
ISSN 1063�7710, Acoustical Physics, 2015, Vol. 61, No. 2, pp. 136–143. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © S.O. Papkov, 2015, published in Akusticheskii Zhurnal, 2015, Vol. 61, No. 2, pp. 152–160.

136

INTRODUCTION

The problem of free transverse vibrations of a rect�
angular plate is one of the oldest classical problems.
Early in the 19th century, owing to aesthetics, experi�
mental demonstrations of Chladni figures [1] attracted
public attention to the problem of plate vibrations. In
turn, attempts to describe the problem in mathemati�
cal terms stimulated the development of mathematical
physics.

Exact analytic solutions always attract considerable
interest [2, 3]. Still, despite the long history and hun�
dreds of publications devoted to solving the aforemen�
tioned problem using different approaches, the prob�
lem of transverse vibrations of rectangular plates has
an exact solution in the form of Fourier series (a Levy�
type solution) in only one case where two opposite
sides of the plate are simply supported [4, 5]. In other
cases of plate edge conditions, the variables involved in
the boundary�value problem cannot be separated.
Attempts to overcome this difficulty are being contin�
ued to this day. In particular, note [6], where a new
method of dual separation of variables was used for a
clamped orthothropic plate.

The approach based on the classical separation of
variables makes it possible to construct a general solu�
tion to the vibration equation in the form of the sum of
particular solutions. For arbitrary boundary condi�
tions, this method leads to an infinite system of linear
algebraic equations for the series expansion coeffi�
cients. This approach was first used in studying the
vibrations of rectangular plates with free edges [7]. A
more popular modification of this approach to deter�
mining the natural frequencies of rectangular plates is

the superposition method developed in [8]. In this
case, the solution is constructed as the finite sum of
particular solutions, which makes it possible to obtain
a finite system of equations for the unknown coeffi�
cients with the use of an artificial truncation of the
infinite series. In [9], the authors use Levy�type solu�
tions in the form of untruncated infinite series for
studying flexural vibrations and stability of rectangular
plates with arbitrary edge conditions.

The primary importance of a rectangular plate as an
element of structure mechanics and engineering appli�
cations gave rise to a great number of publications
devoted to studying the vibration problem using differ�
ent approaches. One of them is the Ritz method [10],
which was initially proposed for solving the problem of
vibrations of a plate with completely free edges. Various
modifications of the variational approach provide
approximate solutions to a number of vibration and sta�
bility problems for rectangular plates [4]. In particular,
in [11], the Rayleigh–Ritz method was used to study
the effect of a complex load applied in the plane of the
plate on plate vibrations and stability. The vibrations
and stability of a symmetrically laminated composite
rectangular plate under in�plane stresses were studied in
[12] by the Rayleigh–Ritz method and the finite strip
method. Application of the finite�element method to
the study of vibrations of orthotropic plates is described
in [13, 14]; application of the Kantorovich method to
the same problem is described in [15]; and application
of the Green function method is described in [16].

In this paper, the problem of vibrations of an ortho�
tropic rectangular plate with free edges is reduced to a
homogeneous infinite system of linear algebraic equa�
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tions. A generalization of the asymptotic expression
law proposed by B.M. Koyalovich [17, 18] is used as
the basis to determine the power law that describes the
decrease of the nontrivial solution to the aforemen�
tioned system, which makes it possible to construct an
efficient algorithm for calculating the natural frequen�
cies and eigenmodes of the plate.

FORMULATION OF THE PROBLEM 
AND GENERAL SOLUTION

Let us consider a rectangular orthotropic plate
 with a thickness h. According

to [19], the elastic properties of the material can be
described by four elastic constants, for example, by
Young’s modulus E1 along the direction of the x axis,
shear modulus G, and two Poisson ratios ν12 and ν21.
Then, the equation describing free transverse vibra�
tions of the plate in the classical Kirchhoff–Love
approximation can be written in terms of the deflec�

tion of the plate :

(1)

where  is the dimensionless frequency

parameter, ρ is the density of the material, ω is the cir�
cular frequency,

The boundary conditions for the free edges at the
sides  have the form

(2)

at the sides 

(3)

The general solution to the problem can be repre�
sented as the sum of even and odd components with
respect to each of the coordinates:
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By the standard separation of variables, it is possi�
ble to represent the general solution to vibration equa�
tion (1) for each of the symmetry cases as the sum of
two Fourier series with unknown coefficients:

(5)

where trigonometric and hyperbolic functions are
denoted as

The separation constants are chosen in a form that
ensures completeness of solution (5) at the plate
boundary:

(6)

Quantities  and  are the roots of the fol�
lowing characteristic equations:
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0. (8)

These roots are easily expressed in analytical form:
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(11)

must be real.
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the aforementioned conditions are satisfied identically.

The conditions imposed on the moments  and
 yield two functional equations:
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of linear algebraic equations in the sequences 
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Note that the expressions for  and  must be real
for any combination of the parameters of the problem.
Hence, by virtue of identity (11), the coefficients of
system (12) are also real. The nontrivial solution to
this system of equations at the natural vibration fre�
quency provides an explicit analytic expression for the
eigenmodes of plate vibrations:

ANALYSIS AND SOLUTION 
OF THE INFINITE SYSTEM

According to the theory of infinite systems [20],
system (12) can be represented in canonical form by
applying the change of variables :

(13)

An infinite system of linear algebraic equations is
called a regular system if, for any row of the system,
the sum of the absolute values of coefficients is smaller
than unity; if there exists such a constant θ that
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uniqueness of the bounded solution. If condition (14) is
satisfied beginning with a certain number , the
infinite system is called a quasi�regular one and its study
can be reduced to analysis of a finite system of order NR.
Evidently, system (12) obtained above cannot be fully
regular within the entire frequency range, because,
owing to its homogeneity, such a property should lead to
the presence of the zero (trivial) solution alone.

To investigate the regularity of system (12), let us
use the known values of the series [21]

 

Combining these formulas and using the above nota�
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Here, the number N = N(Ω) is chosen so as to provide
a positive value of Mmn (n > N). Considering the
asymptotics for  and taking into account the
relations

we find that the even and odd sums tend to the same
constant limit:

(17)

Formula (17) suggests that there always exists a
number NR beginning with which series under regularity
conditions become smaller than unity; i.e., system (12)
is a quasi�regular one.

With the substitution

(m > NR) (18)

the infinite system is reduced to a set of fully regular

infinite systems of equations in  (l = 1, 2, …,

NR) with the same matrix:

(19)

From the boundedness of the free terms of these
systems, it follows that each of them has a unique
bounded solution. Hence, the problem of the exist�
ence of a bounded solution to the initial quasi�regu�
lar system (12) appears to be equivalent to the prob�
lem of the existence of a solution to the finite system

of equations in the first unknowns . This sys�
tem is obtained by substituting Eq. (18) in Eq. (13)
for m = 1, 2, …, NR:

(20)

where 

Thus, the zero value of the determinant of finite
system (20) yields a dispersion equation for determin�
ing the natural frequencies of the plate:
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To construct an efficient algorithm for solving sys�
tems (19), we analytically determine the asymptotics
of their solutions. For this purpose, we change the
variables:

.

Here, λ is determined from the condition that the
transformed systems

(21)

satisfy the generalization of the Koyalovich asymp�
totic expression law [9].

From the condition that the free terms of
systems (21) are bounded, we find that  Omit�
ting the mathematical proof for brevity, we should by
noted that, under the conditions of the aforementioned
theorem, the coefficients of system (21) satisfy the esti�
mates for any index  However, a necessary
condition for the existence of a common nonzero limit
of the solutions to each of the systems (21)

is the fact that these systems should remain regular but
should no longer satisfy the full regularity condition;
i.e., under the regularity conditions, the series should
tend to unity from below. This yields the equation for
calculating λ.

Indeed, using the Euler–Maclaurin formulas to
calculate the value of the series
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and considering its asymptotics at 

we find that, under regularity conditions (14) for sys�
tems (21), the series tend from below to the following
value:
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Hence, the equality
(22)

yields the desired equation for determining the index λ.
Table 1 shows the elastic constants for glass and

glass�reinforced plastic. The solution to Eq. (22) for
these materials is illustrated by Table 2.

The known power law describing the decrease of
the solutions to systems (21) makes it possible, with
the use of Eq. (18), to determine the following form of
the principal term of the asymptotics for the nontrivial
solution to the initial infinite system:

Then, the solution to initial infinite system (12) is
reduced to determining a nontrivial solution to the
finite system of equations in the first unknowns Y1,

 and limiting constant K. Thus, it
is possible to determine the entire sequence of
unknown coefficients in the general solution 
which makes it possible to determine the analytic
solution to problem (1)–(3) stated above.

NUMERICAL RESULTS

The proposed approach was implemented by a
computer program to calculate the natural frequencies
and construct the eigenmodes of rectangular orthotro�
pic plates. The particular case of an isotropic plate was
considered:

First, the results reported in the literature were
compared to those obtained by the Rayleigh–Ritz
method [4]. Table 3 presents the frequency parameter

µ  for convenience. Almost all the values coin�
cide except for the seventh and eighth modes, which
are skew�symmetric in both coordinates. In this case,
the difference is about 0.5%. Presumably, this is
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Table 1. Elastic parameters of materials

Material E1 × 10–5, kgf/cm2 G × 10–5, kgf/cm2
ν12 ν21

M1—glass 0.7 0.28 0.25 0.25

M2—glass�cloth�base laminate KAST�V 2.0 0.40 0.20 0.11

M3—epoxy glass 0.61 0.12 0.23 0.09

Table 2. Index λ in asymptotics of solution

Material λ

M1—glass 0.809211

M2—glass�cloth�base laminate KAST�V 0.581107

M3—epoxy glass 0.614004

Table 3. First natural frequencies μ = 4Ω2 for quadratic iso�
tropic plate at ν = 0.3

N N = 10 [4]

1 13.4682 13.4728

2 19.5960 19.5961

3 24.2702 24.2702

4 34.8008 34.8011

5 61.0949 61.0932

6 63.6868 63.6870

7 69.2653 69.5020

8 77.1724 77.5897

9 105.461 105.463

10 117.108 117.109



ACOUSTICAL PHYSICS  Vol. 61  No. 2  2015

VIBRATIONS OF A RECTANGULAR ORTHOTROPIC PLATE WITH FREE EDGES 143

related to the weaker convergence of the Rayleigh–
Ritz method in the chosen odd functions.

Table 4 shows the first ten natural frequencies for
square plates made of glass and glass�reinforced plas�
tic (see Table 1). The figure shows the corresponding
Chladni figures, i.e., the nodal lines of the eigen�
modes. For the square plate made from the isotropic
material M1, the eigenvalues that correspond to
modes symmetric about one of the coordinates and
skew�symmetric about the other coordinate belong
to two eigenmodes  and . Therefore,
for these natural frequencies, the figure shows two
Chladni figures: the first of them corresponds to

 and the second to – . Note
that it is the second figure that is most often observed
in experiments. From Table 4 and the figure, it fol�
lows that, in all the examples, the fundamental fre�
quency corresponds to the modes that are skew�sym�
metric about both of the coordinates. The results
obtained for two orthotropic materials M2 and M3 are
closer to each other, as compared to the results for the
material M1. This manifests itself in the closeness of
natural frequencies and in the similarity of the
Chladni figures. The maximal difference between the
isotropic and orthotropic materials is observed for
symmetric modes, in particular, for the second and
third modes. However, for all the three materials, the
symmetry types are similar and the difference
between the Chladni figures observed for the isotro�
pic material M1 and those observed for the two ortho�
tropic materials M2 and M3 is considerable.

CONCLUSIONS

Thus, the proposed algorithm for constructing nat�
ural frequencies and vibration modes of a rectangular
orthotropic plate makes it possible to solve the above�
stated problem with the required accuracy on the basis
of the well�known asymptotic law describing the
decrease of coefficients in the general solution.

Comparison of the calculated natural frequencies
with the known values shows their full coincidence.

In the examples presented above, the difference in
the Chladni figures obtained for the isotropic and
orthothropic plates most clearly manifests itself for
the symmetric modes, in particular, for the second
and third modes.

REFERENCES

1. H. J. Stockmann, The Europ. Phys. J.: Special Topics
145, 15 (2007).

2. O. A. Sapozhnikov, Acoust. Phys. 58, 41 (2012).
3. S. V. Kuznetsov, Acoust. Phys. 60, 95 (2014).
4. A. W. Leissa, Vibration of Plates (NASA SP�160) (Gov�

ernment Printing office, Washington, 1969).
5. A. W. Leissa, J. Sound Vibr. 26–31, 257 (1973).
6. Y. F. Xing and B. Liu, Composite Structures 89, 567

(2009).
7. S. Iguchi, Ingenieur Archiv 21, 304 (1953).
8. D. J. Gorman, J. Sound Vibr. 165, 409 (1993).
9. K. Bhaskar and A. Sivaram, Composite Structures 83,

83 (2008).
10. W. Ritz, J. Reine und Angewandte Math. 135, 1 (1909).
11. M. M. Kaldas and S. M. Dickinson, J. Sound Vibr. 75,

151 (1981).
12. D. J. Dawe and T. J. Craig, Composite Structures 5, 281

(1986).
13. N. S. Bardell, J. M. Dunsdon, and R. S. Langley, Com�

posite Structures 34, 129 (1996).
14. C. S. Tsay and J. N. Reddy, J. Sound Vibr. 59, 307

(1978).
15. R. Jones and B. J. Milne, J. Sound Vibr. 45, 309 (1976).
16. M. Huang, X. Q. Ma, T. Sakiyama, H. Matuda, and

C. Morita, J. Sound Vibr. 288, 931 (2005).
17. B. M. Koyalovich, Izv. Fiz.�Mat. Inst. 3, 41 (1930).
18. S. O. Papkov, Dinamicheskie Sistemy 1, 255 (2011).
19. S. G. Lekhnitskii, Theory of Anisotropic Body Elasticity

(Nauka, Moscow, 1977), [in Russian].
20. Kantorovich, L.V. and Krylov, V.I., Approximate Meth�

ods of Higher Calculus (Fizmatgiz, Moscow, 1962), [In
Russian].

21. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,
Integrals and Series: Elementary Functions (Nauka,
Moscow, 1981), [In Russian].

Translated by E. Golyamina

01( , )W x y 10( , )W x y

01( , )W x y 01( , )W x y 10( , )W x y

Table 4. First natural frequencies Ω for quadratic plate

n M1 Symmetry M2 Symmetry M3 Symmetry

1 1.8645 (1, 1) 1.5916 (1, 1) 1.5832 (1, 1)
2 2.2434 (0, 0) 2.0213 (0, 0) 1.8792 (0, 0)
3 2.4503 (0, 0) 2.3683 (0, 0) 2.3653 (0, 0)
4 2.9834 (1, 0 /(0, 1)) 2.5628 (1, 0) 2.4872 (1, 0)
5 3.9144 (1, 0 /(0, 1)) 2.7436 (0, 1) 2.7349 (0, 1)
6 4.0316 (0, 0) 3.3787 (0, 1) 3.1388 (0, 1)
7 4.2093 (1, 1) 3.5314 (0, 0) 3.4892 (0, 0)
8 4.3988 (1, 1) 3.6937 (1, 1) 3.5140 (1, 1)
9 5.1780 (1, 0 /(0, 1)) 3.9211 (1, 0) 3.9210 (1, 0)

10 5.4316 (0, 0) 4.1467 (1, 1) 4.1395 (1, 1)


