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Abstract—In the context of tropical mathematics, the problem of solving a vector equation with two
given matrices and unknown vectors, each part of which has the form of a product of one of the matri-
ces and an unknown vector, is considered. Such an equation, which has an unknown vector on either
side of the equal sign, is often called a two-sided equation. A new procedure for solving two-sided
equations is proposed based on minimizing some distance function between the vectors of tropical
vector spaces that are generated by the columns of each of the matrices. As a result of the procedure,
a pair of vectors is obtained, which provides a minimum distance between the spaces and the value of
the distance itself. If the equation has solutions, then the resulting vectors are the solution to the equa-
tion. Otherwise, these vectors define a pseudo-solution that minimizes the deviation of one side of the
equation from the other. Execution of the procedure consists in constructing a sequence of vectors that
are pseudo-solutions of the two-sided equation in which the left and right sides are alternately replaced
by constant vectors. Unlike the well-known alternating algorithm, in which the corresponding
inequalities are solved one by one instead of equations, the proposed procedure uses a different argu-
ment, looks simpler, and allows one to establish natural criteria for completing calculations. If the
equation has no solutions, the procedure also finds a pseudo-solution and determines the value of the
error associated with it, which can be useful in solving approximation problems.

Keywords: idempotent semifield, tropical vector space, generalized metric, two-sided vector equation,
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1. INTRODUCTION
In this study, in the context of tropical mathematics, the problem of solving a vector equation that has

the form

where A and B are given matrices; x and y are unknown vectors; the product of a matrix and a vector is
defined in terms of operations of some tropical algebra, is considered. This equation has unknown vectors
on both sides of the equal sign; therefore, it is often called a two-sided equation in scientific publications.

In tropical (idempotent) algebra, which studies the theory and applications of semirings and semifields
with idempotent addition [1–6], the problem of solving a two-sided equation is of significant interest. In
particular, this is related to the fact that the procedure of solving many other vector equations, for exam-
ple, an equation of the form Ax = Bx with one unknown vector x is reduced to such a problem.

The issues of studying and solving two-sided equations were considered in some works, including the
first publications on this problem by P. Butkovich [7–9] and other works published later [10–13]. The
most often used applications are the problems of optimal planning of production processes [9, 11, 13].
Usually, the results known in publications propose algorithmic methods that, using an iterative computa-
tional procedure, make it possible to find one of the solutions, if they exist, or conclude that solutions are
absent, otherwise (see, for example, the review of the methods for solving the two-sided equation in ([5],
Section 7)).

Existing methods and approaches used to solve the two-sided equation include the following: combi-
natorial algorithms [8, 14], the elimination method [9], the upper-bound method [15], the algorithm
based on the properties of mappings with division on partially ordered sets [16], the alternating algorithm
[10], the combinatorial algorithm for equations in the field of rational numbers [11], the method of reduc-
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ON THE SOLUTION OF A TWO-SIDED VECTOR EQUATION 173
ing to systems of equations and inequalities of two variables [12], and the method for solving equations
with quadratic matrices of a special type [13]. However, in practice, the mentioned solution algorithms
generally prove to be not efficient enough, for example, because of their computational complexity or
additional constraints imposed on the condition and solution of the problem. Therefore, the development
of new efficient procedures for solving two-sided equations seems to be quite a relevant problem.

In this study, a new procedure is proposed for solving two-sided equations based on the minimization
of some function of the distance between the vectors of tropical vector spaces that are generated by the
columns of each matrix of the equation. As a result of application of this procedure, one obtains a pair of
vectors that provide the minimum distance between the spaces and the value of the distance itself. If the
equation has solutions, the obtained vectors are the solution of the equation. Otherwise, these vectors
determine a pseudo-solution that minimizes the deviation of one side of the equation from the other.

Execution of this procedure consists in constructing a sequence of vectors that are pseudo-solutions of
the two-sided equation, in which the left and right sides are alternately replaced by constant vectors.
Unlike the known alternating algorithm [10], in which the corresponding inequalities are alternately
solved instead of solving the equations, the proposed procedure uses a different argument, seems to be
simpler, and makes it possible to establish natural criteria of completion of calculations. If solutions do not
exits, the procedure finds also a pseudo-solution and determines the value of the error associated with it,
which can be useful when solving approximation problems.

2. PRELIMINARY INFORMATION
In this section, we present the main definitions, used denotations, and preliminary results of tropical

algebra [17] necessary for further analysis and solving the two-sided equation. Further information on the
theory and applications of tropical algebra can be found in a number of papers published over the last 25
years, including [1–6].

2.1. Idempotent Semifield

Let us consider a set , which is closed with respect to the operations of addition ⊕ and multipli-
cation ⊗ and contains their neutral elements: zero  and unit . The operations are set so that ( , ⊕, )
forms an idempotent commutative semigroup with zero; ( \{ }, ⊗, ) is a commutative group; and mul-
tiplication is distributive with respect to addition. The algebraic system ( , ⊕, ⊗, , ) is usually called
an idempotent semifield.

In the considered semifield, the operation of addition is idempotent, i.e., for any x ∈ , the equality
x ⊕ x = x is satisfied; the operation of multiplication is invertible, i.e., for any x ≠ , there is an inverse
element x–1 such that x ⊗ x–1 = . Below, the sign of the multiplication operation is omitted, implying that
xy = x ⊗ y.

The denotation of powers with an integer exponent is understood in the sense of multiplication ⊗. In
addition, it is assumed that the equation xp = a has a unique solution x at any a ∈  and integer p > 0. In
this case, the power with a rational exponent are also determined; the semifield is called algebraically
complete.

The operation of idempotent addition induces a partial order on , according to the rule: x ≤ y then
and only then, when x ⊕ y = y. With respect to this order, the operation of summation has an extremal
property in the form of inequalities x ≤ x ⊕ y and y ≤ x ⊕ y, which are valid for any x and y. The inequality
x ⊕ y ≤ z is equivalent to the system of inequalities x ≤ z and y ≤ z. The operations of addition and multi-
plication are monotone: the inequality x ≤ y implies inequalities  ≤  and xz ≤ yz for any z. The
operator of inversion is antitone: the inequality x ≤ y for x, y ≠  implies the inequality x–1 ≥ y–1. Finally,
it is assumed that the described partial order is completed to the linear order so as to consider that the
semifield is linearly ordered.

The examples of real, linearly ordered, algebraically complete idempotent semifields include the fol-
lowing:

where  is a set of real numbers and .

X

0 1 X 0

X 0 1

X 0 1

X

0
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X

X

⊕x z ⊕y z
0
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174 KRIVULIN
In the idempotent semifield , which is usually called (max, +) algebra, addition ⊕ is deter-
mined as the operation max; multiplication ⊗ as arithmetic summation +. The role of  is played by
–∞; the role of unit  by the number 0. The power xy corresponds to arithmetic product xy and is defined
for any x, y ∈ . The inverse element x–1 for any x ≠  coincides with the opposite number –x in conven-
tional arithmetic. The order relation induced by idempotent addition corresponds to the natural linear
order for the set .

In the semifield  (known also as min algebra), the operations are defined as ⊕ = min and ⊗ = ×
with neutral elements  = +∞ and  = 1. The notions of power and inverse element have the usual sense.
The order set by idempotent addition is inverse to the standard linear order on the set . All the above
idempotent semifields are isomorphic to each other. For example, the semifield  is related to 
by means of the isomorphism x  e–x.

2.2. Algebra of Matrices and Vectors

Let us denote by  the set of matrices consisting of m rows and n columns with elements from .
The matrix, all elements of which are , is zero and is denoted by 0. The matrix that does not have zero
columns (rows) is called regular with respect to columns (rows). The matrix with neither zero rows nor
zero columns is called regular. The quadratic matrix with elements equal to  at its diagonal and  at all
other positions is a unit matrix and is denoted by I.

The addition and multiplication of matrices and multiplication of a matrix by a scalar is executed
according to the conventional rules with replacement of the operation of arithmetic addition and multi-
plication with the operations ⊕ and ⊗. The monotony and other properties of scalar operations ⊕ and ⊗
associated with the order relation on  are generalized to operations on matrices with which the inequal-
ities are understood component-wise.

As usual, the matrix consisting of one column (row) forms a column vector (row vector). In what fol-
lows, all vectors are considered to be column vectors, unless otherwise indicated. The set of column vec-
tors of n elements is denoted by . The vector, all elements of which are , is the zero vector and is
denoted by 0. A vector is called regular if it does not have zero elements.

For any nonzero vector x = (xi) ∈ , the multiplicative conjugate row vector x– = ( ) with elements

 = , if xi ≠ , and  otherwise, is defined.
It is easy to verify that for a regular vector x, the following relations are valid:

while, for the latter equality to be satisfied, the sufficient condition is x ≠ 0.
For regular vectors x and y, the inequality x ≤ y implies x– ≥ y–.

If the matrix A ∈  and vectors x ∈  and y ∈  are regular, then the products Ax and y–A are
regular vectors.

2.3. Vector Space

Let there be a system of vectors a1, …, an ∈ . The vector b ∈  is a linear combination of vectors
of this system if the equality b = x1a1 ⊕ … ⊕ xnan holds for some x1, …, xn ∈ . The set of all linear com-
binations of the system of vectors forms their linear span

It is easy to see that the set of vectors  is closed under vector addition and scalar multiplication. The
set  is called the tropical vector space over the semifield  generated by the system of vectors a1, …, an.

2.4. Metric

Let us introduce the distance function on the set of vectors . For any vector a = (ai), let us consider
the support supp(a) = {i | ai ≠ , 1 ≤ i ≤ m}, i.e., the set of indices of its nonzero elements.
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ON THE SOLUTION OF A TWO-SIDED VECTOR EQUATION 175
For any nonzero vectors a = (ai) and b = (bi) for which the condition supp(a) = supp(b) is satisfied, we
define the distance

In the case when supp(a) ≠ supp(b), we will assume that the value of the function is larger than any
value from  and write d(a, b) = ∞. If a = b = 0, then we set d(a, b) = .

In the context of the semifield , where  = 0, the function d for all a, b ∈  coincides with the
usual Chebyshev distance (metric)

For other semifields isomorphic to , the distance function d becomes a metric after applying the
corresponding isomorphic mapping. For example, in the case of the semifield , the metric is the func-
tion d′(a, b) = –lnd(a, b).

The function d defined in terms of any of the above semifields can be considered as a generalized met-
ric with values in the set [ , ∞). Below, when measuring distances, we will use the generalized metric d.

3. MEASUREMENT OF DISTANCES AND SOLVING EQUATIONS

Let us consider the distance from the vector b ∈  to the set , which is defined as follows:

Let  be a tropical vector space generated by the system of nonzero vectors a1, …, an ∈ . Any vector
a ∈  can be represented in the form of the linear combination a = x1a1 ⊕ … ⊕ xnan with coefficients x1, …,
xn ∈ , as well as with the help of the matrix A = (a1, …, an) composed of vectors of the system, which are
taken as column vectors, and the vector x = (x1, …, xn)T in the form of the equality a = Ax.

The distance from the vector b to the vector space  takes the form

It can be shown (see, for example, [17, 18]) that for a regular vector b, it is sufficient to find the mini-
mum on the right only over the regular vectors x, i.e., the equality

is satisfied.
It is evident that the equality  is equivalent to the condition b ∈ , while the inequality

 implies that .

Let us assume that A ∈  is a regular matrix; b ∈  is a regular vector. Let us define the function

The following statement was proved in [19] (see also [17, 18]).
Lemma 1. Let A be a regular matrix and b be a regular vector. Then the equality

is satisfied; while, the minimum is reached at x = .
If  is a tropical vector space generated by the columns of matrix A, then the distance from the vector

b to  is defined as  = ; the vector closest to b in the space  has the form y =
.

It should be noted that the condition b ∈  corresponds to the equality ΔA(b) =  and the condition
b ∉ , to the inequality ΔA(b) > .
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176 KRIVULIN
The results of analysis of the distances in the tropical vector space can be applied to solving the equa-
tion in the form

(1)

with respect to the vector x ∈ .
This equation has an unknown vector on one side from the equal sign and is often called a one-sided

equation.
This equation was studied in [17–19], where the following result was obtained.
Theorem 2. Let A be a regular matrix and b, a regular vector. Then, the following statements are valid.
1. If ΔA(b) = , then equation (1) has a solution and the vector x = (b–A)– is the maximum solution.
2. If ΔA(b) > , then equation (1) does not have solutions. The best approximation to the solution in terms

of the distance function d is the vector x = .

It should be noted that the quantity  has the sense of the minimum achievable deviation
between the left- and right-hand sides of equation (1) measured in accordance with the scale of the dis-
tance function d.

Let us assume that A ∈  and B ∈  are given regular matrices; x ∈  and y ∈  are unknown
regular vectors. Let us investigate the following two-sided equation in which unknown vectors appear in
both sides:

(2)
As in the case of equation (1), the problem of analysis of equation (2) can be reduced to determining

the distances between tropical vector spaces. Let us consider the columns of matrices A = (a1, …, an) and
B = (b1, …, bk). Let us denote by  the tropical space generated by the system of vectors a1, …, an; by ,
the space generated by b1, …, bk. Let us determine the distance between the spaces as follows:

If condition d( , ) =  is satisfied, this implies that the spaces  and  have a nonempty intersec-
tion; then equation (2) will have a solution (x, y).

It the value of the distance d( , ) > , this corresponds to the absence of common points of spaces
 and  (and, thus, the equation does not have a solution); its value shows the minimum distance

between the vectors of these spaces (the minimum possible deviation between both sides of the equation).

Let us fix some regular vector x ∈ . It has a corresponding vector a = Ax of the space . According
to Lemma 1, the minimum distance between the vector a and the vectors of the space  is the square root
of the quantity

The vector of the space  closest to the vector a can be written in the form

Similarly, for the fixed y ∈ , the squared distance from vector b = By to the space  and the vector
a ∈  closest to vector b are defined by the formulas

Let us assume that for the vectors  and , the following is true:

It is evident that in this case, the equalities

hold.
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Let us introduce the denotation  =  =  and note that, according to Theorem 2, the
equality  =  implies that equation (2) has regular solutions. The value of , which is not equal (larger
than) , shows that the equality in (2) is not satisfied for any regular vectors x and y; its value determines
the minimum possible deviation between both sides of the equation, which is reached at x =  and y = .

4. PROCEDURE OF SOLVING THE TWO-SIDED EQUATION

The above analysis of two-sided equation (2) provides a background for development of the following
procedure for solving. This procedure is based on constructing a sequence of vectors in spaces  and ,
which are generated by columns of the matrices A and B. Vectors are examined taken alternately from each
space so that after the choice of some vector from one space, the next vector is chosen in the other space
to provide the minimum distance to the previous vector.  In the context of solving equation (2), along with
the indicated vectors, the vectors x and y of the coefficients of their decomposition as linear combinations
of the columns of the corresponding matrices A and B are considered.

Let us assume that we have chosen an arbitrary regular vector x0 ∈ . This vector has the correspond-
ing vector a0 = Ax0 ∈ . Applying Theorem 2, we find the least distance from the vector a0 to the vectors
of the space , according to the formulas

This value is reached at the vector b1 ∈ , which has the form

The minimum distance from the vector b1 to the vectors of the space  is

and is attained at a vector a2 ∈  such that

Similarly, we determine the distance d(a2, ) based on the value of Δ2, which is used further to find
vectors y3 and b3. Next, we calculate the value of Δ2 to determine the distance d(b3, ) and find vectors x4
and a4.

As a result of repeating the above calculations, the sequence of vectors a0, b1, a2, b3, a4, …, which are
chosen one by one from the spaces  and  so as to minimize the distance between successive vectors, is
constructed. At the same time, the sequence of the pairs of vectors (x0, y1), (x2, y3), … is generated; they
represent some approximations of the solution to equation (2).

Let us investigate the sequence Δ0, Δ1, Δ1, … and note that Δi ≥  for all i = 0, 1, …, i.e., this sequence
is bounded from below. Now, let us verify that this sequence is not increasing.

Let us show that Δ1 ≤ Δ0 and consider the quantity Δ1 = .
By virtue of the regularity of vector y1, the regularity of matrix B with respect to its rows, and the reg-

ularity of matrix A with respect to its columns, the row vector (By1)–A is regular. Taking into account the

regularity of the vector x0, we get the inequality . Premultiplying this inequality by , we

come to the inequality  ≤ , both sides of which are regular. After multiplicative con-
jugate transposition of both sides of the latter inequality, we obtain

As a result of premultiplication of both sides of the inequality by A, one more passage to the conjugate
vectors and postmultiplication by By1, we get
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178 KRIVULIN
Applying the inequality obtained together with the equality y1 = , which implies that

By1 = , and then using the evident equality  = , we get

Similarly, we can verify that the inequalities Δ2 ≤ Δ1 and, thus, the inequalities Δi + 1 ≤ Δi for all i are
fulfilled. Therefore, the sequence Δ0, Δ1, … is not increasing. Taking into account the fact that this
sequence is bounded from below, it converges to some limit .

It should be noted that each element of the considered sequence has the sense of the squared distance
from some vector of one of the spaces  and  to the closest vector from another space. Therefore, if the
equality Δi =  is satisfied for some i, this implies that the spaces  and  have a nonempty intersection
and equation (2) is solvable. At the same time, if i is an even number, then the intersection contains the
vector ai = Axi and the pair of vectors (xi, yi + 1) is the solution of the equation. If i is odd, then the inter-
section contains the vector bi = Byi and the solution is the pair (xi + 1, yi).

Attainment of the equality Δi =  indicates that the limit  = Δi of the sequence Δ0, Δ1, … is found and
can be used for determining the conditions of completion of the calculation procedure in practical calcu-
lations.

If the intersection of the spaces  and  is empty, then the value of the limit satisfies the inequality
 >  and equation (2) does not have solutions. In this case, the procedure should be stopped as soon as

a repeating element appears in any of the sequences x0, x2, … or y1, y3, ….
The above procedure gives us the following algorithm for the analysis of equation (2).
Algorithm 1.
(1) Set i = 0 and choose a regular vector x0.
(2) Calculate

(3) If Δi =  or yi + 1 = yj for some j < i, then set

and stop the procedure; otherwise, set i = i + 1.
(4) Calculate

(5) If Δi =  or xi + 1 = xj for some j < i, then set

and stop; otherwise, set i = i + 1.
(6) Return to step (2).
If, as a result of operation of this algorithm, we obtain  = , then equation (2) has solutions, includ-

ing the found pair of vectors ( , ). In the case, when  > , the equation does not have solutions; the
value of  shows the minimal possible deviation between both sides of the equation, which is reached at
vectors ( , ).

5. EXAMPLES OF SOLVING A TWO-SIDED EQUATION
Let as first present the example of solving the equation from [10], which is set in the context of

(max, +) algebra (the semifield ). The matrices of the equation and the initial approximation are
defined (with the use of the denotation  = –∞) as follows:
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ON THE SOLUTION OF A TWO-SIDED VECTOR EQUATION 179
To solve the equation, we apply Algorithm 1. Taking into account the fact that the operation of
extraction of the square root in (max, +) algebra corresponds to the arithmetic halving, we get the follow-
ing results for each calculation step:

The value  = Δ3 = 0 =  obtained shows that the equation has solutions. In addition, the solution is
found to be 

Let us consider the equation with matrices from the previous example, in each of them, one element
in the last row is replaced as follows:

Provided that the vector of initial approximation x0 does not change, Algorithm 1 gives the following
results:
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 

0 0 1

8
2

6 , 2, ;
4

4
Ax y

   
   = Δ = =
      
   

1 1 2

7 9/2
6 , 1, 9/2 ;
5 7/2

By x

 
  = Δ = =      

 

2 2 3

15/2
3

11/2 , 1, ;
4

11/2
Ax y

   
   = Δ = =
      
   

3 3 4

7 4
6 , 0, 5 .
6 4

By x

Δ* 1

 
  = = = =      

 

4 3

4
3

5 , .* * 4
4

x x y y

   
   = =
      
   

0

0

3 0 1 1
1 1 0 , 3 2 .

1 3 1 1
A B

 
  = Δ = =      

 

0 0 1

8
4

6 , 2, ;
4

4
Ax y

   
   = Δ = =
      
   

1 1 2

7 5
7 , 2, 5 ;
5 3

By x

 
  = Δ = =      

 

2 2 3

8
7/2

6 , 1, ;
9/2

6
Ax y

   
   = Δ = =
      
   

3 3 4

15/2 5
13/2 , 1, 5 .
11/2 3

By x
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Taking into account the fact that the equality x4 = x2 is fulfilled, provided that Δ3 = 1 > , the equation
does not have solutions. The value  = Δ3 = 1 shows the minimum deviation between both sides of the
equation, which is reached at the vectors

6. CONCLUSIONS
In this work, a new computational procedure of solving a two-sided vector equation in idempotent

algebra is presented; it is based on analysis of the distances between tropical vector spaces. The procedure
is realized as an iterative calculation algorithm described in terms of an arbitrary, linearly ordered, alge-
braically complete idempotent semifield. If the equation does not have solutions, this procedure finds its
pseudo-solution, which provides the minimum deviation of one side of the equation from another and
determines the value of this deviation.

Analysis and estimation of the computation complexity of the proposed algorithm is of special interest
for further research.
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