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Abstract—Vibrations of a square plate with periodically changing parameters are considered. The aver-
aged fourth-order partial differential equation for plate deflection w is presented. Solution of the prob-
lem is obtained with the approximate theory. The approximate results are presented by analytical for-
mulas. Asymptotic averaging (implemented in Wolfram Mathematica) and the finite element method
(ANSYS) are used to determine the values of eigenfrequencies. Numerical and asymptotic results are
compared.
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1. INTRODUCTION

Complicated composite materials have become widespread in modern industry. For instance, in rein-
forcing building materials, polypropylene fiber, which consists of thin synthetic fibers of different size and
diameter, is used. Plastic plates reinforced by carbon fiber with continuous current-carrying channels are
widely used in electrical engineering. Many roof materials also are a clear example of plates with variable
thickness.

Many problems in the study of the vibrations and stability of reinforced plates are solved either by the
finite element method in different software complexes (see, e.g., [1]) or by the boundary element method
(see, e.g., [2–4]). Asymptotic solutions are obtained only for several special cases of anisotropic plates and
shells in works [5–8]. In the present work, in studying the vibrations of a heterogeneous plate, we apply
both asymptotical and numerical methods of solution. To check the reliability of the obtained asymptotic
formulas, we compare the analytical and numerical results.

In paper [9], the averaged differential equation was obtained for the deflection of a heterogeneous plate
reinforced by parallel fiber strips. In this work, we derive the equation of vibrations of a plate with period-
ically changing parameters (material properties and thickness) and determine the values of the eigenfre-
quencies.

2. MAIN EQUATIONS AND ASSUMPTIONS

Consider the square plate with length L and variable thickness h. The plate thickness is small compared

to its dimensions in plan view . We regard the middle surface as the reference one and introduce

the Cartesian coordinate system Oxyz, as shown in Fig. 1.
We write the balance equations of forces and moments [9]:
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Fig. 1. Plate of variable thickness.
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Here, we have introduced the following designations for bending moments Mx and My and torque Mxy:

(3)

Value a is called the “stiffness of a unit length of the plate”:

where E is the Young modulus, μ is the Poisson coefficient, and b = μ · a.

3. ANALYTICAL SOLUTION TO THE FORMULATED PROBLEM
We apply the method of multiple scales [10, 11]. In addition to variable x, we introduce so-called

“quickly varying variable” ξ = x/ε, where ε is the width of the step (width) and each of the unknown func-
tions dependent on variables x and y is formally dependent on variable ξ.

Parameter ε in the case in which the strips have different width is determined by the formula ε =

, where lk is the dimensionless width (see (24)) of the kth strip.

Note that all values in this work are dimensionless if not stated otherwise. The relation between the
dimensional and dimensionless values is introduced in this paper at the point when it is needed.

We represent the asymptotic decomposition for the function describing transverse deflection w as the
series

(4)

where the parentheses denote the scalar product of vectors and vectors wk have the form

(5)

w3 is the vector composed of third derivatives of the function w0 and is not written explicitly, because it is
not used below. Vectors Nk are also five-dimensional. Taking into account the chain rule of differentiation

we write the following expressions:
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Here, A and B are matrices of 0 and 1, Ik is the five-dimensional unit vector, and other coordinates are
zeros.

We write the expansion of Qx and Qy in ε:

We substitute the above-mentioned expressions into Eqs. (1)–(3) and arrive at

(7)

(8)

(9)

(10)

We assume that Nk are periodic functions; therefore, averaging of Eq. (10) yields

and if we take into account that Q2x and Q1y, expressed through the moments, contain the derivatives with
respect to ξ, then we obtain the following equation:

(11)

To satisfy Eq. (7), we need to set N1 = 0 (which it is not hard to prove). We then write Eq. (8) as

We denote the expression a(I1 + N2ξξ) + bI3 = C and, using  = 0, finally obtain

Here, l1 and l2 are the dimensionless widths of the first and second strips of the plate, respectively. Hence,
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Table 1. Properties of materials

Material Young modulus, E, 1011 N/m2 Density of material, ρ, kg/m3 Poisson coefficient, μ

Steel 1.93 8030 0.29

Titanium 1.02 4850 0.30
Thus, with allowance for expressions (12)–(14), Eq. (11) becomes

(15)
Equation (15) is the fourth-order averaged partial differential equation for plate deflection w. If we write
constant vector C as

then the coefficients of the averaged equation of vibrations (15) take the following form:

(16)

(17)

Equation (15) taking (16)–(17) into account was solved by the Bubnov–Galerkin method, and the zeroth
approximation in the case of fixed boundaries was

(18)
or, in the case of hinged support of the plate boundaries,

(19)
Note that expressions (18) and (19) are written for dimensionless variables x and y. The coupling between
dimensionless coordinates x and y and dimensional ones  and  is performed by the formulas x = /L
and y = /L.

The value for the first eigenfrequency is obtained by multiplying Eq. (15) with the first eigenmode with
subsequent integration over the plate area. Finally, the formula for computing the frequency parameter λ
becomes

—for the fixed boundaries of the plate,

(20)
—for the hinged support of the boundaries,

(21)
To transform dimensionless frequency parameter λ to the standard units of frequencies of periodic pro-
cesses (in hertz), we use the formula

(22)

In expression (22), we have introduced denotation , which is the mean density per unit area. The rela-
tion between mean density  with bulk densities of strips ρ1 and ρ2 (kg/m3) is given in formula (23)
obtained by integrating the inertia term with respect to ξ.

(23)

Dimensionless widths of the strips l1 and l2 are related to dimensional widths  and  by relation (24) so
that l1 + l2 = 1:
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Fig. 2. Variants of reinforced plates.

(a) (b)

(c) (d)
4. NUMERICAL SOLUTION TO THE FORMULATED PROBLEM
The algorithms and programs developed on the basis of analytical formulas allow calculating different

forms of reinforced plates. In particular, we present some variants of such plates in Fig. 2.
In Table 1, we give the values of constant coefficients determining the properties of chosen materials.
To demonstrate the reliability of the obtained formulas and the possibilities of their further use in

studying vibrations of reinforced plates, we performed the following example calculations. We considered
square plates having the shape depicted in Fig. 2a and consisting of several strips (see the first column of
Table 2). In its turn, each strip was composed of two ministrips with different properties of material. Thus,
the entire plate is represented as periodically repeating sequence of strips.

In the experiment represented in Table 2, we considered the square plate with a side of 1 m. It was
approximated by a model divided into 1764 (42 × 42) shell elements. In the ANSYS 14 software package,
we created a mathematical model of a plate heterogeneous over the thickness. The program was written in
the APDL language using handbooks [12, 13]. The thickness of the first ministrip was 0.01 m, the thick-
ness of the second one was 0.005 m, and there were a total of seven composite strips.

In the fourth column of Table 2 we present the values of the plate eigenfrequencies obtained by asymp-
totic formulas (20) and (21). The procedure for substituting expressions (12)–(14) into (15) and the solu-
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 54  No. 4  2021

Table 2. Eigenfrequencies of reinforced plate

Boundary 
conditions Material Widths 

of ministrips, m
Asymptotic formulas, 

Hz (20), (21)
Finite element method, 

Hz ANSYS

Fixed Steel l1 = 2/42, l2 = 4/42 57.265 56.830

Hinged Steel l1 = 2/42, l2 = 4/42 31.864 32.020

Fixed Steel l1 = 3/42, l2 = 3/42 62.356 61.653

Hinged Steel l1 = 3/42, l2 = 3/42 34.721 34.804

Fixed Titanium l1 = 2/42, l2 = 4/42 53.659 53.236

Hinged Titanium l1 = 2/42, l2 = 4/42 29.834 29.977

Fixed Titanium l1 = 3/42, l2 = 3/42 58.424 57.746

Hinged Titanium l1 = 3/42, l2 = 3/42 32.503 32.577

Fixed Titanium l1 = 4/42, l2 = 2/42 62.821 62.083

Hinged Titanium l1 = 4/42, l2 = 2/42 34.985 34.960
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Fig. 3. First eigenmode of inhomogeneous plate.
tion to this equation by the Bubnov–Galerkin method was conducted in Mathematica 8. In the last col-
umn, we present the values of eigenfrequencies of the plate obtained by the numerical finite element
method in ANSYS [1].

In Fig. 3, we plot the first eigenmode of a plate that is heterogeneous over thickness.

5. CONCLUSIONS

The advantage of the method of averaging over other analytical methods consists in the fact that it
allows obtaining the equations of the averaged medium and formulating the problems for it. For instance,
for a plate with inserts or periodically varying parameters, the system of complicated differential equations
describing the vibrations or stability were replaced with smoothed, averaged equations for the plate only.
The developed algorithms and programs based on analytical formulas allow different types of heteroge-
neous plates to be computed. Analysis of all experiments on studying the vibrations of plates with varying
parameters shows reliability of the proposed formulas. In our research, we compared the analytical results
and the numerical results obtained by the finite element method using the ANSYS software package. The
relative error of calculations is no larger than 3%.
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