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Abstract—For the fast addition of two multibit binary numbers, parallel-prefix adders (PPAs) are currently
considered effective. Several PPAs are known with different time and hardware characteristics, and in partic-
ular, the Kogge–Stone adder is faster than other PPAs. However, this adder has a large number of logical ele-
ments and, therefore, occupies a large area, which leads to an increase in its price. This paper analyzes the
Kogge–Stone adder. To reduce its hardware and time costs, a modified PPA is developed. Adders are com-
pared in terms of the occupied area and the maximum delay of an operation. A results’ verification scheme is
implemented to confirm the reliability of the modified adder’s operation. This circuit is simulated in the CAD
Altera Quartus-II environment. As a result, it is found that when performing operations with 32- and 64-bit
operands, the developed adder reduces the occupied area by 11 and 16.5%, respectively, and the maximum
delay by 7%, compared to a Kogge–Stone adder.
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INTRODUCTION
The hardware implementation of binary addition is

a fundamental architectural component in micropro-
cessor systems such as microprocessors, digital signal
processors, mathematical coprocessors, microcon-
trollers, mobile devices, etc. In these systems, in the
design of operating devices, combiners play an
important role in performing many computer arith-
metic operations based on addition. In this case, the
increase in the performance of operating devices
depends on the efficiency of the adder. Developing an
efficient adder that delivers high performance is a
pressing challenge.

Currently, almost all modern computers in critical
paths use parallel-prefix adders (PPAs) [1]. They are
highly efficient in terms of speed and are used to
quickly add two multidigit binary numbers. The liter-
ature describes several PPAs with a different occupied
area and maximum delay time [2]. PPAs include
Sklansky, Kogge–Stone, Brent–Kung, Han–Carl-
son, and Ladner–Fischer adders. The Kogge-Stone
adder is considered to be the fastest, since it has the
smallest propagation delay time in the circuit imple-
mentation among these PPAs [3, 4].

The aim of this study is to develop a multibit mod-
ified PPA to reduce the hardware and time costs in
comparison with the well-known Kogge–Stone adder.

KOGGE–STONE ADDER

The Kogge–Stone adder is considered the fastest
standard PPA, which adds two n-bit numbers

 and forms an
n-bit result,  and output transfer 
The Kogge–Stone adder circuits for 8 and 32 bits are
shown in Figs. 1 and 2. First the circuits compute the
carry generation signals  and half-sum bits  for bit
pairs by logical equations, and 
then for nodes using the expression (gi:k, pi:k) = (gi:j +
pi:j ⋅ Gj–1:k, pi:j ⋅ pj–1:k) until the carry generation signal ci
is not be known for each digit. The sum si is deter-
mined by signals hi and ci–1 according to si = hi ⊕ ci–1
through the Exclusive OR element. The Kogge–Stone
adder is described in more detail in [5, 6].

The Kogge–Stone adder is faster than the Sklan-
sky, Brent–Kung, Han–Carlson, and Ladner–
Fischer adders [7, 8]. However, for the hardware
implementation, the Kogge–Stone adder requires
more logic elements, hence, an increased area, con-
sumes more power, and is more expensive. Neverthe-
less, the Kogge–Stone adder is used in high-perfor-
mance applications, since performance is the most
important determining factor.
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Fig. 1. Logic diagram of the 8-bit Kogge–Stone adder.
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DEVELOPMENT OF A MODIFIED PPA
In order to reduce the hardware and time costs, a

modified version of the PPA has been developed,
which uses its own prefix tree structure. Assume that
A = an–1an–2…a0 and B = bn–1bn–2…b0 are two binary
numbers that will be added up, and S = sn–1sn–2…s0 and
cout represent their sum and output carry. The idea of
designing a modified adder begins with the logic of
generating a propagation carry with a parallel-prefix
carry. To calculate the generation g and propagation p
of the transfer, we assume that

(1)

where i = 0 ≤ i ≤ n – 1; and the symbols “·” and “+”
denote the logical operations AND and OR, respec-
tively.

= ⋅ = +, ,i i i i i ig a b p a b
RUS
The calculation of the normal carries of the adder
is performed as

(2)

According to definition (1), it is assumed that pi ⋅ Gi = gi.
Then we can perform identical transformations simi-
larly to (2):

(3)

After defining the term of variable ki, Eq. (3) can be
written as

(4)
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Fig. 2. 32-bit Kogge–Stone adder circuit.
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From (4) it follows that the bit switching activity ci
equally depends on the values received by bits pi of the
propagation carry, and values ki. In particular, for k5
according to (5) we have

(6)

Using the definition pi ⋅ gi = gi, Eq. (6) can be trans-
formed:

(7)

We assume that

(8)
then Eq. (7) is equivalent to the equation
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The value of signal k5 can be formed using the pre-
fix associative operator ° according to the following
expression:

Thus, an equation is obtained that realizes the
value k5. In the case of an 8-bit adder, the remaining
values k7…k0 are calculated similarly:

where P1 = p1 and G0 = g0.
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The received bits ki can be represented in the prefix
associative operator form:

(9)

After analyzing (9), by induction we can obtain that
the bits ki are even, and odd bit positions can be
expressed as

(10)

(11)

Each associative operator links pairs of signals G
and P and is defined as follows:

(12)

Taking into account the operator °, the calculations
of signal ki with a parallel prefix can be represented as
a prefix tree of the modified adder. Computing bits ki
and pi instead of the normal translations ci makes it
harder to get the bits of the final sum si since, in this
case,

After the identical transformations (ai ⊕ bi) we get

(13)

where the symbols – and ⊕ denote the logical opera-
tions NOT and Exclusive OR. According to (1) at

 and ai + bi = pi, in order to realize the final
sum si expression (13) can be represented as

However, computing bits si can be transformed in
the following identical way:

(14)

Equation (14) can be implemented using a multi-
plexer that chooses either  or 
according to value ki–1. As a rule, the Exclusive OR
gate has an almost equal multiplexer delay and propa-
gation delay time from the input of the input operands
to the establishment of the function’s result

 is less than before the establishment of
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the signal ki–1. Therefore, the excess delay will not
appear in the adder circuit due to the multiplexer for
the output of the final sum si. The output carryover cout
is formed almost simultaneously with the bits of the
sum using the relation cn–1 = kn–1 ⋅ pn–1. Thus, accord-
ing to expressions (1), (8), (10), (11), and (14), the
modified adder is implemented by a three-stage circuit
consisting of a precomputation stage, a prefix tree for-
mation stage, and a result calculation stage. The logic
diagram of the 8-bit modified adder is shown in Fig. 3.

This scheme works as follows. The precomputing
stage generates signals gi and pi for all categories ai and
bi using the logical elements AND and OR in accor-
dance with (1). After combining bits gi, pi, gi–1, and pi–1,
signals Gi and Pi–1 are calculated based on (8) using the
logical elements AND and OR. The second stage
adder, or prefix tree, calculates signals ki using bits Gi
and Pi–1 in accordance with (10) and (11). At the stage
of generating the result, the adder calculates sum si
based on (14) using the elements NOT, AND, Exclu-
sive OR, and the multiplexer. The output carryover cout
is formed using the ratio cn–1 = kn–1 ⋅ pn–1.

To design a 64-bit modified adder circuit, sche-
matic blocks (black and white) are implemented
using (12), which are used for greater clarity of the
prefix tree. These blocks take inputs from both the
given bit position (l–1Gi, l–1Pi–1), and from the lower bit
positions  at the previous level. They are
connected to form signals ki. The network of these
blocks is called the prefix tree. Figure 4 shows a sche-
matic of a 64-bit modified adder.

This circuit calculates signals gi and pi for pairs of
input bits, then calculates signals Gi and Pi–1 to create
a prefix tree. Then log2n – 1 = 5 levels of schematic
blocks is used to form a prefix tree that calculates sig-
nals ki for each digit. After that, at the last stage, the
result of addition si and the output transfer cout, together
with signals ki are calculated.

COMPARISON OF HARDWARE 
AND TIME COSTS A OF PPA

Let us estimate the hardware and time costs of a
PPA in terms of the occupied area and maximum
delay. To estimate the area occupied by the adder, it is
necessary to sum the areas of all the used logic ele-
ments. For the maximum delay, the longest (critical)
path along which the signal passes is chosen, and the
delay time of all logic elements along this path is added
[9]. Assume that αNOT and τNOT are the occupied area
and the delay of the NOT element, respectively; αAND
and τAND are the AND element; αOR and τOR are the
OR element; αexc and τexc are the Exclusive OR ele-
ment; and αm and τm are the multiplexer.

−
–1 –1

1',( ' )l l
i iG P
SIAN MICROELECTRONICS  Vol. 50  No. 7  2021



IMPROVING THE OPERATING EFFICIENCY 495

Fig. 3. Logic circuit of an 8-bit modified adder.
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Prediction cascade Prefix-tree cascade Result cascade
After analyzing the structures of the considered
PPAs, we obtain the formulas for calculating the occu-
pied area and the maximum delay:

— for the n-bit Kogge–Stone adder

— and for the for n-bit modified adder
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To quantify the delay, assume that τNOT = 0.5, τAND =
τOR = 1 conventional units, and τexc = τm= 2. To estimate
the area, we assume that αNOT = 0.5, αAND = αOR = 1,
and αexc = αm= 2. The obtained values of the occupied
area and the maximum delay (operating time) of the
PPA for 8, 16, 32, and 64 bits are given in Table 1.

It can be seen from the Table 1 that when increas-
ing the bit depth from the point of view of hardware
and time costs, the modified adder is characterized by
better performance and a smaller footprint than the
Kogge–Stone adder. In particular, the footprint of the
32-bit and 64-bit modified adders is 11 and 16.5% less,
respectively, than that of the standard Kogge–Stone

( ) ( )τ = τ + τ + τmod 2 AND 2 OR mlog log .n n
21
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Fig. 4. 64-bit modified adder circuit.
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adder. For 32 and 64 bits, the proposed adder gives a
decrease in the maximum delay by almost 7% com-
pared to the Kogge–Stone adder.

DEVELOPMENT OF A SCHEME 
FOR CHECKING THE RESULTS 

OF THE MODIFIED ADDER
To confirm the reliability of the modified adder’s

operation, a scheme for checking the reliability of the
results is proposed (Fig. 5). The circuit contains an
8-bit modified adder, an 8-bit standard Kogge–Stone
RUS

Table 1. Evaluation of the occupied area and the maximum d

Number of bits
Occupied area

Kogge–Stone adder modified 

8 82 85
16 210 201
32 514 457
64 1218 1017
adder, a 16-bit synchronous totalizer, a 9-bit digital
equality comparator, a four-input AND gate, and two
inverters. The synthesis of an adding counter and an
equality comparator is considered in [10].

The circuit has inputs—clock signals (clk), start
(start), and reset (reset)—and outputs—a 16-bit num-
ber (q[15…0]), the finish (Done), and detected error
(Error). The input start is used to count or stop the
counter (1, count; 0, stop). The input reset controls the
operation of the counter (1 to run, 0 to reset). The cal-
culated counter values are expressed by the output
SIAN MICROELECTRONICS  Vol. 50  No. 7  2021

elay of adders

Maximal delay

adder Kogge–Stone adder modified adder
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Fig. 5. Circuit for checking the results of the modified adder’s operation.
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q[15…0]. The signal Done shows that all possible argu-
ment values have been successfully tested as input
arguments for two adders. If the signal Done = 1, then
the process of checking the results was successful; i.e.,
all the results of the modified adder are correct. The
signal Error indicates that an error has been detected in
some result of the modified adder compared to the
result of the reference adder. If there is an error, then
the output Error = 1. Otherwise the signal Error = 0.

Let us consider how the circuit works. Suppose the
output signal E of the comparator and inversion signal’s

 output carry counter are 1. In this case reset = 1 and
start = 1, while clk enters the clock input of the counter
through the AND element. Then the counter calcu-
lates all 216 = 65536 possible values for a 16-bit binary
number, and the transition to the next value occurs on
the rising edge of the clock pulse. The calculated val-
ues of the operands for the counters are defined as
q15…q8 for the first term (operand A) and q7…q0 for the
second term (operand B). The received operands are
supplied to the corresponding inputs of the modified
and reference adders. These adders perform addition
on the input operands in different ways and send 9-bit

outp
RUSSIAN MICROELECTRONICS  Vol. 50  No. 7  20
sums to the outputs. The comparator then compares
the two 9-bit binary sums from the adders and pro-
vides one output signal indicating whether they are
equal or not. If the corresponding digits are equal,
then signal E = 1 and the process is repeated until the
finish is reached. If any discharges S1 and S2 are
unequal, the signal Error = 1 and the verification pro-
cess stops. When the output carry counter Pout is logi-
cal 1, then the signal Done will be set to logical 1; i.e.,
the verification process ends and the process stops.

MODELING AND VALIDATION OF RESULTS

The proposed scheme was modeled in a graphical
editor in the CAD Altera Quartus-II environment. For
simulation in the Quartus-II environment, the functional
simulation mode was selected using the Cyclone-II-
EP2C20F484C7 FPGA family. Figure 6 shows a dia-
gram of the results (version at the level of register trans-
fers of RTL-Viewer) obtained after compiling the dia-
gram. The successful verification of the results of the
modified adder operation when adding two 8-bit
numbers with all possible values is confirmed by the
21
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Fig. 7. Time chart of checking the results of the modified adder’s operation when adding two 8-bit numbers with all possible values.
timing diagram (Fig. 7) obtained in the Quartus II
environment.

CONCLUSIONS

As a result of a comparative analysis of the Kogge–
Stone adder and the modified adder, the following
points were established: when the number of bits of
operands is 16, 32, or 64, the modified adder performs
better and occupies a smaller area than the Kogge–
Stone adder. The reliability of the results of the modi-
fied adder when adding with all possible values of two
8-bit operands was checked using the developed circuit,
which was modeled in the CAD Altera Quartus-II envi-
ronment. The results are confirmed by the time chart.

The proposed modified adder can be used in the
design of high-speed operating devices in computer
arithmetic.
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