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1 INTRODUCTION

The problem of diffraction by a strip is classical. A
large number of publications are devoted to it. The
results obtained prior to the 1960s are presented in [1, 2]
and other books. Among the approaches used, three
groups are distinguished: methods based on separation
of variables in elliptic coordinates, which leads to the
Mathew equation; methods in which the problem is
reduced to an integral equation of convolution in an
interval; and asymptotic approaches of diffraction
theory. All the approaches and representations for
solutions derived by them have limitations on the
domain of their applicability where computations are
effective. Investigations are being continued (see, e.g.,
[3–6]).

In high�frequency diffraction, i.e., for a strip whose
halfwidth p and wavenumber k form parameter 
two cases are naturally distinguished. In the first, the
incident wave travels at a finite (nonzero) angle  to
the strip plane. Here, the total effective cross section Σ
has the asymptotics [7]
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In the second case, the incidence is strictly grazing;
i.e., the visible cross section of the obstacle is null, and
for Σ the following asymptotics occur [8]:

(3)

We limited (1) and (3) only to two leading order terms.

Corrections up to orders  for nongrazing

incidence and up to  for grazing incidence
can be found in [2] (formulas (4.113) and (4.119),
respectively).

In this paper, we apply the asymptotic procedure
developed in [9, 10] and derive an approximate for�
mula for the total scattering cross section Σ, which
makes it possible to trace the transition from finite
angles described by asymptotics (1) to grazing inci�
dence when asymptotics (3) is valid.

FORMULATION OF THE PROBLEM
AND ELLIPTIC COORDINATES

Let us consider the stationary diffraction problem
for an acoustically soft strip with a width  We take

the time dependence in the form  Let 
where  is the wavenumber of the incident plane
wave:

(4)

We consider the angle  measured from the strip

plane to be so small that the quantity 
remains bounded when  Our task is to find
the current on the surface of the strip and the ampli�
tude of the far field in the direction of forward scatter�
ing. This will allow the total scattering cross section to
also be calculated.
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Let us represent the total field  as the sum of the
even and the odd parts with respect to coordinate y:

(5)
Then the problem is reduced to that in the half�plane

 Here, the odd part of the incident wave is equal
to zero at  and does not excite diffracted field.
Thus,

(6)
The even part of the field satisfies the Helmholtz equa�
tion and the boundary condition

(7)
The Meixner conditions should be satisfied at the
edges of the strip, and the radiation condition for the

diffracted part of the field  at infinity.

Let us introduce elliptic coordinates  so that

(8)

The Helmholtz equation in  coordinates takes the
form

(9)

The elliptic coordinates are convenient, because the
surface of the strip is given by the condition  i.e.,
the strip is considered the limiting case of an elliptic
cylinder.

ASYMPTOTIC PROCEDURE

First, we consider a small vicinity of the surface
(the boundary layer), in which we introduce the
stretched coordinate τ by the formula

(10)

in the parabolic equation method, we extract the quick
factor

(11)
Let us substitute representation (11) into Helm�

holtz equation (9) and collect terms according to the
powers of asymptotically large parameter  Here, we
assume that differentiation of U with respect to η and
τ does not change the asymptotic order, then the
resulting equation can be presented as follows:
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We seek solution U of Eq. (12) in the form of the
asymptotic series

(15)

It is possible to show that the problems appearing for
 are solvable for any j; however, we confine ourselves

to constructing the higher order approximation  for
which the parabolic equation

(16)

takes place. This makes it possible to separate the vari�
ables. Let us seek the solution in the form of the inte�
gral

(17)

Here, t is the variable separation parameter, and the
integration path should be chosen such that it is possi�
ble to apply differential operator  below the integra�
tion sign. For functions Q and F, we obtain the ordi�
nary differential equations

(18)

and
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Equation (18) can be solved in elementary functions:
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Equation (19) is reduced to the Whittaker equation by

extracting the multiplier  Choosing the solution
that satisfies the radiation condition for  we
obtain
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where W is the Whittaker function [11].
Thus,
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Such an amplitude  should be found that  satisfies
the boundary condition. The incident field at 
can be written as

(23)

Here, we expanded the cosine of small angle  in a

series and used the parameter  introduced
above. For the leading order, we obtain the boundary
condition
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To obtain the representation for the diffracted field on
the surface, i.e., for  we use the decomposition
for function W of the small argument [11]:

(25)

Then, to determine , we obtain the integral equation

(26)

To solve this equation, we use the result from [12],
where the integral transforms

(27)

(28)

are presented. By choosing the integration path in (22)
along the real axis, we obtain

(29)

This integral is expressed via the Whittaker function M:

(30)

It is possible to check that the integrated expression
in (22) decreases exponentially at  which vali�
dates the possibility of applying operator  below the
integral sign. It is also evident from decomposition
(25) that the solution remains bounded for any τ. The
behavior at  is determined by the poles of the
integrand nearest the real axis, which coincide with

the poles of the Gamma function  and are at

points  Therefore, the solution is finite for any
 However, the pole of the Gamma function

 causes divergence of the derivative with

respect to η as  Thus, the assumption that
 is a correction in Eq. (12) is correct for any 

and  where  Presumably, the
same conditions determine the domain of applicability
of the asymptotics.
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To further investigate the far field, it is sufficient to
compute the normal derivative of the field on the sur�
face. Using decomposition (25), we obtain

(31)

FAR FIELD

To calculate the far field, we use the Green’s for�

mula, which we apply to the scattered field  and the
Green’s function

(32)

Here,  are the coordinates of the source

and  Green’s function (32) satisfies the
Neumann boundary condition at  therefore,
Green’s formula reduces to

(33)

Let us introduce the far field amplitude Ψ of the
scattered field by the formula

(34)

Using the asymptotics of the Bessel function of the

third kind  it is simple matter to find the far field
amplitude of the Green’s function:
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Then, taking the limit below the sign of integration in
(33), we obtain the formula for the far field amplitude
of the field scattered by the strip:

(36)

In this formula, we consider only small angles 
which makes it possible to represent the exponential
factor in terms of the η coordinate as
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respect to η with the integral representation for the
Whittaker function M, we obtain

(39)

This formula can conveniently be rewritten via Cou�
lomb wavefunctions F [11], which are related to the
Whittaker functions M by the formula [11]

(40)

After simple transformations we obtain

(41)

which agrees with the result from [9].
Let us find the total scattering cross section Σ,

which, according to the optics theorem, is expressed
via the far field amplitude in the direction of inci�
dence, i.e.,

(42)

Substituting the approximation  into this formula,
we compute the real part. Here it is noteworthy that F
is a real�valued function. The result is

(43)

ANALYSIS OF THE ASYMPTOTIC FORMULA

For small α, we can use the decomposition [11]

(44)

substituting it in (43), it is a simple matter to obtain the
following decomposition:
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Calculating the integrals (see Appendix), we obtain

(47)

Note that the leading order term in (47) coincides with
the leading order term of asymptotics (3) obtained by
Sheshadri and Wu [8].

To analyze the asymptotic formulas, it is conve�

nient to consider the quantity  Figure 1

shows the values of S corresponding to exact expres�
sion (43) and approximate formula (47). For large α,
formula (43) gives a dependence close to linear, which
corresponds to the geometric optics approximation for
the scattered field, which is expressed with the leading
order term of asymptotics (1), in which for small
angles of incidence, sine of  is replaced with 

Let us turn to a more accurate numerical analysis of
formula (43). We first consider the correction σ in
classical asymptotics (1). The authors of [2] stated that
this asymptotics is applicable if  How�
ever, decomposition (1) loses its asymptotic character

for . We consider such small angles ϑ for

which  is large. We track only the leading
order contribution in formula (2). It comes from the
second term and is equal to

(48)

Thus, in the considered range of angles, asymptotics
(1) gives

(49)

The plots of quantities  and s, where

(Fig. 2), show that the approximation  calculated by
formula (43) for large α matches asymptotics (1) not
only for the leading order, but also for the principal
part of the correction σ.

APPENDIX

CALCULATION OF INTEGRALS  

The integrals  are introduced in (46). Let us first
consider  then use the integral representation for the
Beta function [11], whence
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We change the order of integration and change the

variable t to  which yields

(51)
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Fig. 1. High�frequency approximations for S. Solid line corresponds to asymptotic formula (43); dashed line, formula (47); dot�
ted line, to geometrical optics approximation.

–0.3
50 1 2 3 4 6 7 8 9

–0.2

–0.1

0

0.1

0.2

s0, s

α

Fig. 2. Correction terms s0 (solid line) and s (dashed line) and their matching for large values of parameter α.



404

ACOUSTICAL PHYSICS  Vol. 62  No. 4  2016

ANDRONOV

Representing the cosine via complex exponentials,
we obtain the elementary integral

(53)

Let us now calculate integral  For this, we con�
sider the following integral:

(54)

We represent

(55)

Derivations similar to those presented above yield

(56)

whence

(57)

Similarly, we can calculate

etc.
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