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INTRODUCTION

It is well known that the presence of vapor or gas
bubbles in a liquid considerably affects its acoustic
properties. Numerous publications have been devoted
to theoretical studies of harmonic disturbances in such
mixtures. The fundamental approaches used in study�
ing the acoustics of bubbly liquids were described in [1,
2]. The basic features of a two�phase medium with a
bubbly structure were considered in [3]. Publications
concerning wave propagation in liquids containing
constant�mass bubbles and publications devoted to
wave dynamics with vapor bubbles or soluble gas bub�
bles were reviewed. In [4], the problems and properties
of two�phase flows with solid particles, droplets, and
bubbles were described. The basic characteristics of
two�phase flows were presented along with their simu�
lation methods. The results of theoretical calculations
and experimental studies of two�phase flows were con�
sidered. The propagation of small disturbances in a
liquid with gas bubbles was theoretically [5–9] and
experimentally [10–12] investigated. In [13, 14], the
theoretical dependences of the phase velocity and the
attenuation coefficient on the frequency of distur�
bances were found to agree well with experimental
data [10, 11]. In [15–17], the propagation of small dis�
turbances in a liquid with monodisperse vapor bubbles
was theoretically investigated. A considerable effect of
phase transitions on the positions of the dispersion
curves was demonstrated.

In [18, 19], the results of experimental studies of
low�frequency pressure wave propagation in a vapor–

liquid flow moving through a densely packed layer of
solid spherical particles were presented. The results of
the experiments allowed determination of the charac�
teristic parameters and conditions corresponding to
the coincidence between the pressure wave propaga�
tion velocity and the thermodynamic equilibrium
sound velocity in a vapor–liquid mixture. For the first
time, it was experimentally demonstrated that the
velocity of low�frequency disturbances in a vapor–
water medium may be several meters per second,
which is close to the Landau sound velocity [20].

In [21, 22], the propagation of small disturbances
in a two�phase medium was considered for a medium
whose gaseous phase was a two�component mixture of
the vapor of the liquid phase and an inert gas not
involved in the mass transfer between phases. A disper�
sion relation was derived. A strong effect of the vapor
concentration on the positions of the dispersion curves
was demonstrated.

Here, we generalize the model given in [22] to the
case of polydisperse bubbles with a continuous distri�
bution of inclusions in size. Recent publications [23–
25] testify to the topicality of this subject.

BASIC EQUATIONS

We consider the propagation of plane, spherical,
and cylindrical waves in a liquid with polydisperse
vapor–gas bubbles under the following assumptions.
The wavelength of sound is much greater than the
mean distance between bubbles and far exceeds the
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size of the bubbles themselves. The volume content of
bubbles is small:  Heat�and�mass transfer is
only significant for the phase interaction processes. In
addition, the mass transfer process involves only the
vapor component; i.e., the vapor can condense or
evaporate.

The disperse composition of the mixture is charac�
terized by the distribution function N(a), where а is
the bubble radius, with the following property:

N(a) = 0 for  and 
The number of vapor–gas bubbles δn falling within the
radius interval from a to  in a unit volume of the
mixture is determined as

δn = N(a)da.
The total number of bubbles n in a unit volume and the
volume contents of the disperse phase α2 and the host
phase α1 are determined by the integrals

  

 
The main parameters of the mixture are as follows:

  

   

Here, ρ°, ρ are the true and mean densities of the mix�
ture, g is the mass of an individual inclusion, m is the
mass content, and ki is the mass concentration of the
vapor  and gas  components of the dis�
perse phase.

For small disturbances in a spatially homogeneous
(initially unperturbed) monodisperse mixture, the lin�
earized equations describing conservation of mass,
conservation of the number of bubbles, conservation
of momentum, and conservation of energy have the
form [22]
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disperse phase; and Σ corresponds to the interface.
The primes indicate perturbations of parameters, sub�
script 0 corresponds to the initial unperturbed state, r
is a coordinate, t is time, v1 is velocity, p is pressure, w
is the velocity of the radial motion of bubbles, cp is the
specific heat, l0 is the specific heat of evaporation, T is
temperature, and θ is a parameter determining the
wave geometry.

The heat flows and intensity of phase transitions
are determined by the expressions [21]

  

  

 

Here, Sh1 is the dimensionless mass transfer coeffi�
cient or the Sherwood number, D1 is the diffusion
coefficient, λ is the thermal conductivity coefficient,
and Nu is the Nusselt number.

The system of linear integro�differential equations
describing the propagation of sound waves in a liquid
with polydisperse vapor–gas bubbles can be obtained
by integrating the linearized equations of mass conser�
vation, conservation of momentum, and conservation
of energy over the bubble radius a from amin to amax. We
derive the conservation of mass equation for vapor–gas
bubbles under the assumption that variation in the dis�
perse phase with radii from a to  is described by
the motion of the monodisperse mixture with the
characteristic radius a. Then,  =  is the
mean density of this fraction,  =  is
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state, and  is the mean density perturbation:  =

 +  In this case, we have

  

The linearized conservation of mass equation for
vapor–gas bubbles with an unperturbed mean density
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In a similar way, other conservation of mass equations
take the form

The equations describing the conservation of the
number of bubbles and the conservation of momen�
tum remain unchanged after integration. The equa�
tions describing the conservation of energy and heat
transfer to the bubble surface take the following form
after integration:

To simplify the above equations, we introduce the
linear averaging operator

 

Using this operator together with the definitions of
heat flows and phase interaction intensity, we repre�
sent the above equations in the form

(1)

To describe the radial motion of bubbles with allow�
ance for mass transfer, we use the expressions [26, 27]
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According to [28], we assume that the velocity of radial

motion w' consists of two components: 

Component  is described by the Rayleigh–Lamb

equation, and component  is the acoustic term
determined from the solution to the problem of spher�
ical unloading of a spherical bubble in an acoustic
field:

(3)

where ν1 is the kinematic viscosity of the liquid and C1
is the sound velocity in the liquid.

As the equations of state, we use the following lin�
earized relations [21]:

(4)

The condition that the vapor is saturated at the inter�
face has the form [21]
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of equations, we derive a unified dispersion relation
for all the wave types:

(6)

where
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Let us consider the specific case where 
 i.e., the liquid contains vapor bubbles alone.

In this case, we have

  ,  

EQUILIBRIUM SOUND VELOCITY 
IN A VAPOR–GAS–LIQUID MIXTURE

The expression for the equilibrium sound velocity
in a vapor–gas–liquid mixture is obtained from the
dispersion relation by passing to the limit :

(7)
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attenuation coefficient on the frequency of distur�
bances f = ω/2π. The volume content of the bubbles is

 the initial vapor concentration in the
bubbles is kV0 = 0.9, and the bubble radius a varies
between 10–4 and 10–3 m. Curves 1 correspond to the
Gaussian distribution function

(10)

curves 2 correspond to the Rayleigh distribution func�
tion

(11)

In the calculations, the distribution parameter s is
taken as 0.21 × 10–3 m. Now, it is important to note
several points. First, the presence of bubbles in the liq�
uid leads to the appearance of a phase velocity mini�
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the natural (resonance) frequency. For the bubble size
under consideration, the natural vibration frequency is
little affected by heat and mass transfer and by viscos�
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where γ is the adiabatic index. Second, since the max�
imum of the Rayleigh function occurs for a smaller
bubble size, as compared to the maximum of the
Gaussian function (Fig. 2), the phase velocity mini�
mum and the attenuation maximum are observed for
the Rayleigh function at higher frequencies (Figs. 1a
and 1b). Third, for monodisperse bubbles, the attenu�
ation coefficient takes on higher values, whereas for
polydisperse bubbles, the corresponding values are
much smaller in a broad frequency range (Fig. 1d).
Hence, according to Fig. 1, the polydisperse nature of
bubbles and the form of the distribution function
strongly influence the positions of the dispersion
curves.

Figure 3 demonstrates the effect of the initial vapor
concentration in the bubbles on the dependences of
the phase velocity and the attenuation coefficient on
the disturbance frequency for the aforementioned
parameters of the mixture. Curves 1 correspond to the
vapor concentration kV0 = 0.1 and the temperature
T0 = 327 K; curves 2 to kV0 = 0.5 and T0 = 360 K; and
curves 3 to kV0 = 0.9 and T0 = 371 K. For the calcula�
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Fig. 1. (a, c) Dependences of phase velocity and (b, d) attenuation coefficient on frequency of disturbances in mixture of water
with polydisperse vapor–air bubbles (1, 2) for different bubble size distributions and (3) for the case of monodisperse bubbles.
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tions, we choose the Rayleigh distribution function
(11). An increase in the initial vapor concentration in
the bubbles leads to a decrease in phase velocity (from
300 to 85 m/s) and an increase in the attenuation coef�
ficient for frequencies below the bubble resonance fre�
quency.

Figure 4 shows the effect of vapor concentration by
the example of the evolution of a Gaussian�type pres�
sure pulse for plane and cylindrical waves according to
the calculations based on the fast Fourier transform, as
in [30]. The calculated profiles are constructed for dis�
tances of 1.3 and 2.5 m from the pulse generation
point. One can see that, as a result of the considerable
effect of the initial vapor concentration in the bubbles
on the dispersion and dissipation of harmonic distur�
bances, an increase in kV0 leads to a considerable
decrease in the initial pulse amplitude in both plane
and cylindrical cases.

COMPARISON OF THEORY 
AND EXPERIMENT

In [31], the results of measuring the velocity of
plane sound waves in water with vapor bubbles are pre�
sented for the following parameters of the mixture:
p0 = 0.1 MPa and T0 = 373 K. The bubble radius a var�
ied within 10–5 to 10–4 m. The volume content was not
measured with sufficient accuracy. The authors
approximately estimated this quantity to be within
0.03 to 0.3%.

Figure 5 compares the dependences of the phase
velocity on the disturbance frequency with the mea�
sured data. The theoretical curves correspond to three
cases: (1) kV0 = 0 (a gas–liquid mixture), (2) kV0 = 0.9
(a vapor–gas–liquid mixture), and (3) kV0 = 1 (a
vapor–liquid mixture). The calculations were per�
formed for the bubble size distribution given by func�
tion (10) with the distribution parameter s = 1. The
volume content was assumed to be 0.14%. In spite of
the scatter of experimental data, it is possible to
observe the effect of phase transitions. Namely, one
can clearly see the phase velocity decrease at frequen�
cies below the bubble resonance frequency. At a fre�
quency of 100 Hz, for bubbles containing 90% vapor
and 10% air, the sound velocity is 69 m/s, whereas for
purely vapor bubbles, the sound velocity is 23 m/s. In
[18, 19], it was experimentally demonstrated that in a
vapor–water medium, at low frequencies (~1 Hz), the
sound velocity (the so�called low�frequency effective
sound velocity) can be several meters per second.

Figure 6 compares the dependences of the low�fre�
quency effective sound velocity on the gas or vapor
volume content with experimental data. Curve 1 is
plotted according to Eq. (9) for an air–water mixture
at a pressure of p0 = 0.1 MPa; curve 2 is plotted accord�
ing to Eq. (8) for a vapor–water mixture at a pressure
of p0 = 0.2 MPa. One can see that the low�frequency
velocity in the gas–liquid mixture widely differs from
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Fig. 2. Distribution functions representing different bubble
size distributions.
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the low�frequency velocity in the vapor–liquid mix�
ture, which is confirmed by experimental data. The
authors of [18] have found that, with an increase in the
volume content of vapor, the velocity of low�frequency
disturbances remained approximately constant, tend�
ing to the Landau sound velocity [20]. Theoretical
curve 2 exhibits a monotonic increase, but on the
whole, it agrees with the experimental data.

Figure 7 compares the dependences of the low�fre�
quency effective sound velocity on the volume content
of vapor with the experimental data [33]. The theoret�
ical curve is constructed for R404A freon at a satura�
tion temperature of 293 K. The calculations were per�
formed with Eq. (8). In the experiment, the character�
istic frequency of the input disturbance was 0.2–5 Hz.
For the aforementioned mixture, with allowance for

phase transformations in the region of moderate vapor
contents, the sound velocity is rather low, about 5 m/s
for a volume content of  = 0.4. As the volume con�
tent of vapor increases, the velocity of the low�fre�
quency disturbances grows; as the volume content
approaches unity, it tends to the sound velocity in pure
vapor. The theoretical curves agree well with experi�
mental data for vapor contents up to 90%. At high
vapor contents, the experimental values of the low�
frequency sound velocity take on higher values, as
compared to theoretical ones.

Thus, we obtain fair agreement of the theoretical
phase velocity curves with experimental data, which
testifies to the suitability of the dispersion relation
derived above for describing sound wave propagation
in vapor–gas–liquid mixtures.
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CONCLUSIONS

The propagation of plane, spherical, and cylindri�
cal sound waves in a mixture of liquid with polydis�
perse vapor–gas bubbles is theoretically investigated
with allowance for phase transitions. The dispersion
relation is derived, and the equilibrium sound velocity
in the vapor–gas–liquid mixture is determined. It is
shown that an increase in the vapor concentration in
bubbles leads to a decrease in the phase velocity and an
increase in the attenuation coefficient at frequencies
below the bubble resonance frequency. The effect of
vapor concentration on the evolution of plane and
cylindrical pressure pulses is illustrated. It is shown
that the bubble distribution function considerably
affects the form of the dispersion curves. The theoret�
ical curves obtained for the phase sound velocity are
found to be in fair agreement with experimental data.
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