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Abstract—New results on the asymptotic behavior of the probabilities of large deviations of combina-
torial sums of independent random variables satisfying the Linnik condition are obtained. A zone,
where these probabilities are equivalent to the tail of the standard normal law, is found. Such results
were previously obtained by the author under Bernstein’s condition. The new results are proved by the
truncation method.
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1. INTRODUCTION
We suppose {(Xnij), 1  i, j  n, n = 2, 3, …} is a sequence of matrices of independent random variables

and {  = ( , , …, ), n = 2, 3, …} is a sequence of random permutations of the numbers 1,
2, …, n. Let  have a uniform distribution on the set of all permutations of 1, 2, …, n and be independent
of (Xnij) for any n. We define the combinatorial sum Sn by the relation

We note that if the distributions of Xnij coincide for all  at all n, then Sn has the same distribution
as the sum of independent random variables. Although this case is well studied, we should take it into
account when estimating the optimality of the obtained results.

Under certain conditions, the sequence of distributions of normalized combinatorial sums weakly con-
verges to the normal law. Any similar result is called a combinatorial central limit theorem (CLT).
Research in this direction started long ago. The combinatorial CLT has been studied by Wald and Wol-
fowitz [1], Noether [2], Hoeffding [3], Motoo [4], Kolchin and Chistyakov [5]. Later on, nonasymptotic
bounds of the type of Berry–Esseen and Esseen inequalities were found. Bolthausen [6], von Bahr [7],
Ho and Chen [8], Goldstein [9], Neammanee and Suntornchost [10], Neammanee and Rattanawong
[11], Chen, Goldstein and Shao [12], Chen and Fang [13], and Frolov [14, 15] obtained similar results.
A.N. Frolov obtained the results for a random number of summands in [16].

Bounds in CLT allow the asymptotics of probabilities of large deviations in logarithmic zones to be
found. Usually, in this case, they speak of moderate deviations. We obtained such results for combinatorial
sums in [17].

In our work [18], we first obtained results on the asymptotic behavior of probabilities of large deviations
of combinatorial sums in power zones. In that work, we assumed that random variables satisfy some ana-
logue of Bernstein’s condition. But for separate particular cases, combinatorial sums do not have indepen-
dent increments. This makes it difficult to use classical methods of summation theory for independent
random variables. In [18], we obtained the bounds of the moment-generating function and its logarithmic
derivatives of the normalized combinatorial sum rather than of its particular summands. This is what led
to those results.
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Bernstein’s condition is one of the forms of the existence condition for the exponential moment. A nat-
ural problem is to obtain new results on the asymptotics of probabilities of large deviations if it is violated.
This is what we discuss in this work. We replace Bernstein’s condition with the weaker Linnik condition.
To prove the results, we use the truncation method.

2. RESULTS
We suppose {(Xnij), 1  i, j  n, n = 2, 3, …} is a sequence of matrices of independent random variables

such that

(1)

for any n. We suppose {  = ( , , …, ), n = 2, 3, …} is a sequence of random permutations
of the numbers 1, 2, …, n. We assume that  has a uniform distribution on the set of permutations Pn and
is independent of (Xnij) for any n.

We put

It is not difficult to check that

Thus, condition (1) ensures centrality of the combinatorial sums. Replacing  =  – (EXnij)2 in the
latter formula, we have

If , the principal part of the variance is the normalized sum of the second moments

Therefore, in what follows, we use {Bn} as the norming sequence for Sn.
Further, we assume that the summands have all moments. We put

(2)

We note that γn  1. This follows from the fact that  =   .

The result below was obtained in our work [18].
Theorem 1. We suppose {Mn} is a nondecreasing sequence of positive constants such that for s = 1, 2, 3 the

inequalities

(3)

hold for all k  s, all , and all , where D is the absolute positive constant.

Then, for any sequence of real numbers {un} such that un → ∞,  = , and un =  as
n → ∞, the relation

(4)

holds, where Φ(x) is the standard normal distribution function.

< <

= =
= = 

1 1
0

n n

nij nij
i j

X XE E

π� n π (1)n π (2)n π ( )n n
π� n

π
=

=  ( )
1

.
n

n

n ni i
i

S X

= =
= = − = +

−  
2 2 2

, 1 , 1

1 10, ( ) ( ) .
1

n n

n n n n nij nij
i j i j

S S S S X X
n n

E D E E E D

nijXD 2
nijXE

= =
= +

−  
2 2

, 1 , 1

1 1( ) .
( 1)

n n

n nij nij
i j i j

S X X
n n n

D E E

→ ∞nSD

=
= 

2

, 1

1 .
n

n nij
i j

B X
n

E

= = =

  γ =  
  

  
32 2

3/2,
1 1 1

max max , max , max , .
n n n

nij nij nij
n niji j i j

j i jn nn n

X X Xn X
B BB nB

E E E
E

> nnB
=

2

, 1

n
niji j

XE <
=

2

1
max

n
nijji

n XE

−
< ! sk k s

nij n nijX Dk M XE E

> < <1 ,i j n > 2n
3
nu γ( / )no n ( / )n no B M

( ) − Φ → ∞~ 1 ( )n n n nS u B u as nP >
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 56  No. 3  2023



ON THE PROBABILITIES OF LARGE DEVIATIONS 387
The condition  is natural for relation (4), which is the exact (not logarithmic) asymptotic
of large deviations. If we assume that all Xnij are identically distributed, this condition turns into the opti-
mal condition un = o(n1/6).

Condition (3) is similar to Bernstein’s condition, which is a form of the exponential-moment condi-
tion. In [18], we give some variants of this conditions and the examples of random variables that satisfy the
hypothesis of Theorem 1. In particular, these include bounded random variables. In the latter case, Spear-
man’s rank correlation coefficient is an important example of a combinatorial sum.

The theorem below is our principal result. In it, we replace Bernstein’s condition by the weaker Linnik
condition, thus expanding the theorem’s application domain. For instance, the Weibull distribution with
the parameter α that arises, in particular, as a limit distribution in the theory of extreme order statistics
satisfies the Linnik condition and does not satisfy Bernstein’s condition when α < 1.

Theorem 2. We suppose for some β ∈ (0, 1) the inequalities

(5)

hold for s = 1, 2, 3, all  and all , where C is an absolute positive constant.

We suppose {un} is a sequence of real numbers such that ,  = , un = , and

 =  as , where

Then, relation (4) holds.
Condition (5) holds if for any i, j, and n the random variable Xnij can have one of k given distributions.

Moreover, if there exist positive constants A and B such that  and  for all i, j, n, and
s, then condition (5) holds.

If Xnij have the same distributions for any i, j, and n, then by Theorem 2 relation (4) holds for un = ,
where α = min{1/6, β/(2(2 – β))}. From Linnik’s work [19], we know that in this case, for β ∈ (0, 1/2],
the Linnik condition is optimal to fulfill for relation (4) in the zone un = , while for β > 1/2 it
requires additional conditions. Thus, the hypotheses of Theorem 2 cannot be improved in this case.

Remark 1. Theorem 2 still holds for β = 1. One should replace cn by zero.

3. PROOFS
We now prove our results.

Proof of Theorem 2. We put ,  = ,  = , and Tn =

. We suppose B0 =  and B1 = . We have
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holds.

For all , we put , ,  = , ,

, and . We designate  = , Rn = ,  =

.

First, we show that the relation

(7)

holds. To do this, we apply Theorem 1 and use the following result to check its hypotheses.
Lemma 1. We suppose y > 0, β ∈ (0, 1), μ ∈ (–1, 1), α > 0, and a ∈ (0, 1). Let X be a random variable

and  = . We assume that  for s = 1, 2, 3 and , where M =

.
Then,

for all k > s for s = 1, 2, 3, where C(a, β) = .

Proof. For all z from the circle  = 1/M and s = 1, 2, 3, we have

By the Cauchy inequalities for the coefficients of expansion of the analytical function ,
we obtain what is required.

We show that condition (3) is fulfilled for Ynij with . Given condition (5), it is sufficient to

show that  and  for s = 1, 2, 3.

The functions , , and  decrease for . Further, we take that yn > x0.
Given condition (10), for all i, we have
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Further, for s = 1, 2, 3 and all i and j, the inequalities

(11)

hold for all sufficiently large n. Therefore,

Hence, . Moreover,     . Thus,
for s = 1, 2, 3 and all i and j, the inequalities

(12)

hold for all rather large n. Hence, by Lemma 1, condition (3) holds for Ynij with Mn = .

Now, we estimate the difference of the variances Bn and . We have

Further,

By relations (8)–(11), we have

(13)

Hence,

Moreover,

(14)

In particular, . Given inequalities (12), we can conclude that the variable  specified by
formula (2) with  replaced by  satisfies the relation  as n → ∞.

By Theorem 1, relation (7) holds for any sequence of real numbers {un} such that un → ∞,  =  =

, and un =  =  as n → ∞.
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Further, we have

where

Since

we can conclude that 1 –  ~ 1 –  as n → ∞. Given (7), we obtain

It follows from inequalities (6) and (13) and relation (14) that

The theorem is proved completely.

Proof of Remark 1. If β = 1, then by Lemma 1 with  and μ = 0 (truncation and centering are not
required in this case) condition (3) holds with  = 1/a. Remark 1 follows from Theorem 1. The condi-
tions on cn are superfluous in this case.
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