PARABOLIC 
APPROXIMATION

Now, we consider high�frequency wave diffraction
in the case of oblique incidence; i.e., we assume that
the following conditions are satisfied:

(7)
We study the wave process where a wave with a narrow
angular spectrum propagates in a direction nearly par�
allel to the x axis. In this case, the parabolic approxi�
mation is valid [13]. The transition to the parabolic
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approximation is as follows. From the total field, we
separate the oscillating factor

and replace the Helmholtz equation by the parabolic
equation

(8)

Parabolic approximation is a standard tool of diffrac�
tion theory [14, 15]. The applicability of the parabolic
equation to the problems of diffraction by screens is
considered in more detail in [16].

In the parabolic approximation, the incident wave
has the form

(9)

We solve the problem as follows. It is necessary to find
a solution to Eq. (8) on the plane with the eliminated
scatterer (the segment  ) so that the
solution is continuous everywhere except for the scat�
terer, continuous on one side and differentiable at the
scatterer except for its ends, and bounded near the
ends. The solution should coincide with incident wave
(9) in the region  and satisfy the Neumann or
Dirichlet boundary conditions (given by Eqs. (2) and
(3), respectively) at the sides of the scatterer.

The main problem consists in determining the
directivity. Let us construct a parabolic analog of Eq.
(6). At fixed a and k far from the strip, the scattered
field can be represented as

(10)

Here,

(11)

is the Green’s function of the parabolic equation of the
infinite plane. By analogy with the definition of the
directional pattern in the case of the Helmholtz equa�

tion, we call  the directional pattern. We denote
the directional patterns corresponding to the Dirichlet

and Neumann boundary conditions by  and ,
respectively. From comparison of Eq. (10) with
Eq. (6), we obtain the relation between the directional

patterns  and 

(12)
The approximate nature of the formula is due to the
fact that the parabolic approximation is valid for only
a narrow region of the angular spectrum. Moreover,
the formula  is satisfied for small angles only.

SOLUTION OF THE PARABOLIC EQUATION

The main advantage of the parabolic equation is
that it simplifies description of wave propagation along
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Fig. 1. Geometry of problem.
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the x axis. Indeed, within any strip  without
any obstacles, the field  is described by the inte�
gral formula

(13)

where  is given by Eq. (11). An important prop�
erty of Eq. (13) is that it ensures the field continuity in
x, namely:

(14)

Formula (13) allows us to represent the solution to the
problem under study in terms of quadratures. Let  be
the field in the region    be the field
in the region  ; and  be the field in
the region  Then, we have

(15)

(16)

(17)

Here, the plus signs correspond to the Neumann
boundary conditions, and the minus signs, to the
Dirichlet boundary conditions. The fact that
Eqs. (15)–(17) represent the solution to the problem
can be directly verified. The functions ψ1 and ψ2 are
constructed by the reflection method.

The directional pattern is calculated as

(18)
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on the line  The latter expression follows from
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Eq. (13). Let us prove this. The field in the region 
is represented as
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In Eq. (19), we pass to the limit of large values of 
at a fixed value of  We obtain Eq. (10) with
directional pattern (18).

We transform Eqs. (15) and (16) in the region
 Note that

(20)

Therefore, we have
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where the following scattered fields are introduced:
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In Eq. (23), the upper sign corresponds to the Neu�
mann boundary condition, and the lower sign, to the
Dirichlet boundary condition.

We calculate integral (25) by integration by parts.
We obtain

(26)

Hence, we have

(27)

In Eq. (27), the dependences on the angle of incidence
and the scattering angle are separated. This formula is
a particular case of the so�called “embedding formu�
las” [17]. These formulas are fairly general. The stan�
dard derivation of a embedding formula is based on the
application of a differential operator with preset prop�
erties to the total field [18]. In the Appendix, we rep�
resent the derivation of Eq. (27) as the derivation of
the embedding formula. In addition, in the Appendix,
we ascribe physical meaning to function S; namely, we
introduce it as the directivity on a branched surface.

Formulas (27) and (23) represent the solution to
the problem of diffraction by a strip in the parabolic
approximation. It should be noted that the above solu�
tion coincides with the solution obtained in [12] accu�
rate to the substitution of   which
is valid for small angles of incidence and small scatter�
ing angles. This is astonishing, because the author of
[12] applied an entirely different technique (a combi�
nation of the geometric and physical diffraction theo�
ries) and used an artificial procedure to obtain a for�
mula satisfying the reciprocity theorem. The method
used in [12] is “subtler” than that used by us, because
geometric diffraction theory and physical diffraction
theory make it possible to correctly determine the
directional patterns of edge waves scattered at any
angles. At the same time, an evident advantage of the
parabolic equation method is the simplicity of describ�
ing half�shadow zones. In addition, Eq. (17) makes it
possible (if necessary) to determine the uniform field
asymptotics. The methods of the geometric and phys�
ical diffraction theories make it possible to construct
approximate solutions to an exactly formulated dif�
fraction problem, whereas the parabolic equation
method provides an exact solution to an approxi�
mately formulated problem.
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OPTICAL THEOREM FOR THE PARABOLIC 
EQUATION

An important tool for testing the solution to the
diffraction problem is the optical theorem, which
relates the total scattering cross section to the forward
scattering amplitude. The appearance of negative val�
ues in the total scattering cross section points to an
error in the solution. In addition, the total scattering
cross section is an important characteristic of the dif�
fraction process. Below, we introduce the notion of the
total scattering cross section and derive the optical
theorem for the parabolic equation. Calculations are
performed for a strip with Dirichlet boundary condi�
tions. A strip with Neumann boundary conditions can
be considered in a similar way.

We introduce the total scattering cross section as
the quantity

(28)

calculated for a certain fixed x to the right of the scat�
terer. Using Eq. (13), we can easily show that the result
of calculating the above integral is independent of x.
From Eq. (18) with allowance for the Parseval equality,
we obtain a formula expressing the scattering cross
section through the directional pattern:

(29)

Now, we proceed to derivation of the optical theorem.
For this purpose, we use the Green’s theorem for the
parabolic equation.

Theorem. Let, in a certain region Ω, the functions
 and  satisfy the inhomogeneous equations
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Then, the following equality is satisfied:
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where n is the outer unit normal to the boundary 
and the vector fluxes v and w are determined as
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The validity of this theorem immediately follows from
the divergence theorem.

Before we begin to prove the optical theorem, we
use of the Green’s theorem to obtain an auxiliary
expression for the directivity. We apply the Green’s
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out the region Ω shown in Fig. 2. Here,  is a com�
plex conjugate plane wave:

(33)

We obtain

 (34)

Here, we took into account the radiation conditions
and passed to the limits  and  We also
used Eq. (8). Using Eqs. (16) and (33), we obtain

(35)

The result is a formula evident from the viewpoint of
the diffraction theory and expressing the directional
pattern through the integral of the scattered field over
the scatterer surface. In a similar way, it is possible to
derive a complex conjugate expression:

(36)

To prove the optical theorem, we apply the Green’s

theorem with the functions   through�
out the region Ω shown in Fig. 3. Passing to the limits
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strip, the scattered field is zero, from Eqs. (35) and
(36) we obtain

(37)
Thus, we proved the optical theorem for a strip with
Dirichlet boundary conditions. For Neumann bound�
ary conditions, Eq. (37) is obtained in a similar way.

Calculating the quantity (27) at the point 
and eliminating indeterminacies, we obtain

(38)

Here, the upper sign corresponds to the Dirichlet
boundary conditions and the lower sign to the Neu�
mann boundary conditions. Substituting Eq. (38) in
Eq. (37) and calculating the real part, we easily obtain
the expressions for the scattering cross sections. Figure 4
shows the dependences of the scattering cross sections
on the angle of incidence for the Dirichlet and Neu�
mann boundary conditions. As one would expect, the
scattering cross sections are positive, which indirectly
proves the validity of Eq. (27). For small values of

, in the case of Neumann boundary conditions,
the scattering cross section tends to zero. In the case of
Dirichlet boundary conditions, at the zero angle of

incidence, the scattering cross sections is 
This result coincides with the first term of the series
expansion obtained in [19].

CONCLUSIONS

In the parabolic approximation, we constructed
directional patterns in terms of single quadratures for
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the problem of diffraction by a strip with Neumann
and Dirichlet boundary conditions. The expressions
obtained by us coincide in the limit with those given in
[12] and are in numerical agreement with the results
reported by I.V. Andronov.
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APPENDIX. EMBEDDING FORMULA

Formula (27) was derived by directly solving the
parabolic equation and simplifying the result through
integration by parts. At the same time, Eq. (27) repre�
sents a particular case of the so�called embedding for�
mulas, which are valid for a wide class of problems
with piecewise linear boundaries [18]. The signifi�
cance of the embedding formula is that, instead of the
incident plane wave, one considers a point source
positioned near one of the corner points of the scat�
terer. The fields of such sources are called edge
Green’s functions. The embedding formula expresses
the solution to the problem for an incident plane wave
through edge Green’s functions. Since, in the given
case, the boundary Green’s functions are calculated in
explicit form, the embedding formula yields the solu�
tion to the initial problem.

The embedding formula has a simple form and is
most easily derived by considering a branched (two�
sheeted) surface. Note that the transition to a two�
sheeted surface is unrelated to the parabolic approxi�
mation and can also be performed in the case of the
Helmholtz equation. Following Sommerfeld’s ideas,
we consider a two�sheeted surface shown in Fig. 5.
The surface is cut along the strip, and the numbers 1
and 2 indicate the way of sewing together the edges of
the cuts (the edges of the same name should be sewed
together). Incident wave (9) is incident on the first
sheet only. We introduce the directivities for the first
and second sheets  ≡  and 
From symmetry considerations, it follows that

(39)
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To prove equality (39), it is sufficient, in addition to the
initial problem, to consider a symmetric problem with
an incident wave on the second sheet and take into
account the fact that their sum is trivial.

It is evident that

(40)

The upper sign corresponds to a strip with Neumann
boundary conditions, and the lower sign, to Dirichlet
boundary conditions. We seek  As soon as

 is determined, the solutions to the problems
with Dirichlet and Neumann boundary conditions are
obtained. Note that symmetrization formula (40)
coincides with Eq. (23) and, hence, the function S
introduced as  should coincide with the func�
tion S introduced by Eq. (24). In the Appendix, we use
the definition  and introduce no new symbol for
the same function.

In addition to the representation for the two�
sheeted surface shown in Fig. 5, we need one more
representation. We deform the cuts as shown in Fig. 6.
Increasing the deformation, we arrive at the represen�
tation shown in Fig. 7. We introduce a dipole�type
edge Green’s function. For this purpose, on the two�
sheeted surface, we place sources with the strengths +1
and –1, as shown in Fig. 8. The sources are positioned
to the right of the point  We denote the edge
Green’s function (EGF) on the surface by 
Thus, the EGF satisfies the equation

(41)

θ θ

= θ θ ± −θ θ = θ θ −θ θ

in

I in II in in in

,ˆ ( , )

( , ) ( , ) ( , ) ( , ).

N DS

S S S S�
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θ θin( , )S
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v
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2
1 ( , ) ( ( 0)) ( )

2
x y x a y

x ik y

on sheet 1 and the equation

(42)

on sheet 2. We introduce no special notations for the
field on the first and second sheets, because the field
and the directional patterns are always sought on sheet 1.
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As noted above, the field on sheet 2 can be determined
from symmetry considerations.

According to Eq. (10), the EGF can be represented
in the form

(43)
Here, we introduced the notation  for the direc�
tional pattern of the EGF. Note that the directional
pattern of the EGF depends on a single variable,
whereas the directional pattern of the initial problem

 depends on two variables. Let us calculate
 From Eq. (13), it follows that

(44)
(45)

Substituting Eqs. (43) and (44) in Eq. (16), we obtain

(46)

Now, we proceed to derivation of the splitting for�
mula. We consider the field on the two�sheeted surface
with the cuts shown in Fig. 7. We apply the following
operator to the total field :

(47)

Let us analyze the properties of the field
 (48)

First, the field  satisfied the parabolic equation
everywhere except for the vicinities of the cuts. This
follows from the fact that the operator H commutes
with the operator of the equation. Second, the field

 does not contain the incident wave. This follows
from the relation

(49)
Finally, in Eq. (47), the derivative with respect to y
leads to the appearance of monopole sources at the
end points of the cuts. Let us demonstrate it for the
vertex 

We consider a narrow strip near the cut:
  According to Eq. (13),

within the strip, the field can be represented in the
form

(50)

Integration is performed over the positive axis,
because, on the negative axis, the field is zero. We
apply the operator H and perform integration by parts:

(51)

−

= θ +v
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Passing to the limit in the latter expression, we obtain

(52)

The first term appearing on the right�hand side corre�
sponds to the field without sources, and the second
term to the field of a monopole point source charac�
terized by the amplitude  and positioned at
the point  A similar procedure can be per�
formed for the second vertex.

To continue the derivation, it is necessary to prove
the uniqueness theorem for the parabolic equation. In
[16], this was done for a more complicated problem.
An equivalent integral statement of the problem was
considered, and application of the uniqueness theo�
rem was shown to be correct. In the case under study,
the uniqueness can be proved in a similar way.

Thus, as a consequence of the uniqueness of the
solution to the diffraction problem, the field 
should be a linear combination of the fields of point
sources:

(53)
Changing to the directivities in the latter expression,
we obtain

(54)

Here, we took into account the relation

(55)
Formula (54) represents the splitting formula in its
weak formulation. It involves the unknown quantity

 To express the field through the directional
pattern of the EGF, we use the reciprocity theorem.
We consider the problem with a point source of unit
strength at the point  on sheet 1 (x' is a large
positive number). The field generated by the source is
asymptotically close to the field of the incident wave
multiplied by  Setting  and applying
the reciprocity theorem, we obtain

(56)
The exponential factor appears in the latter expression
because, in Eq. (43), the directional pattern of the
point source positioned at the vertex  is so intro�
duced as if it were at the vertex (0, 0). This was done to
simplify subsequent calculations. A mathematically
stricter derivation of Eq. (56) can be found in [20],
where it is based on the Green’s theorem for a para�
bolic equation.

Substituting Eq. (56) in Eq. (54), we obtain the
splitting formula in strong formulation:

(57)

Note that, because of the evident symmetry, we have
(58)
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Therefore, the directivity given by Eq. (57) has no sin�
gularity at  but, in this case, calculation of the
limiting value requires application of the L’Hospital
rule. Eqs. (57) and (46) represent the result in terms of
single quadratures. One can easily see that Eq. (57)
coincides with Eq. (27).
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