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Mathematical works frequently appear in physics
journals, since a number of actual physical models are
based on nonlinear equations. General methods for
analyzing them, as is well known, do not exist. To find
the partial derivatives, it is necessary to develop differ�
ent original methods, each of which is not universal.
However, the entire set of such methods sometimes
makes it possible to obtain solutions having an impor�
tant physical sense. Papers on this subject have been
published in Acoustical Physics.

For example, in [1], a method was developed for a
priori use of symmetry based on rational complication
of nonlinear acoustics models. In [2], Darboux trans�
formation is used to find partial solutions to the inho�
mogeneous Burgers equation. Some other approaches
to finding solutions to nonlinear equations are
described in [3, 4].

Exact solutions occupy a special place. In certain,
primarily exceptional, cases, exact solutions make it
possible to solve a conceptual problem or obtain char�
acteristics of a phenomenon of interest to a researcher.
Quite frequently, exact solutions make it possible to
reveal essential features of a complex physical process.
Finally, as a rule, exact solutions are suitable as “tests”
for evaluating results obtained when using numerical,
approximate, or asymptotic methods.

This paper proposes and demonstrates, using spe�
cific equations, a number of approaches to obtain such
exact solutions. They are as follows:

(1) An equation that describes propagation of finite
perturbations in a relaxing medium [5]:
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Here, τ = const is the characteristic relaxation time,
ε = const is a nonlinear parameter, c0 = const is the

sound velocity,  c
∞

 is the “frozen” sound
velocity, x is the spatial coordinate, t is time, y = t –
x/c0 is the traveling coordinate, and v is velocity.

Equation (1) is closely related to the integro�differ�
ential equations widely used lately to describe waves in
biological tissues and geological structures [5]. Work
[6] is devoted to finding solutions to such equations
using group analysis methods.

(2) An equation that is used in modified nonlinear�
acoustic approach [7]:

(2)

Here γ is the adiabatic index, ρ0 = const, c0 = const,
b = const, ρ' = ρ – ρ0, ρ is the density of the medium.

(3) An equation describing in the second approxi�
mation propagation of restricted beams in lossless
media (Khokhlov–Zabolotskaya equation [8]):

(3)

Here, c0 = const, ε = const, ρ0 = const, ρ' = ρ – ρ0,
and ρ is the density of the medium.

The basis of obtaining exact solutions is a geomet�
ric method, developed by the authors, that uses non�
linear differential equations and a system in partial
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derivatives [9–14]. Let us briefly describe the idea of
the method.

Let a certain physical process be described by a
nonlinear equation in partial derivatives 

    the subscripts
denote differentiation over the corresponding inde�
pendent variables. The main idea of the geometric
method is the assumption that the solution to the
equation in partial derivatives depends on one variable
(e.g.,  where ). Then  is
the surface of the level of the function  The change
in variable ψ leads to a change in the solution. For
such a dependence, the equation in partial derivatives

can usually be written as  

  Here, a prime denotes dif�
ferentiation over variable ψ. Supposing 

 where  are initially arbitrary
functions, we determine for which dependences
between functions  the system 

 is compatible. Then, solving the joint
system under certain given initial or boundary�value
conditions, we find the form of the function 
Substituting functions  for which system

  is compatible, we have
the common differential equation (CDE) to solve the

equation   = 0. Solving
the CDE and substituting into the obtained solution
the earlier determined function  we have
the solution to the initial equation in partial deriva�
tives. This geometric method admits a number of
modifications. For example, it can be considered that
ψ = u [12].

An analogous approach to systems of nonlinear
equations in partial derivatives makes it possible to
reduce them to CDE systems [13].

Using the above�mentioned equations, we show
how, using the described approached, it is possible to
obtain exact solutions for conceptual nonlinear acous�
tics problems described by nonlinear differential equa�
tions and systems in partial derivatives also using their
reduction to CDE systems.

ON SOLVING AN EQUATION FOR RELAXING 
MEDIA

Let us consider Eq. (1). We will use the notation

   We assume that

 where f(v) is a yet unknown
function. For this, so that v is the solution to Eq. (1),
the following dependence must be fulfilled:
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From here on, in this section, a prime denotes differ�
entiation over v.

Theorem 1. If function f(v) satisfies the equation

(5)

where C = const, C > 0, and in the initial manifold
dependence (4) is fulfilled, then the solutions to the

equation  =  are solutions to Eq. (1)

Proof. Let us show under which conditions system

 =   =  is
joint. We write the differential results of the relation

 = 

(6)

From relations (4) and (6) we determine the second
derivatives of function v(x, y):

So that condition (4) and relation  =
 are satisfied by the same function v(x, y), let us

require the equality of the third mixed derivatives and

fulfillment of the relation  =  We
obtain

 (7)

Taking into account that vxy = vyx, we obtain the
equation for determining function f(v):

which was what needed to be proved.

Let us now pass to solving the obtained Eq. (5). We
write its solution, setting f ' = p(v). Function p(v) sat�
isfies the linear equation
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Hence,

Then,

(8)

As shown above, solutions satisfying the conditions of
theorem 1 satisfy relations (7). Let us substitute in
these relations function (8) and solve the obtained sys�
tem of equations. We obtain

(9)

Denoting  +  we have v = v(z). Substitut�

ing v(z) in (1), we obtain the CDE

(10)

In Eq. (10), we pass from function v(z) to function
z(v). We obtain

(11)

It is easy to check that solution (9) satisfies Eq. (11)
and, as a result, Eq. (1) also.

Note. It is possible to write Eq. (1) in the form

and equate both sides of this equation to f(v). Then,
similarly to the preceding consideration, we find the
function f(v) for which the obtained system of equa�
tions

 

is joint. Then, the solution to the first equation of this
system will be the solution to Eq. (1) if in the initial
manifold the second equation of the system becomes
identical.

η=
⎛ ⎞ε + −⎜ ⎟
⎝ ⎠

⎛ ⎞ε −ε ε + − +⎜ ⎟τ⎝ ⎠+
⎛ ⎞ε + −⎜ ⎟
⎝ ⎠

η =

2

0

0

2 2
3 20 0

3 2
0 0 0

2

0

0

22

( 4 ) 26 2
3 2

,
22

const .

p
cC C

c m m

C Cm c cC C
c m mc m c m

cC C
c m m

v

v v v v

v

= ε τ

− + τ + + ετ

2 2
0

2
0 0 0 0

(2 )

(4 ) (4 ) (2 ) (4 ).

f c

c Cm Cc c c Cm C

v

v

+ τ
+ = −

τ τ
∫

' 0(4 )1 1 .
f m c

x y d
C f

v

τ

1 x
C

=

τ

1 ,y z

⎛ ⎞ ⎛ ⎞ε ε ε− − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

2 2 2
00 0 0

1 1 .
2

z z zz
m

C c Cc c c
v v v v v

⎛ ⎞ ⎛ ⎞ε ε ε− − + − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

2 2 2
00 0 0

1 1 0.
2
mz z z

C c Cc c c
v v vv

v v

⎛ ⎞ε ετ τ ετ− − = + − τ⎜ ⎟
⎝ ⎠

2

2 2 2
00 0 02

x y y yy xy
m
cc c c

v vv v v v v

ε ετ
− − =

2

2 2
0 0

( ),x y y f
c c

v vv v v

⎛ ⎞τ ετ+ − τ =⎜ ⎟
⎝ ⎠

2
0 0

( )
2

yy xy
m f
c c

v v v v

ON SOLVING AN EQUATION 
OF THE MODIFIED NONLINEAR�ACOUSTICS 

APPROACH

Let us consider Eq. (2). We denote ρ' = r and
rewrite Eq. (2) in the form

(12)

We will assume that r = r(ψ(x, τ)). Then ψ(x, τ) =
const is the surface of the level of function r, 

  
From here on, in this section a prime denotes differ�
entiation over independent variable ψ. Substituting
these expressions in Eq. (12), we obtain the relation
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ψ
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This is sufficient for relation (13) to become a CDE.
From relations (14) it follows that ψx = f1(ψ) f2(ψ), and
from the equality of mixed derivatives we find that ψ =
ψ(z), where z = ax + cτ, a = const, c = const. However,
then it is possible to consider that r = r(z) and Eq. (12)
leads to the CDE

(15)

Let us write some exact solutions to Eq. (15).
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(1) If γ = 3 and z = c(x + c0τ), then r(z) =

 k = const.
(2) If r(z) has an inverse function, then, supposing

rz = p(r), we obtain a linear equation, which is satisfied
by function p(r):

Hence we find that

In particular, Eq. (2) has a solution in the form r =
M + N/(z + k), where k = const,

ON SOLVING THE EQUATION FOR 
RESTRICTED ACOUSTIC BEAMS

Let us consider Eq. (3). We denote ρ' = r. We con�
sider that r = r(ψ(x, у, τ)). Then ψ(x, у, τ) = const is
the surface of the level of function r and, using the
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Let us require that the second and third equations of
system (17) be the first integrals of system (20) We
obtain the dependences for which this takes place:

(21)

To relations (21) we add the differential results of
Eq. (18) and the second and third relations of (17):

(22)

Determining from system (21)–(22) the second deriv�
atives of function ψ(τ, x, y) and requiring identical ful�
fillment of all mentioned equations, we find that

which was what needed to be proved.
If the conditions obtained in theorem 2 are ful�

filled, then Eq. (16) takes the form

(23)

Here f(ψ) is an arbitrary function. Equation (23)

becomes identical for all c0, ρ0, and ε is  A =
const and in the expression for function f1 a minus sign
is chosen. If in the expression for f1 a plus sign is cho�
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sen, then relation (23) will become identical for any c0,
ρ0, ε only when f' = 0. This case is not considered.

Thus, we have found that the solution to Eq. (3)
reduces to the solution to Eq. (23) if the surface of the
level ψ(τ, x, y) = const is determined from Eq. (18).
To determine r = r(τ, x, y) let us turn to solving this
equation. Solving system of equations of characteris�
tics (19), we obtain

(24)

(25)

In the general case, it is possible to set g = g(ψ, α),
g1 = g1(ψ, α), g2 = g2(ψ, α); then formulas (25) give the
transition to independent variables s, ψ, α if the rela�
tion ψ ≡ ψ(τ(s, ψ, α), x(s, ψ, α), y(s, ψ, α)) is identi�
cally fulfilled. This relation will become identical
when

(26)

The second relation (26) is fulfilled identically. Substi�
tuting in the first and third relations (26) the values of
the corresponding quantities from (24), (25), we arrive
at the following necessary conditions:

(27)

Relations (27), in particular, are fulfilled if g = const,
g1 = const, g2 = const. Then, we assign the functions
f(ψ), C(ψ, α). Let us determine ψ(τ, x, y), excluding α
and s from formulas (25). We substitute the found for�

mula ψ(τ, x, y) into expression  We
obtain  which will satisfy Eq. (3).

Let us consider, for example, one particular case.
Let g = g1 = g2 = 0, f = Mψ, C = Kψα. Then, substituting
these values into (25) and excluding from the obtained
expressions s and α, we find that  =

 and, consequently,  =

 is the exact solution to Eq. (3).

Assigning the set of other functions f, C, g, g1, g2 sat�
isfying conditions (27) and excluding from relations
(25) variables s and α, we obtain other functions ψ(τ,
x, y) and other exact solutions to Eq. (3).
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ON REDUCING A SYSTEM OF EULER 
EQUATIONS TO A CDE SYSTEM

This method can also be applied to study systems of
nonlinear differential equations.

Let us write the system of Euler equations in the
form [8]

(28)

Here γ = const is the adiabatic index and V is the
velocity vector with components u, v, w.

Let u = u(ψ), v = v(ψ), w = w(ψ), ρ = ρ(ψ). Then
system (28) can be represented as

(29)

Here (assuming that ψt ≠ 0) f1(ψ) = ψx/ψt, f2(ψ) =
ψy/ψt, f3(ψ) = ψz/ψt, f1(ψ), f2(ψ), f3(ψ) are arbitrary
functions. The prime (') denotes differentiation over ψ.

For system (29) to have a nontrivial solution, the
determinant for the derivatives should be equal to
zero. Equating the determinant to zero, we obtain

(30)

It is easy to check that the dependences f1(ψ) = ψx/ψt,
f2(ψ) = ψy/ψt, f3(ψ) = ψz/ψt take place if ψ = ψ(s), s =
t + f1x + f2y + f3z. Then, it can be considered that V =
V(s), ρ = ρ(s), f1(s), f2(s), f3(s).

Further, we demonstrate how in particular cases,
assigning a specific type of arbitrary functions, it is
possible to reduce the system of Euler equations to a
CDE system. We set f1(s) = f2(s) = f3(s) = s; then sys�
tem (28) reduces to the CDE system

(31)

where, according to (30), we have ρ =
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We set f1 = f2 = f3 = 1/s; then system (28) reduces to
the CDE system

(32)

We set f1 = s, f2 = 1/s, f3 = 1; then system (28) reduces
to the CDE system

(33)

CONCLUSIONS

The paper illustrates a geometrical method for
obtaining exact solutions to nonlinear acoustics equa�
tions using as an example three equations, but the
given approach can also be used to solve other nonlin�
ear equations in partial derivatives encountered in
nonlinear acoustics. For the considered equations,
other exact solutions can also be obtained if we assign
other initial surfaces.

Application of the geometrical method to a system
of nonlinear Euler equations in partial derivatives
made it possible to reduce the system to CDE systems
(31), (32), (33). This process can be continued assign�
ing different functions f1(ψ), f2(ψ), f3(ψ).

It should be noted that there exist many methods
for obtaining exact solution. The bibliography on this
subject would require more than one page. A feature of
our approach is that it makes it possible not only to
obtain series of exact solutions, but also to note the
features of development of the processes [9, 14]. Thus,
it is easy to see that to observe the process described by
Eq. (2), it suffices to assign initial conditions on one
surface of the level and then obtain the solution at
other surfaces of the level. Different behavior is
observed in the case of Eq. (3). Here, in order to obtain
a general picture, it is necessary on each surface of the
level to assign something. Such processes exist in non�
linear thermal conductivity, when a perturbation from
one point to another propagates according to the type
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of conical refraction, and which makes it possible to
see our approach to obtaining exact solutions [11].
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