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INTRODUCTION

There are a significant number of works devoted to
the anisotropic properties of muscle under quasistatic
loading (see, e.g., [1, 2]). However, dynamic loads in
the form of shear waves have been used relatively
recently to determine the viscoelastic characteristics
of muscle by ultrasound and MRI�elastography meth�
ods [3–13]. These characteristics are informative
diagnostic parameters of the state of muscle tissue [5,
8, 10–12, 14, 15]. Structural changes in muscle tissue
related to various pathologies, e.g., during myositis or
in the aging process, are directly reflected in the
mechanical and acoustic characteristics, the measure�
ment of which can yield a deeper understanding of the
pathophysiology of muscular diseases and may be used
to evaluate therapeutic efficiency [8, 12]. Recent
advances in the experimental study of the viscoelastic
properties of skeletal muscles in vivo [3–12] are
related to the appearance of elastography methods
based on the use of shear waves [16–26].

Early studies on the mechanical properties of muscle
concentrated mainly on the elastic characteristics,
ignoring the viscosity component [14]. However, vis�
cosity is an essential physical characteristic of muscle,
reflecting both its structural features and the molecular

mechanism of muscle contraction, which is related to
the dynamics of actomyosin bridges [14, 15, 27, 28, 31].
The high anisotropy of the mechanical properties is a
characteristic feature of skeletal muscle structure differ�
entiating it from the majority of other soft tissues. The
study of this anisotropy and the dependence of the cor�
responding parameters of the normal and pathological
states of muscle may become the basis of novel methods
for diagnosing and controlling the efficiency of muscle
disease therapy.

It is known that muscle fiber consists of approxi�
mately 104 sequentially connected sarcomeres, each of
which in turn contains around 106 filaments: thin (the
protein actin) and thick (protein myosin). The acto�
myosin complex is an efficient mechanochemical
energy converter of ATP. As one can see from Fig. 1,
each individual sarcomere has hexagonal symmetry.
Therefore, the shape of a sarcomere does not change
when it turns around the axis by an angle of π/3. How�
ever, due to the fact that neighboring sarcomeres are
turned relative to each other at a small random angle
and there are a large number of sarcomeres in the mus�
cle fiber, the dispersion of rotation turns out to be sig�
nificant. Therefore, on macroscopic scales compara�
ble to the length of a longitudinal or shear acoustic
wave, this form of symmetry disappears. Nevertheless,
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in muscle, the anisotropy is retained—the difference
in elastic properties in the direction of the fiber axis
and in the orthogonal direction. In the plane of the
muscle cross section, obviously all directions should
be equivalent.

ANISOTROPY OF ELASTIC PROPERTIES 
OF SKELETAL MUSCLES

The dynamics of anisotropic media, including
elastic waves in such media, are described by the sys�
tem of equations

(1)

Here,  is the displacement vector of an element of
elastic medium. As is known, the elasticity modulus
tensor  for media with one isolated direction has
only five independent components, determined by the
moduli  [29]:

(2)

Here, the tensor components are written in the Carte�
sian coordinate system. The z axis is directed along the
muscle fiber; the  axes, forming with the z axis a
right system of crosscuts, is oriented arbitrarily in the
plane orthogonal to the z axis.

Recall that when using tensor notation, twice�
repeating subscripts entail summation. Thus, in
Eq. (1), summation proceeds by subscripts 
When replacing an subscripted quantity, e.g., , with
one of the Cartesian coordinates , summation is
not performed. For instance, the expression  =
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 is a spur of matrix  in contrast,
 is a specific element of the matrix.

The dispersion equation following from system of
differential equations (1) for monochromatic waves

(3)
has the form

det (4)

The solution to system of algebraic equations (4) is
three frequency�independent velocities of propagating
waves. When the wave vector is directed along the
z axis, one of the roots corresponds to a longitudinal
wave; the two other roots are equal and pertain to
transverse waves:

(5)

If the wave vector is directed along the x axis, then all
three velocities are different:

(6)

Here, the first transverse wave is polarized along the y
axis, and the second, along the z axis. In the general
case, for an arbitrary inclination of the wave vector
toward the z axis, longitudinal and transverse waves
cannot be separated.

However, the anisotropic properties of the medium
change radically when the propagation velocities of
longitudinal waves significantly exceed the velocities
of shear waves. Examples of such media can be soft
biological tissues, their phantoms, and certain highly
elastic and rubberlike materials. Recently, media for
which the shear elasticity moduli are much smaller
than the moduli related to the compressibility (change
in volume) of a material, have been termed “soft sol�
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Fig. 1. Location of myosin filaments in cross section of stretched sarcomere (a); section of sarcomere during its contraction—
arrays of actin filaments move into myosin arrays (b). Structures have hexagonal symmetry.



712

ACOUSTICAL PHYSICS  Vol. 60  No. 6  2014

RUDENKO, SARVAZYAN

ids” (see, e.g., [30]). Note that a literal translation of
this term into Russian seems strange and the term
“rubberlike medium” in the Russian language litera�
ture has a somewhat different meaning. A soft solid is
a medium whose shear elasticity is small compared to
the bulk elasticity. A rubberlike or highly elastic
medium has the property of not being destroyed under
high deformations.

As we were able to show [31], in soft solid media,
new limitations are placed on the tensor components
of elasticity moduli. It turns out that moduli  (2)

should be of the same order as the quantity  and
the other two moduli  should be much smaller, on

the order of  Since in muscle the velocity of a lon�
gitudinal wave  m/s and the velocity of a
transverse wave is 1–100 m/s, obvi�
ously

Here, let us consider in more detail the anisotropy
of the properties of the dynamic shear elasticity of
muscle. In the general case, in anisotropic medium
(2), the z axis of the Cartesian coordinates can be con�
veniently combined with the axis of symmetry (for us,
this is the muscle fiber axis). Directions x, y can be
chosen arbitrarily. Without limitation of generality, we
can conveniently choose the plane (x, z) as the plane
of incidence in which wavevector k lies. Vector k is
inclined toward the z axis at an arbitrary angle θ. Fig�
ure 2 illustrates the geometry of the problem.

For this geometry, wave equation (1) takes the form

(7)
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Clearly, displacement vector U should change accord�
ing the law of a wave traveling along vector k.

(8)

Here, c is the velocity of a propagating wave, which
needs to be expressed via the moduli of the medium
and the directions of vectors U and k. Substituting (8)
in (7) and integrating twice over time, we bring the
wave equation in partial derivatives (7) to a system of
algebraic equations:

(9)

In Cartesian components, system (9) takes the form

(10)

The second equation of this system is independent
of the other two equations. It contains only one dis�
placement vector component  orthogonal to
the plane of incidence and wavevector k (see Fig. 2a).
As a result, the second equation (10) describes a trans�
verse (shear) wave, the propagation velocity of which is

(11)

The other two equations of system (10) (the first and
third) contain both components  of the dis�
placement vector, which lie in the plane of incidence.
Equating the determinant of this “truncated” system
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Fig. 2. Wave vector k of a shear wave lies in plane of incidence and is inclined at angle θ toward fiber axis; (a) polarization
vector is orthogonal to plane of incidence; (b) polarization vector lies in plane of incidence.
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to zero, we arrive at a quadratic equation for the wave
propagation velocity:

(12)

The two roots of Eq. (12) correspond to two waves,
which for an arbitrary crystal of the symmetry under
consideration are neither purely longitudinal nor
purely transverse.

The situation changes fundamentally for a soft
solid medium, an example of which is skeletal muscle.
Since in this case the propagation velocities of longitu�
dinal and shear waves differ significantly, the longitu�
dinal and transverse component of the wave field can�
not themselves be strongly related in a linear approxi�
mation. The likelihood of this hypothesis becomes
obvious if one considers excitation of the medium by
an impact in the form of a pulsed power action. The
longitudinal (bulk) wave that arises quickly departs the
vicinity of the source, whereas the shear (slow) wave
will remain in this vicinity for a long time. The separa�
tion of the two waves in the space excludes the possi�
bility of their relationship—a noticeable influence on
each other. This means that one of the two roots of
Eq. (12) should correspond to the longitudinal wave,
and the other, to the transverse.

Let us first consider the longitudinal wave, for
which in system (10) we put 

 (see Fig. 2). We obtain two expressions
for the velocity:

(13)

Expressions (13) coincide identically (for any values of
angle θ) only if there is the following relationship
between the elasticity moduli:

(14)

The velocity of the longitudinal wave, determined by
formulas (13), is

(15)

and does not depend on the angle of incidence.

For a transverse wave we do precisely what we did
for thelongitudinal wave, supposing in system (10)

  (see Fig. 2b). We obtain
a pair of equations:

(16)

Taking into account relationships (14), Eqs. (16) lead
to the following expression for the velocity of the sec�
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ond transverse wave, which also does not depend on
direction:

(17)

Roots (15) and (17) are obtained directly from disper�
sion equation (12) if in it we take into account rela�
tionship (14) between the elasticity moduli.

Thus, in a “soft”—for shear deformations—
medium with one isolated direction, three waves can
propagate: one longitudinal (with velocity (15)) and
two transverse (with velocities (11) and (17)). Limiting
ourselves to considering only the shear (slow) dynam�
ics, it is possible to state the following. With respect to
shear waves, muscle can behave like a crystal with
enhanced symmetry, for which only the following ten�
sor components of the elasticity moduli differ from
zero:

(18)
A situation arises similar to the one well known for

light waves in uniaxial optical crystals. Ordinary and
extraordinary shear waves arise, which differ in their
polarization. The dashed lines in Fig. 2 depict the
indicatrices of the velocities of shear waves (ellipsis
and circle). Clearly, the new symmetry properties
established and described above do not give numerical
values for the pair of elasticity moduli  These data
can be obtained only as a result of experimental mea�
surements. The biophysical models of muscle
described in [31] can give a qualitative representation
of the behavior of these moduli.

ANISOTROPY OF SHEAR VISCOSITY

To estimate the damping properties of muscle, it is
necessary to calculate the energy losses of waves
excited in muscle and propagating therein in various
directions. This problem requires account of the
anisotropy of energy losses, which is related not only
to the elastic but also dissipative properties of muscle.
Since a corresponding theory had apparently not been
developed earlier, we begin by explaining the basics.

As is known, the attenuation rate of energy E in vol�
ume V of a continuum is given by the expression [32]

(19)

Here,  is the velocity vector component

and  is the viscous stress tensor. In the case of iso�
tropic incompressibility of a fluid, it is equal to [32]

(20)

where η is the shear viscosity coefficient.
In anisotropic solids, these well�known expressions

should be generalized. Here, the viscosity is already
not a scalar quantity, but a fourth�rank tensor: 
The symmetry of the viscosity tensor is the same as for
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the tensor of the elasticity moduli  Namely, the
form of tensor  does not change when the first and
second pairs of subscripts are changed. Neither will
the tensor change if the subscripts within the first or
second pair change. The viscous stress tensor here has
the form [31]

(21)

Substituting (21) in (19), we find the attenuation rate
of energy E in volume V of an anisotropic solid:

(22)

General formula (22) can serve be the basis for subse�
quent specific conclusions.

Further, so as to avoid cumbersome formulas, we
pass from a general consideration to an analysis of the
dissipation of shear waves in muscle, for which we use
the mentioned fact of enhanced symmetry, which has
made it possible to restrict the tensor of elasticity mod�
uli to two independent components (18). For the vis�
cosity tensor, obviously only the following two compo�
nents will also differ from zero:

(23)
Taking into account symmetry properties (23) and the
location of the wave vector in the adopted coordinate
system (see Fig. 2), for the energy losses in the volume
unit of the medium  we obtain the follow�
ing expression from (22):

(24)

Bearing in mind dependence (8) of the projections on
the coordinates and time, for shear waves polarized in
the plane of incidence and orthogonal to this plane, we
find, respectively,

(25)

(26)

For traveling monochromatic waves, from formulas
(25), (26) we obtain the following attenuation coeffi�
cients characterizing the rate of decrease in wave
amplitude with distance:

(27)

In these formulas, the propagation velocities are given
by formulas (17) and (11); the second of these veloci�
ties itself depends on angle θ.

Analysis of the dependences of the attenuation
coefficient on direction is only simple for a shear wave
polarized in the plane of incidence  Clearly,
absorption reaches a maximum during propagation
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both along and across muscle fibers. Absorption of this
wave turns to zero during propagation at an angle of
45° along the fiber axis. For a wave polarized in the
orthogonal plane, here the angular dependence is
more complex and depends on all four quantities

 which, as mentioned above, should be mea�
sured experimentally.

Sometimes when conducting measurements, polar�
ization of a shear wave is not taken into account and
only its propagation “along fibers” (θ = 0) or “across
fibers”  is mentioned. For longitudinal propa�
gation, both attenuation coefficients are equal:

(28)

For transverse propagation, the coefficients are differ�
ent:

(29)

Thus, the difference in the attenuation coefficients for
longitudinal (28) and transverse (29) propagation

depend on which of the quantities is larger:  or

COMPARISON WITH EXPERIMENTAL DATA

Recently, experimental data have been published
that can be compared with the results of the proposed
theory [9, 13, 33].

In [13], a transversally isotropic model for hexago�
nal crystals was modified for soft solid media similar to
what we did in [31]. Two Young’s moduli have been
introduced for deformations along and across muscle
fibers. The limits of their change and the relationship
to the bulk shear elasticity moduli have been esti�
mated.

In [9], a list of experiments is discussed that are
important for understanding the viscoelastic proper�
ties of muscle, among them, shear elastic and dissipa�
tive characteristics as a function of muscle tension and
oscillation frequency. Corresponding experiments
have been performed on volunteers. A large array of
data has been obtained, including the distribution pat�
terns of the muscle volume characteristics. However,
the details of experiments related to polarization of
shear waves are not discussed, which hinders compar�
ison of our theory and these data.

Here we discuss the results of [33], where the
mutual orientations of the wave vector, the polariza�
tion vector, and muscle fiber have been described quite
clearly. In [33] a modern Verasonics experimental
sonograph with an open architecture was used to
excite an ultrasonic wave. The emitter was a linear
array or piezoceramic elements. It was possible to con�
trol the beam pattern and ultrasound focusing by feed�
ing electric oscillation with controllable phase delays
to the piezoelements. The high radiation intensity
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X3

X2
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SW
SW
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Fig. 3. Diagram of shear wave SW excitation by radiative pressure of modulated and focused ultrasound wave.

made it possible to create radiation force at the focus,
which excited shear oscillations with the modulation
frequency [16, 17]. Figure 3 shows a diagram of the
excitation of shear waves via the ultrasound radiation
force.

Figure 3 qualitatively depicts how an ultrasonic
wave (UW) is emitted by the transducer array and is
focused into a cylindrical volume elliptical in cross
section. The two�sided vertical arrows in the focal
region depict the direction of its oscillations under the
action of the radiation force. Thus, the directions are
as follows: the source is drawn along the X3 axis, the
focal region is drawn along the X2 axis, shear oscilla�
tions of the filament are polarized along the X1 axis,
and the wave vector of the shear wave SW traveling
from the focal region is directed along the X3 axis (i.e.,
parallel to the transducer array).

Figure 4 shows the orientation of the ultrasound
array with respect to fibers in experiment [33]. The
array is placed on the face of a cubic shape. Muscle
fibers are simulated by parallel fishing lines imbedded
in a polymer matrix. By rotating the sample it was pos�
sible to change angle θ between the fiber axis and the
direction of the wave vector of the shear wave.

Comparing Figs. 2 and 4, we see that the polariza�
tion vector of the shear wave in this experiment is
always directed across the fibers—  in Fig. 2. As the
sample is rotated, angle θ changes between the wave

U ⊥

vector and the fiber axis. Our formula (11) is suitable
for precisely this case. Supposing in it

 m/s,  m/s,
we construct the curve of the dependence of the shear
wave velocity on angle θ. This curve is shown in Fig. 5.
Clearly, the course of this curve agrees quite well with
the measurement data [33]. Thus, in an experiment of
this type, it is possible to measure both independent
elasticity moduli  characterizing the shear proper�
ties of muscle anisotropy.

CONCLUSIONS

The authors hope that understanding of the physics
of wave processes in anisotropic media like soft solids
will lead to intelligently constructed novel experiments
in phantoms of anisotropic soft tissues, as well as mus�
cles, in vivo and in vitro. The aim of such experiments
can be independent measurement of four values: two
shear elasticity moduli and two viscosity tensor com�
ponents, as well as the angular dependences predicted
in this work: the propagation velocity and attenuation
of all transverse wave modes.

It is of independent interest to measure these char�
acteristics as a function of fiber tension. Obviously,
tension should change both the elasticity of muscle
and absorption of waves in muscle. In addition, it is
important to study dispersion, i.e., the frequency

3.75D ρ = 2.85B ρ =

, ,B D
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Fig. 4. Orientation of ultrasound source on surface of sample with respect to fibers.
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Fig. 5. Velocity of transverse wave polarized orthogonally to plane of incidence as function of angle θ between fiber axis and wave
vector. The solid curve is constructed using formula (11); confidence intervals correspond to experimental data [33].
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dependence of the parameters. Comprehensively, this
information should be useful for diagnostic purposes.

Note that our developed “macroscopic” theory
cannot predict the numerical values of the necessary
parameters. Therefore, in parallel with this direction,
it is necessary to develop a “microscopic” theory based
on molecular dynamics models, that is on the motion
of myosin bridges and muscle fibers in a surrounding
waterlike medium. Our previous paper [31] is an
example of such research, which obviously needs to be
continued.

This work is a step in elaborating the problems for�
mulated in [31]. The acoustic properties of skeletal
muscle are of particular interest for a number of rea�
sons. First, the main functional characteristics of skel�
etal muscle have a mechanical and, as a result, acous�
tic nature. Second, in comparison to other soft tissues,
skeletal muscle has a starkly pronounced anisotropy
closely related to its molecular structure. Third, the
main physiological function of skeletal muscle is its
contraction, accompanied by a dramatic change in the
viscoelastic properties. As well, the characteristic
times of elementary molecular processes responsible
for contraction and development of muscle strength
lie with the range of 10–3–10–4 s, i.e., in the frequency
range of 1–10 kHz, in which it is convenient to per�
form acoustic measurements using shear waves. An
important direction continuing this work, as well as
[31], will be the study of the damping properties of
muscle girdles, which protect bones and joints from
trauma [34].

We would like to note that acoustic measurements
of shear elasticity moduli have been described in sev�
eral papers published earlier in Acoustical Physics.
These are primarily the results of the first experiment
on generating shear waves in a phantom of muscle tis�
sue by means of radiation force [35], the substantial
development of which is described in review [17]. The
low velocity of shear waves is one of the causes of
strong nonlinearity [36] and may lead to destruction of
tissue [37]. Groups of authors have measured the non�
linear moduli of media like soft solids, in particular,
with the use of resonators [38].
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