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1. INTRODUCTION

For long�range remote sounding of shallow�water
areas typical of an ocean shelf, it is convenient to use
low�frequency (up to several hundred hertz) acoustic
waves, since only they can propagate underwater to
large distances. Usually to monitor the spatiotemporal
variability of large water areas, substantial facilities are
required, namely, the use of a set of spatially diverse
receiving and transmitting elements like those in clas�
sic tomography schemes [1]. The results of recent
investigations in the field of passive tomography give
hope for simplifying the implementation of tomo�
graphic schemes [2], but here the critical moment is
the signal accumulation time, which can exceed the
characteristic stability time of the marine environ�
ment. Therefore, it is an important task to develop
physical fundamentals for a more operative, but at the
same time no less informative method of remote
sounding. The basic idea of the method proposed in
this paper is an analysis of the interference pattern of
backscattered signals arriving from different distances
and directions relative to a point sound source. Note
that for the majority of conditions, except for the case
of a near�surface sound channel, reverberation is con�
ditioned by sound scattering on bottom irregularities.
At low frequencies (up to 500 Hz) and for a mild wind,
the bottom backscattering coefficient, as a rule, is 10–
30 dB higher than the similar value for the water sur�
face [3]. The theoretical and experimental research on
estimating this coefficient is reviewed in [4].

Now, the majority of research in underwater acous�
tics is concentrated on shallow�water regions [3] (shelf
zones, large lakes, water reservoirs, etc.), which play a
very important role in ensuring human vital activity.
Internal waves represent one of the most significant
hydrodynamic processes in such water areas in sum�
mer, when there is a pronounced density stratification
with depth (pycnocline). They play a key role in mix�
ing of water layers and transfer of biomass and runoff,
thus influencing climate and the ecological situation
in near�coastal zones. Their monitoring is undoubt�
edly an important task. In addition to conventional
point measurements of internal wave parameters using
chains of thermistors, remote acoustic methods,
including those based on recording backscattered sig�
nals, can aid in determining the averaged spatial char�
acteristics of internal waves at large distances.

Works [5, 6] are well known, which in deep�ocean
field experiments demonstrated the possibilities of
applying signals backscattered from the bottom relief
and marine fauna to visualize the migration of large
schools of fish at distances of several tens of kilometers
from the source–receiver system. In [7], similar signals
are used to remotely estimate bottom irregularities in
the near�coastal zone in an area of up to 104 km2.

In the above�mentioned works, the authors, in ana�
lyzing reverberation signals, limited themselves to
considering their mean intensity [5–7]; however,
recently, there has been greater focus on the coherent
properties of such signals [8–12]. As was shown in [11,
12], in the bottom reverberation distribution when
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depicted on the “arrival time—frequency” plane, the
interference pattern of the sound field manifests itself
similarly to what takes place for the intensity of a
direct signal in “distance–frequency” coordinates and
which can be described by the waveguide invariant
introduced by S.D. Chuprov [13]. In addition, the
presence of hydrodynamic irregularities leads to varia�
tion of the interference pattern of the sound field with
time, namely, to its shift in frequency [14], which in
turn can be used to monitor these inhomogeneities.

In the general case, variations in the interference
pattern of the scattered field will depend on the direc�
tion from which the signal is received. The possibility
of selecting reverberation signals arriving from various
directions owing to the formation of the directivity
pattern in the horizontal plane was demonstrated in a
field experiment [7, 11]. However, the use of a linear
scalar receiving array led to ambiguity of starboard and

port.
1
 A way out of this complicated situation may be

to apply vector scalar arrays [15] that record, in addi�
tion to acoustic pressure, two horizontal components
of the particle velocity. In this case, the mirror lobe in
the directivity pattern might be suppressed to a signif�
icant degree. Note that a rigorous mathematical
description of the algorithm that isolates reverberation
signals arriving from different directions using vector
scalar arrays goes beyond the scope of this paper; the
author limits himself to considering only sound pres�
sure fields.

When choosing the length of the receiving array, it
is necessary to take into account the transverse radius
of the sound field coherency. As W. Kerry [16] and
J. Lynch’s [17] experimental works have shown, in
shallow water this radius on average is 30 λ (λ is the
wavelength of the sound wave) and weakly depends on
the distance to the source.

The aim of this paper is to study, using numerical
experiments, the features of the interference pattern of
a bottom�scattered sound field formed along a given
direction in summer and winter conditions in the pres�
ence of hydrodynamic inhomogeneities, as well as to
estimate the possibility of reconstructing the internal
wave parameters from variations in this pattern.

2. MODE DESCRIPTION 
OF BACKSCATTERED SIGNALS

As an acoustic model of shallow water, let us con�
sider a waveguide of constant depth H. Let us intro�
duce a cylindrical coordinate system  the origin
of which is located on the upper boundary of the
waveguide and the z axis is directed vertically down�
ward. The sound speed  in the general case
depends on all three variables. The sound source is on
the z axis at depth zs and emits a signal in the frequency

1 Generally speaking, instead of directional reception, directional
emission can be used.

( , , ),r zϕ

( , , )c r zϕ

band from f1 to f2. The center of the horizontal array
used to isolate scattered signals arriving from different
directions is on the same axis at depth zr. The length of
the array is chosen equal to 10 λ (λ is the wavelength
corresponding to the mean emitted frequency), which
is significantly less that the mean transverse radius of
the sound field coherency: 30 λ. The angular resolu�
tion of the array, if the estimate for the free space is
used, is  ≈ 6°, and the far field approximation

is valid for distances of  = 200 λ (for a fre�
quency of 200 Hz, rfar > 1500 m). We will consider that
the waveguide characteristics in the range of angles δϕ
weakly depends on ϕ.

Without loss of generality, we fix a certain direction
ϕ0 from which we isolate a reverberation signal and
pass to solving the two�dimensional problem in 
coordinates using the uncoupled azimuth approxima�
tion  as was done in [11]. The transfer func�
tion of an inhomogeneous waveguide between the
sound source moored at depth zs and the elemental
scattering area located at distance r  in direc�
tion ϕ0 can be represented as the sum of normal waves
(modes) [3]:

(1)

Here,  is the circular frequency, ψm and
 +  are the eigenfunctions (waveguide

modes) and eigenvalues (propagation constants) of
the Sturm–Liouville problem, and M(ω) is the overall
number of energy�carrying modes at frequency ω. The
modal excitation coefficients Cm are determined from
the solution to the following system of differential
equations (the dependence on frequency ω is omitted
for brevity):
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When calculating the transfer function of the
waveguide with surface waves, decomposition (1) is usually
done for the modes of an unperturbed waveguide, i.e.,

 =  and  =  and the

mode coupling coefficients have the form

where  is the vertical displacement of the free
boundary with respect to the position of equilibrium at
a point at distance r'.

Calculations in the presence of background inter�
nal waves can be performed in the adiabatic approxi�
mation, which assumes that  and  =

The complex amplitude of a sound signal that
passed from the source to the scattering area and back,
can be approximately written as follows for a mono�
static scheme of recording reverberation and assuming
isotropic scattering in the vertical plane:

(2)

Here,  is the spectrum of the emitted signal,
  =  

 zr is the depth of the receiving element,
 is a random function character�

izing fluctuations in the scattering field [10, 11];
amplitude  and phase  are statistically inde�
pendent quantities, the first of which is Rayleigh�dis�
tributed and the second is uniformly distributed;

=  is the Lambert law, which
describes rescattering from mode m to mode m', where
θm =  is the grazing angle of a Bril�
louin ray corresponding to the mth mode, and =

 is the wavenumber near the bottom.
Integrating expression (2) over all scattering areas

located at different distances r and performing Fourier
transform, we obtain the time realization of the rever�
beration signal:
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If a complex signal is emitted (e.g., M�sequence,
LFM, etc.), then it is expedient to perform correlation
processing at the receiver:

(4)

To obtain the frequency–time dependences of the
amplitude of the received signal (spectrograms),
short�time Fourier transform is applied.

(5)

where the Hemming window is used as the weight
function  [18]:

where Tw is the window width. It is important to note
that precisely in the dependences , a two�
dimensional interference structure of the scattered
sound field manifests itself.

3. MODEL WAVEGUIDE PARAMETERS

Sound propagation and scattering are numerically
simulated using formulas (1)–(5) for a waveguide with
constant depth H = 80 m in the frozen medium
approximation. The bottom is a fluid absorbing half�
space, primarily homogeneous, with the following
parameters: sound speed cb = 1800 m/s, density ρb =
1800 kg/m3, imaginary part of the refractive index
αb = 0.012. Backscattering of sound signals is condi�
tioned by the presence of small bottom roughnesses
and weak inhomogeneities under its surface. The cor�
relation radius of these perturbations is significantly
less than the period of interference beats of the sound
field.

Figure 1 shows the vertical sound speed profiles 
in the water in summer and winter conditions. For the
summer, the mean unperturbed profile and profiles
corresponding to different shifts in the thermocline ζiw

in the internal wave field are shown.
A nondirectional single sound source is located 5 m

from the bottom at a depth of zs = 75 m and emits an
LFM signal in the frequency band of f = 100–300 Hz
with a duration of 1 s. The receiver system that isolates
signals from different directions is moored at the same
depth as the source, i.e.,  The studied range of
distances from which bottom�scattered signals are
received is r = 2–12 km (far field). Thus, the duration
of the analyzed reverberation signal is around 15 s.

The stochastic dependence  describing fluctu�
ations of the scattering field (see commentary to for�
mula (2)) is simulated with a step of Δr = 25 m.
Because we are interested only in relative variations in
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the interference structure of the bottom�scattered
sound field and the problem is solved in the absence of
noise, the mean amplitude  for this dependence is
chosen equal to unity for simplicity. (When it is neces�
sary to calculate the absolute values of the amplitude
of the scattered field, one should use the relationship
between quantity  and the averaged backscattering
coefficient [10], which is determined experimentally.)

Random realizations of surface waves  are
calculated with the empirical Pierson–Neumann
spectrum [19] for a wind speed of Vwind = 12 m/s and

the directivity characteristic  It is assumed that
surface waves propagate along the direction ϕ0 from
which reverberation signals are recorded.

When analyzing variations in the parameters of the
scattered sound field related to hydrodynamic vari�
ability in the waveguide column, two simplified inter�
nal wave models are used. The first is long�period
(tidal) waves, which lead to identical, over the entire
observation region, vertical shifts in the thermocline
ζiw. The second model represents quasi�monochro�
matic internal waves with a period of λiw = 10 km and
a narrow directivity characteristic, which propagate in
the same direction ϕ0 as surface waves. In the first
case, the waveguide remains horizontally uniform,
and in the second, vertical shifts of the thermocline
depend on distance:

(6)

where  is the wavenumber of the internal
wave. The amplitude of internal waves is chosen equal
to Aiw = 4 m, which is a value typical of a shelf zone of

σ

σ

'( )sw rζ
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iw iw iw' '( ) sin( ),r A k rζ = + φ
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the World Ocean in the summer [14]. In the field of
internal waves, the first gravitational mode dominates.

4. REVERBERATION IN A HORIZONTALLY 
UNIFORM WAVEGUIDE

Time realizations of a bottom�scattered signal that
passed through correlation filter (4) are shown in
Fig. 2 for an unperturbed horizontally uniform
waveguide in winter and summer conditions. Figure 3
shows the spectrograms corresponding to these real�
izations. To calculate the spectrograms, Fourier trans�
form (5) with a Hemming window with a width of Tw =
0.2 s was used. During construction, they were nor�
malized to the maximum value and converted to the

decibel scale: Isc =   As one can see,

a quite explicit interference structure of the scattered
sound field is manifested, but it is more smeared than
when direct signals are analyzed. We also note than in
winter conditions, when the sound speed is constant
over depth, straight interference bands are observed
(Fig. 3b), whereas in summer conditions, when the
sound speed profile has a negative gradient, these
bands are curved (Fig. 3a).

Variability in the interference pattern in the
waveguide as a function of distance and frequency can
be characterized by scalar parameter β—the
waveguide invariant.
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Estimating the Waveguide Invariant

In order to use the idea of the waveguide invariant
to describe the bottom�scattered sound field in the
obtained frequency–time dependences, we switch
from time scale t to distance scale  using the relation
r =  where ceff is the effective mean sound speed
in the waveguide (taken equal to 1500 m/s):

The waveguide invariant is commonly estimated
using direct signals for small frequency ranges, when
the interference bands can be approximated by
straight lines [13, 20]. However, the interference pat�
tern of the scattered sound field is quite strongly
smeared (see Fig. 3); therefore, to estimate β in such a
situation, accumulation and processing of the initial
data is needed in wide ranges of  and ω, and the
aforementioned approximation ceases to be valid.

As shown in [21], the coordinates of the interfer�
ence bands on the distance–frequency plane satisfy
the differential equation

Its solution is

(7)

where  Note that in formula (7), the straight
line equation is obtained only in the case of β = 1.

It is proposed to estimate the waveguide invariant
in the case of reverberation signals using an algorithm
similar to that proposed in [22] for acoustic noise
fields. The first step of the algorithm normalizes the
spatial–frequency dependences of the scattered field
amplitude:

Here,  =  is the mean, in

terms of frequency, value of the scattered field ampli�
tude at distance r. The second step determines the
mean values of quantity  along the curves
described by expression (9) for different β and differ�
ent initial r1:

(8)

r

eff 2,c t

sc sc( , ) ( , ).S t S rω → ω

r

.d dr
r

ω
= β

ω

1

1
1

,r r
β⎛ ⎞ω= ⎜ ⎟

ω⎝ ⎠

1 1( ).r r= ω

sc
norm

( , )
( , ) 1.

( )

S r
S r

S r
ω

ω
ω = −

( )S r
ω

2 1

1
ω − ω

sc

2

1

( , )S r d

ω

ω

ω ω∫

norm( , )S r ω

( ) ( )

ω
β

ω

Φ β = ω =
− β −

⎛ ⎞ ⎛ ⎞ω× ω ω + ω⎜ ⎟⎜ ⎟β βω ω⎝ ⎠⎝ ⎠

∫ ∫

∫ ∫

norm

norm

2

1

1
1

22

1
1

1 1

1 1 1( ) ( , )
( , )

1 1( ( ), ) 1 ,
( , )

e

i

e

i

r

e i e i
r L

r

r

S r dl dr
r r L r r r

r
S r d dr

L r

where  =  is the length of

the curve and ri…re is the distance range for which the
analysis is carried out. The maximum of the distribu�
tion  corresponds to a certain effective value of
waveguide invariant β.

Figure 4 shows the distributions Φ(β) calculated for
different conditions. The results shown in Fig. 4a cor�
respond to the spectrograms in Fig. 3. One can see that
for a waveguide with a constant sound speed, the max�
imum of the distribution corresponds, as should have
been expected, to β ≈ 1. In summer conditions, the
maximum is observed for the largest β values, which is
related to the change in the dispersion characteristics
of the waveguide modes [23]. Figure 4b shows the vari�
ations in distribution  as a function of the vertical
shift in the thermocline ζiw. For example, for ζiw = 4 m,
the position of the maximum shifts by 20% with
respect to the unperturbed value corresponding to
ζiw = 0. Thus, knowing the value of the waveguide
invariant and the approximate internal wave model,
we can draw a conclusion on the mean, in terms of the
waveguide, depth of the thermocline.

It should be noted that additional numerical simu�
lation has shown identical values of the waveguide
invariant obtained for direct sound signals and back�
scattered signals.
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5. REVERBERATION IN A HORIZONTALLY 
NONUNIFORM WAVEGUIDE

It is of interest to estimate the stability of the inter�
ference structure of the scattered sound field in the
presence of such hydrodynamic inhomogeneities as
wind surface waves and background internal waves. A
sound field under wind wave conditions is calculated
taking into account mode coupling, and under inter�
nal wave conditions, the adiabatic approximation is
used.

5.1. Surface Waves

Figure 5 shows the spectrograms of reverberation
signals in a waveguide with surface waves for a wind
speed of 12 m/s for summer and winter conditions.
The corresponding mean square value of the wave
amplitude is 1.2 m. From a comparison of the results
obtained for winter conditions (Figs. 3b, 5b), it follows
that surface waves in this period “wash out” interfer�
ence—the more strongly, the larger the distance and
sound frequency. Comparing Figs. 3a and 5a, we arrive
at the conclusion that in the summer, surface waves do
not affect the contrast of the interference pattern. This
is a result of the sound field being screened from a

rough surface by a warm near�surface layer with a large
sound speed. These results correspond to the data
obtained in [24] for direct signals. Let us recall that the
main source of unstable sound field characteristics in
summer conditions is internal waves.

5.2. Internal Waves

Let us consider the features of the formed interfer�
ence pattern of a scattered sound field during the pass�
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ing of an internal wave described by expression (6). For
visual illustration, we suppose that the wave phase φ
constantly changes from 0 to 10π. First, we fix a cer�
tain frequency  and track variations in the
interference structure  as a function of φ. Fig�
ure 6 shows the calculation results for a frequency of
200 Hz. One can see that beginning with a distance of
≈3 km, distinct shifts in the interference maxima occur
over distance; however, at a distance equal to the

0 02 fω = π

sc 0( , )S r ω

wavelength of the internal wave (10 km), displace�
ments are absent, which is a result of the zero average
perturbation along the track. Analysis shows that the
size of the shift Δr is well described by the relation

(9)
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Fig. 7. Variation in interference pattern of scattered sound field in frequency range at different distances r0 in presence of internal
waves. Gray dashed lines, estimates of shifts using expression (10).
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r (between the source and the scattering area), which
in our case is equal to

Dependences Δr calculated with (9) for different dis�
tances r are designated by white dashed lines in Fig. 6.
Note that in this work, constant α was determined one
time from the condition of best possible fit between
the simulation results and the data of estimates (9):
0.02 m–1.

We now fix a certain distance and analyze the fre�
quency shifts of the interference structure of the scat�
tered sound field. Substituting relation (9) into the
expression [13]

we obtain the formula for estimating shifts in the inter�
ference pattern in the frequency region

(10)

where β is the value of the waveguide invariant for an
unperturbed waveguide, in our case equal to 2.2. Fig�
ure 7 shows the dependences  for the set of
distances r0. The results of estimating  using
expression (10) are shown in the same figure by gray
dashed lines. As one can see, the observed frequency
shifts in the interference pattern and their estimates
virtually coincide. The amplitude of the frequency
shift significantly depends on distance.

The good agreement between the data of model
experiments and the data of estimates using formulas
(9) and (10) is evidence of the fundamental possibility
of using shifts in the interference pattern of the scat�
tered sound field to reconstruct the dependence of the
mean shift in the thermocline  on distance r. In
turn, the dependence on the current shift ζiw on dis�
tance r can be calculated using the following relation:

(11)

Isolation of reverberation signals arriving from dif�
ferent directions when using a vector�scalar array
should make it possible to determine the two�dimen�
sional pattern of the internal wave field  To
solve similar problems, directional emission can be
used.

Finally, let us present the model algorithm for
reconstructing the two�dimensional field of vertical
shifts in the thermocline  according to varia�
tions in the interference structure of reverberation sig�
nals in a waveguide of constant depth:

(1) obtaining of the interference pattern of the scat�
tered sound field in time (distance)–frequency coor�
dinates for an unperturbed waveguide 
using numerical simulation or long�term data obser�
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vation data under real conditions (the internal wave
field is assumed statically homogeneous);

(2) determination of the value of waveguide invari�
ant β and estimation of coefficient α (see expression
(9) and subsequent commentary);

(3) recording of the interference pattern of the
reverberation signal isolated from some direction ϕ
under internal wave conditions and its comparison
with the analogous pattern obtained at the first step for
an unperturbed waveguide: determination of shifts Δω
of one pattern with respect to another in the frequency
range for different distances r to the scattering area;

(4) calculation of the dependence  using
expression (10) and estimation of the size of the verti�
cal shift in the thermocline  at different distances
r using (11);

(5) repetition of steps 3 and 4 for other reception
directions ϕ.

6. CONCLUSIONS

The numerical simulation results have shown that
the interference pattern of a sound field in shallow
water manifests itself in backscattered signals both in
winter and summer conditions, but it is not very dis�
tinct and its observation requires working in wide fre�
quency and distance ranges. The shape of the bend in
the observed interference bands has made it possible to
estimate the averaged value of the waveguide invari�
ant. Calculations also demonstrated the sensitivity of
the mentioned pattern to wind waves in winter and the
presence of internal waves in summer. It was discov�
ered that variations in the mean shift of the ther�
mocline in the internal wave field correlates well with
shifts in the interference structure in the frequency and
spatial ranges, which can be used to monitor these
waves.

In subsequent works, the author plans to more rig�
orously substantiate the possibility of isolating the
interference structure of a reverberation signal in a
given direction using vector�scalar arrays, as well as to
evaluate the accuracy in reconstructing the internal
wave field from variations in the interference pattern
under different conditions, including in the presence
of background noise.
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