
ISSN 1063-7397, Russian Microelectronics, 2021, Vol. 50, No. 7, pp. 491–498. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2020, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Elektronika, 2020, Vol. 25, No. 2, pp. 123–135.
Improving the Operating Efficiency of a Multibit Binary
Parallel-Prefix Adder

A. N. Yakunina, *, Aung Myo Sana, and Han Myo Htuna

a National Research University “MIET,” Moscow, 124498 Russia

*e-mail: yakunin.alexey@gmail.com
Received October 28, 2019; revised October 28, 2019; accepted January 28, 2020

Abstract—For the fast addition of two multibit binary numbers, parallel-prefix adders (PPAs) are currently
considered effective. Several PPAs are known with different time and hardware characteristics, and in partic-
ular, the Kogge–Stone adder is faster than other PPAs. However, this adder has a large number of logical ele-
ments and, therefore, occupies a large area, which leads to an increase in its price. This paper analyzes the
Kogge–Stone adder. To reduce its hardware and time costs, a modified PPA is developed. Adders are com-
pared in terms of the occupied area and the maximum delay of an operation. A results’ verification scheme is
implemented to confirm the reliability of the modified adder’s operation. This circuit is simulated in the CAD
Altera Quartus-II environment. As a result, it is found that when performing operations with 32- and 64-bit
operands, the developed adder reduces the occupied area by 11 and 16.5%, respectively, and the maximum
delay by 7%, compared to a Kogge–Stone adder.

Keywords: parallel-prefix adder (PPA), Kogge–Stone adder, footprint, maximum delay

DOI: 10.1134/S106373972107012X

INTRODUCTION
The hardware implementation of binary addition is

a fundamental architectural component in micropro-
cessor systems such as microprocessors, digital signal
processors, mathematical coprocessors, microcon-
trollers, mobile devices, etc. In these systems, in the
design of operating devices, combiners play an
important role in performing many computer arith-
metic operations based on addition. In this case, the
increase in the performance of operating devices
depends on the efficiency of the adder. Developing an
efficient adder that delivers high performance is a
pressing challenge.

Currently, almost all modern computers in critical
paths use parallel-prefix adders (PPAs) [1]. They are
highly efficient in terms of speed and are used to
quickly add two multidigit binary numbers. The liter-
ature describes several PPAs with a different occupied
area and maximum delay time [2]. PPAs include
Sklansky, Kogge–Stone, Brent–Kung, Han–Carl-
son, and Ladner–Fischer adders. The Kogge-Stone
adder is considered to be the fastest, since it has the
smallest propagation delay time in the circuit imple-
mentation among these PPAs [3, 4].

The aim of this study is to develop a multibit mod-
ified PPA to reduce the hardware and time costs in
comparison with the well-known Kogge–Stone adder.

KOGGE–STONE ADDER

The Kogge–Stone adder is considered the fastest
standard PPA, which adds two n-bit numbers

 and forms an
n-bit result, and output transfer
The Kogge–Stone adder circuits for 8 and 32 bits are
shown in Figs. 1 and 2. First the circuits compute the
carry generation signals and half-sum bits for bit
pairs by logical equations, and
then for nodes using the expression (gi:k, pi:k) = (gi:j +
pi:j ⋅ Gj–1:k, pi:j ⋅ pj–1:k) until the carry generation signal ci
is not be known for each digit. The sum si is deter-
mined by signals hi and ci–1 according to si = hi ⊕ ci–1
through the Exclusive OR element. The Kogge–Stone
adder is described in more detail in [5, 6].

The Kogge–Stone adder is faster than the Sklan-
sky, Brent–Kung, Han–Carlson, and Ladner–
Fischer adders [7, 8]. However, for the hardware
implementation, the Kogge–Stone adder requires
more logic elements, hence, an increased area, con-
sumes more power, and is more expensive. Neverthe-
less, the Kogge–Stone adder is used in high-perfor-
mance applications, since performance is the most
important determining factor.

− − − −= =1 2 0 1 2 0..... , ,n n n nA a a a B b b b

− −= 1 2 0.....n nS s s s .outc

ig ih
= ⋅ = ⊗; ,i i i i i ig a b h a b
491

492 YAKUNIN et al.

Fig. 1. Logic diagram of the 8-bit Kogge–Stone adder.

h7

g7

h6

g6

h5

g5

h4

g4

h3

g3

h2

g2

h1

g1

h0

g0

h7

c7 cout

h6

c6

h5

c5

h4

c4

h3

c3

h2

c2

h1

c1

c0

a7

a6

b7

b6

a5

b5

a4

b4

a3

b3

a2

b2

a1

b1

a0

s7

s6

s5

s4

s3

s2

s1

s0

b0

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&
1

1

1

1

1

1

1

&

&

&

&

&

&

&

&

&

&

&

&
1

1

&
1

&
1

&
1

&

1

1

1

1

1

&

&

&

&

DEVELOPMENT OF A MODIFIED PPA
In order to reduce the hardware and time costs, a

modified version of the PPA has been developed,
which uses its own prefix tree structure. Assume that
A = an–1an–2…a0 and B = bn–1bn–2…b0 are two binary
numbers that will be added up, and S = sn–1sn–2…s0 and
cout represent their sum and output carry. The idea of
designing a modified adder begins with the logic of
generating a propagation carry with a parallel-prefix
carry. To calculate the generation g and propagation p
of the transfer, we assume that

(1)

where i = 0 ≤ i ≤ n – 1; and the symbols “·” and “+”
denote the logical operations AND and OR, respec-
tively.

= ⋅ = +, ,i i i i i ig a b p a b
RUS
The calculation of the normal carries of the adder
is performed as

(2)

According to definition (1), it is assumed that pi ⋅ Gi = gi.
Then we can perform identical transformations simi-
larly to (2):

(3)

After defining the term of variable ki, Eq. (3) can be
written as

(4)

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

+ +
+ ⋅

=
+

–1 –1 –2

–1 –2 1 0

 ... … .

i i i i i i i

i i i

c g p g p p g
p p p p g

(
)

⋅
⋅ ⋅

= + +
+ + … ⋅⋅

–1 –1 –2

–1 –2 1 0

i i i i i

i i i

c g g p g
p p p g p

⋅= ,i i ic k p
SIAN MICROELECTRONICS Vol. 50 No. 7 2021

IMPROVING THE OPERATING EFFICIENCY 493

Fig. 2. 32-bit Kogge–Stone adder circuit.

i

ai

&
& &&

1 1

bi

gi

gi:j gi:j hi

h1

c0

b0a0b31a31

s0

h31

c31

s31

cout

si

ci–1

gi:k gi:k = cihi:k

hi:j hi:jgj–1:j gj–1:k

hj–1:k

hi

1213141516171819202122232425262728293031 11 10 9 8 7 6 5 4 3 2 1 0
(5)

From (4) it follows that the bit switching activity ci
equally depends on the values received by bits pi of the
propagation carry, and values ki. In particular, for k5
according to (5) we have

(6)

Using the definition pi ⋅ gi = gi, Eq. (6) can be trans-
formed:

(7)

We assume that

(8)
then Eq. (7) is equivalent to the equation

= +
+ +⋅ ⋅ ⋅…⋅ ⋅+

–1

–1 –2 –1 –2 1 0

where

i i i

i i i i

k g g
p g p p p g

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
= + + +

+ + ⋅ ⋅ ⋅
5 5 4 4 3 4 3 2

4 3 2 1 4 3 2 1 0.
k g g p g p p g
p p p g p p p p g

()
()

= + + ⋅
⋅ ⋅ ⋅

+
+ +

5 5 4 4 3 3 2

4 3 2 1 1 0

 .

k g g p p g g
p p p p g g

⋅= + =–1 –1 , ,i i i i i iG g g P p p

⋅ ⋅= ⋅+ +5 5 4 3 4 2 1.k G P G P P G
RUSSIAN MICROELECTRONICS Vol. 50 No. 7 20
The value of signal k5 can be formed using the pre-
fix associative operator ° according to the following
expression:

Thus, an equation is obtained that realizes the
value k5. In the case of an 8-bit adder, the remaining
values k7…k0 are calculated similarly:

where P1 = p1 and G0 = g0.

() () ()= °°5 5 4 3 2 1 , , .k G P G P G

= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ 
= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅


= + ⋅ + ⋅ ⋅ 
= + ⋅ + ⋅ ⋅ 
= + ⋅ 
= + ⋅
= 

= 

7 7 6 5 6 4 3 6 4 2 1

6 6 5 4 5 3 2 4 3 1 0

5 5 4 3 4 2 1

4 4 3 2 3 1 0

3 3 2 1

2 2 1 0

1 1

0 0

,

k G P G P P G P P P G
k G P G P P G P P P G
k G P G P P G
k G P G P P G
k G P G
k G P G
k G
k G
21

494 YAKUNIN et al.
The received bits ki can be represented in the prefix
associative operator form:

(9)

After analyzing (9), by induction we can obtain that
the bits ki are even, and odd bit positions can be
expressed as

(10)

(11)

Each associative operator links pairs of signals G
and P and is defined as follows:

(12)

Taking into account the operator °, the calculations
of signal ki with a parallel prefix can be represented as
a prefix tree of the modified adder. Computing bits ki
and pi instead of the normal translations ci makes it
harder to get the bits of the final sum si since, in this
case,

After the identical transformations (ai ⊕ bi) we get

(13)

where the symbols – and ⊕ denote the logical opera-
tions NOT and Exclusive OR. According to (1) at

 and ai + bi = pi, in order to realize the final
sum si expression (13) can be represented as

However, computing bits si can be transformed in
the following identical way:

(14)

Equation (14) can be implemented using a multi-
plexer that chooses either or
according to value ki–1. As a rule, the Exclusive OR
gate has an almost equal multiplexer delay and propa-
gation delay time from the input of the input operands
to the establishment of the function’s result

 is less than before the establishment of

() () () ()
() () () ()
() () ()
() () ()
() ()
() ()
()
()

= 
=


= 
= 
= 
=
= 

= 

� � �

� � �

� �

� �

�

�

7 7 6 5 4 3 2 1

6 6 5 4 3 2 1 0

5 5 4 3 2 1

4 4 3 2 1 0

3 3 2 1

2 2 1 0

1 1

0 0

, , ,
, , ,
, ,
, ,

.
,
,

k G P G P G P G
k G P G P G P G
k G P G P G
k G P G P G
k G P G
k G P G
k G
k G

() () ()= …° °°2 2 2 –1 2 –2 2 –3 0, , ,m m m m mk G P G P G

() () ()+ += …° °°2 1 2 1 2 2 –1 2 –2 1, , .m m m m mk G P G P G

() () () ()= + ⋅ ⋅°, ', ' ' , ' .G P G P G P G P P

= ⊕ ⊕ = ⊕ ⊕–1 –1 –1.i i i i i i i is a b c a b k p

() ()
()

−

− −

= + + ⊕

= + ⊕
1

1 1,
i i i i i i

i i i i i i

s a b a b c

a b a b k p

=i i ia b g

− −= ⊕⋅ ⋅1 1.i i i i is g p k p

() ()()− − −= + ⊕⋅ ⋅1 1 1 .i i i i i i i is k g p k g p p

()⋅i ig p ()()−⊕⋅ 1i i ig p p

() −⊕⋅ 1i i ig p p
RUS
the signal ki–1. Therefore, the excess delay will not
appear in the adder circuit due to the multiplexer for
the output of the final sum si. The output carryover cout
is formed almost simultaneously with the bits of the
sum using the relation cn–1 = kn–1 ⋅ pn–1. Thus, accord-
ing to expressions (1), (8), (10), (11), and (14), the
modified adder is implemented by a three-stage circuit
consisting of a precomputation stage, a prefix tree for-
mation stage, and a result calculation stage. The logic
diagram of the 8-bit modified adder is shown in Fig. 3.

This scheme works as follows. The precomputing
stage generates signals gi and pi for all categories ai and
bi using the logical elements AND and OR in accor-
dance with (1). After combining bits gi, pi, gi–1, and pi–1,
signals Gi and Pi–1 are calculated based on (8) using the
logical elements AND and OR. The second stage
adder, or prefix tree, calculates signals ki using bits Gi
and Pi–1 in accordance with (10) and (11). At the stage
of generating the result, the adder calculates sum si
based on (14) using the elements NOT, AND, Exclu-
sive OR, and the multiplexer. The output carryover cout
is formed using the ratio cn–1 = kn–1 ⋅ pn–1.

To design a 64-bit modified adder circuit, sche-
matic blocks (black and white) are implemented
using (12), which are used for greater clarity of the
prefix tree. These blocks take inputs from both the
given bit position (l–1Gi, l–1Pi–1), and from the lower bit
positions at the previous level. They are
connected to form signals ki. The network of these
blocks is called the prefix tree. Figure 4 shows a sche-
matic of a 64-bit modified adder.

This circuit calculates signals gi and pi for pairs of
input bits, then calculates signals Gi and Pi–1 to create
a prefix tree. Then log2n – 1 = 5 levels of schematic
blocks is used to form a prefix tree that calculates sig-
nals ki for each digit. After that, at the last stage, the
result of addition si and the output transfer cout, together
with signals ki are calculated.

COMPARISON OF HARDWARE
AND TIME COSTS A OF PPA

Let us estimate the hardware and time costs of a
PPA in terms of the occupied area and maximum
delay. To estimate the area occupied by the adder, it is
necessary to sum the areas of all the used logic ele-
ments. For the maximum delay, the longest (critical)
path along which the signal passes is chosen, and the
delay time of all logic elements along this path is added
[9]. Assume that αNOT and τNOT are the occupied area
and the delay of the NOT element, respectively; αAND
and τAND are the AND element; αOR and τOR are the
OR element; αexc and τexc are the Exclusive OR ele-
ment; and αm and τm are the multiplexer.

−
–1 –1

1',(')l l
i iG P
SIAN MICROELECTRONICS Vol. 50 No. 7 2021

IMPROVING THE OPERATING EFFICIENCY 495

Fig. 3. Logic circuit of an 8-bit modified adder.

p7

g7

p6

g6

p5

g5

p4

g4

p3

g3

p2

g2

p1

g1

p0

g0

cout

a7

a6

b7

b6

a5

b5

a4

b4

a3

b3

a2

b2

a1

b1

a0

s7

s6

s5

s4

s3

s2

s1

s0

k7

p7

p6

p5

p4

p3

p2

p1 1
0

1
0

1
0

1
0

1
0

1
0g7

p6

G7

G6
P6

G5
P5

G4
P4

G3
P3

G2
P2

G1

G0

P1

g6

p5

g5

p4

g4

p3

g3

p2

g2

p1

g1

g0

k6

k5

k4

k3

k2

k1

k0

b0

&
1

&
1

&
1

&
1

&
1

& &
&

&
&

1

1

1

1

&

&

1

1

&
1

&
1

&
1

&
&

&

&

&

&

&

&

&

&

1

&
1

&
1

&
1

&
1

1

&
1

&
1

&
1

Prediction cascade Prefix-tree cascade Result cascade
After analyzing the structures of the considered
PPAs, we obtain the formulas for calculating the occu-
pied area and the maximum delay:

— for the n-bit Kogge–Stone adder

— and for the for n-bit modified adder

()()
()() ()

α = − + α
+ − + α + − α

KS 2 AND

2 OR exc

2 log 2 3
log 1 2 1 ,

n n n
n n n n

() ()τ = τ + τ + τKS 2 AND 2 OR exclog log 2 ;n n

()()
()()

() ()

α = α + + α

+ − + − α

+ − α + − α

MOD NOT 2 AND

2 OR

EXC m

log

2 1 log 1
2

1 2 ,

n n n n
nn n

n n
RUSSIAN MICROELECTRONICS Vol. 50 No. 7 20
To quantify the delay, assume that τNOT = 0.5, τAND =
τOR = 1 conventional units, and τexc = τm= 2. To estimate
the area, we assume that αNOT = 0.5, αAND = αOR = 1,
and αexc = αm= 2. The obtained values of the occupied
area and the maximum delay (operating time) of the
PPA for 8, 16, 32, and 64 bits are given in Table 1.

It can be seen from the Table 1 that when increas-
ing the bit depth from the point of view of hardware
and time costs, the modified adder is characterized by
better performance and a smaller footprint than the
Kogge–Stone adder. In particular, the footprint of the
32-bit and 64-bit modified adders is 11 and 16.5% less,
respectively, than that of the standard Kogge–Stone

() ()τ = τ + τ + τmod 2 AND 2 OR mlog log .n n
21

496 YAKUNIN et al.

Fig. 4. 64-bit modified adder circuit.

b63:0 a63:0

s63:0

cout

l–1Pi–1′
l–1Gi′

l–1Pi–1

lPi–1
lGi

l–1Gi

Prediction cascade

Pr
efi

x-
tr

ee
 c

as
ca

de

Result cascade

1

& &

l–1Gi′
l–1Pi–1

lGi = ki

l–1Gi

1

&

adder. For 32 and 64 bits, the proposed adder gives a
decrease in the maximum delay by almost 7% com-
pared to the Kogge–Stone adder.

DEVELOPMENT OF A SCHEME
FOR CHECKING THE RESULTS

OF THE MODIFIED ADDER
To confirm the reliability of the modified adder’s

operation, a scheme for checking the reliability of the
results is proposed (Fig. 5). The circuit contains an
8-bit modified adder, an 8-bit standard Kogge–Stone
RUS

Table 1. Evaluation of the occupied area and the maximum d

Number of bits
Occupied area

Kogge–Stone adder modified

8 82 85
16 210 201
32 514 457
64 1218 1017
adder, a 16-bit synchronous totalizer, a 9-bit digital
equality comparator, a four-input AND gate, and two
inverters. The synthesis of an adding counter and an
equality comparator is considered in [10].

The circuit has inputs—clock signals (clk), start
(start), and reset (reset)—and outputs—a 16-bit num-
ber (q[15…0]), the finish (Done), and detected error
(Error). The input start is used to count or stop the
counter (1, count; 0, stop). The input reset controls the
operation of the counter (1 to run, 0 to reset). The cal-
culated counter values are expressed by the output
SIAN MICROELECTRONICS Vol. 50 No. 7 2021

elay of adders

Maximal delay

adder Kogge–Stone adder modified adder

9 8
11 10
13 12
15 14

IMPROVING THE OPERATING EFFICIENCY 497

Fig. 5. Circuit for checking the results of the modified adder’s operation.

q[15..0]

pout

q[15..8]

q[15..0]

q[7..0]

b[7..0]

b[7..0]

a[7..0]

a[7..0]
S2[8..0]

S1[8..0]

16-Bit
adding
counter

8-Bit
designed

adder
Error

Done

E9-Bit
digital

comparator
8-Bit

reference
Kogge–Stone

adder

clk &start

reset

Fig. 6. Scheme of RTL-Viewer results obtained after compilation.
q[15…0]. The signal Done shows that all possible argu-
ment values have been successfully tested as input
arguments for two adders. If the signal Done = 1, then
the process of checking the results was successful; i.e.,
all the results of the modified adder are correct. The
signal Error indicates that an error has been detected in
some result of the modified adder compared to the
result of the reference adder. If there is an error, then
the output Error = 1. Otherwise the signal Error = 0.

Let us consider how the circuit works. Suppose the
output signal E of the comparator and inversion signal’s

 output carry counter are 1. In this case reset = 1 and
start = 1, while clk enters the clock input of the counter
through the AND element. Then the counter calcu-
lates all 216 = 65536 possible values for a 16-bit binary
number, and the transition to the next value occurs on
the rising edge of the clock pulse. The calculated val-
ues of the operands for the counters are defined as
q15…q8 for the first term (operand A) and q7…q0 for the
second term (operand B). The received operands are
supplied to the corresponding inputs of the modified
and reference adders. These adders perform addition
on the input operands in different ways and send 9-bit

outp
RUSSIAN MICROELECTRONICS Vol. 50 No. 7 20
sums to the outputs. The comparator then compares
the two 9-bit binary sums from the adders and pro-
vides one output signal indicating whether they are
equal or not. If the corresponding digits are equal,
then signal E = 1 and the process is repeated until the
finish is reached. If any discharges S1 and S2 are
unequal, the signal Error = 1 and the verification pro-
cess stops. When the output carry counter Pout is logi-
cal 1, then the signal Done will be set to logical 1; i.e.,
the verification process ends and the process stops.

MODELING AND VALIDATION OF RESULTS

The proposed scheme was modeled in a graphical
editor in the CAD Altera Quartus-II environment. For
simulation in the Quartus-II environment, the functional
simulation mode was selected using the Cyclone-II-
EP2C20F484C7 FPGA family. Figure 6 shows a dia-
gram of the results (version at the level of register trans-
fers of RTL-Viewer) obtained after compiling the dia-
gram. The successful verification of the results of the
modified adder operation when adding two 8-bit
numbers with all possible values is confirmed by the
21

498 YAKUNIN et al.

Fig. 7. Time chart of checking the results of the modified adder’s operation when adding two 8-bit numbers with all possible values.
timing diagram (Fig. 7) obtained in the Quartus II
environment.

CONCLUSIONS

As a result of a comparative analysis of the Kogge–
Stone adder and the modified adder, the following
points were established: when the number of bits of
operands is 16, 32, or 64, the modified adder performs
better and occupies a smaller area than the Kogge–
Stone adder. The reliability of the results of the modi-
fied adder when adding with all possible values of two
8-bit operands was checked using the developed circuit,
which was modeled in the CAD Altera Quartus-II envi-
ronment. The results are confirmed by the time chart.

The proposed modified adder can be used in the
design of high-speed operating devices in computer
arithmetic.

REFERENCES

1. Yakunin, A.N. and Aung, M.S., Comparative analysis
of characteristics of binary multi-bit parallel adders,
Izv. Vyssh. Uchebn. Zaved., Elektron., 2018, vol. 23,
no. 3, pp. 299–301.

2. Daphni, S. and Vijula Grace, K.S., A review analysis of
parallel prefix adders for better performance in VLSI
applications, in Proceedings of the IEEE International
Conference on Circuits and Systems, Thiruvananthapur-
am, India, 2017, pp. 103–106.

3. Daphni, S. and Vijula Grace, S.K., Design and analysis
of 32-bit parallel prefix adders for low power VLSI ap-

plications, Adv. Sci. Technol. Eng. Syst., 2019, vol. 4,
pp. 102–106.

4. Rahila, KC. and Sajesh Kumar, U., A comprehensive
comparative analysis of parallel prefix adders for asic
implementation, in Proceedings of the International
Conference on Systems Energy and Environment, GCE
Kannur, Kerala, July 2019, pp. 1–5.

5. Aung, M.S. and Yakunin, A.N., Reduction of the hard-
ware complexity of a parallel prefix adder, in Proceed-
ings of the International Conference EIConRus-2018,
St. Petersburg, Moscow, June 28–31, 2018, Moscow:
MIET, 2018, pp. 1348–1349.

6. Penchalaiah, U. and Siva Kumar, V.G., Design of high-
speed and energy-efficient parallel prefix Kogge–
Stone adder, in Proceedings of the IEEE International
Conference on System, Computation, Automation and
Networking, Pondicherry, India, July 6–7, 2018, 2018,
pp. 1–6.

7. Yakunin, A.N. and Aung, M.S., Increasing the operat-
ing speed of a multi-bit binary multiplier, in Problemy
razrabotki perspektivnykh mikro- i nanoelektronnykh
sistem MES-2018 (Problems of the Development of
Promising Micro- and Nanoelectronic Systems, Pro-
ceedings of the 7th All-Russia Conference), 2018,
vol. 2, pp. 149–151.

8. Yakunin, A.N. and Aung, M.S., Research and modifi-
cation of a multi-bit parallel-prefix adder, Izv. Vyssh.
Uchebn. Zaved., Elektron., 2019, vol. 24, no. 2, pp. 197–
207.

9. Chervyakov, N.I., Lyakhov, P.A., Valueva, M.V., and
Krivolapova, O.V., Comparative analysis of adders
hardware implementation on FPGA, Nauka. Innov.
Tekhnol., 2016, no. 4, pp. 99–108.

10. Harris, D. and Harris, S., Digital Design and Computer
Architecture, New York: Morgan Kaufmann, 2012.
RUSSIAN MICROELECTRONICS Vol. 50 No. 7 2021

	INTRODUCTION
	KOGGE–STONE ADDER
	DEVELOPMENT OF A MODIFIED PPA
	COMPARISON OF HARDWARE AND TIME COSTS A OF PPA
	DEVELOPMENT OF A SCHEME FOR CHECKING THE RESULTS OF THE MODIFIED ADDER
	MODELING AND VALIDATION OF RESULTS
	CONCLUSIONS
	REFERENCES

		2021-12-21T15:16:53+0300
	Preflight Ticket Signature

