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Abstract—The determination of preliminary orbits of celestial bodies is of interest to observational
astronomy in terms of discovering new bodies or identifying them with already known ones. The solu-
tion of this problem requires methods that are not limited both by the eccentricity of the orbit and by
the time intervals between observations. This article considers the Cauchy–Kuryshev–Perov geomet-
ric method for determining a preliminary orbit. It is shown how to determine an orbit that does not lie
in the observer’s plane of motion within the two-body problem, based only on geometric construc-
tions, and using five angular observations. This method makes it possible to reduce the problem of
determining a preliminary orbit to the algebraic system of equations relative to two dimensionless vari-
ables with a finite number of solutions. The method is suitable for determining both elliptical and
hyperbolic orbits. It has no restrictions on the length of the orbital arc of the observed body and is not
limited by the number of complete revolutions around the attractive center between observations. All
possible combinations of positions of the body in the orbit are divided into 64 variants and described
by the corresponding systems of equations. This article presents an algorithm for finding solutions to
the problem without having prior information about the desired orbit. The solutions are sought in a
bounded region in which triangulations are performed with triangles ranked according to the search
conditions, thus eliminating the consideration of most of them at the initial stage. The solutions of the
system are found by the Nelder–Mead method through the search for minima of the target function.
The obtained orbits are compared by means of a representation of observations, and the best one is
selected. An example of determining the orbit of the comet 2I/Borisov is given.

Keywords: preliminary orbit determination, Cauchy–Kuryshev–Perov geometric method, Nelder–
Mead method, algebraic equations, comet Borisov.
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1. INTRODUCTION
The history of the geometric method for determining the preliminary orbit from angular observations

began in the 19th century [1]. In 1847, Cauchy proposed to determine the preliminary orbit through five
points of intersection of five straight lines by a plane passing through the center of the Sun [2]. Since a
conic section can be defined by these five points, the position of the plane of the orbit should be found
such that the focus of the conic coincides with the Sun. There are no known earlier references to the geo-
metric method, although they may have appeared after the works of Newton. In the early 20th century,
Harzer addressed the problem, but he never obtained an acceptable solution [3]. According to Vil’ev, the
problem was still waiting for researchers as of 1917 [4]. The modern history of the method should be
retraced from 1982, when work [5] by Kuryshev and Perov was published, in which a system of equations
was constructed and an iterative process for its solution was proposed. The author applied this method to
determine the preliminary orbits of comets and asteroids [1]. The purpose of this work is to construct an
effective algorithm for the numerical solution of the system of equations with finding all possible orbits.
As an example, we consider the determination of the orbit of the interstellar comet 2I/Borisov.

2. CONSTRUCTION OF A SYSTEM OF EQUATIONS
Let us denote by ri (i = 1, 2, …, 5) the radius-vectors of the desired orbit at the corresponding times.

The equations for heliocentric radius-vectors will then be as follows:

(1)= ρ − ,i i i ir e R
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DETERMINATION OF A PRELIMINARY ORBIT 453
where ei (i = 1, 2, …, 5) are unit vectors of the observed direction to the object, and Ri (i = 1, 2, …, 5) are
vectors of the Sun’s position relative to the topocenter. In order to construct equations describing the
desired orbit, let us refer to the formula for determining the orbit parameter by three radius-vectors [6]. If
the three position vectors of the object are known, then we can express orbit parameter p through them
[7]. By selecting the triples of vectors (r1, r2, r3), (r2, r3, r4), and (r3, r4, r5), we obtain three expressions for p:

(2)

where ri = |ri| (i = 1, 2, …, 5), the upper and lower signs  and ± in (2) correspond to the positive and neg-
ative signs of the sine of the angle between the vectors in the subsequent vector product. As can be easily
seen, for Eqs. (2), the numerator and denominator cannot have different signs. If we equate the first and
second Eqs. (2), i.e., p123 = p234, and then the second and third, p234 = p345, we obtain two equations of orbit
determination in the noncoplanar case. Therefore, the problem is reduced to solving a system of two alge-
braic equations with respect to five unknowns ρi (i = 1, 2, …, 5). However, the topocentric distances are
related by three conditions from the mixed products of vectors (1). This makes it possible to express the
other three through two of them and obtain an algebraic system with respect to two variables, e.g., ρ1 and ρ5:

(3)

In this case, in view of the nonlinearity of system (3), several solutions are likely to appear. System (3) is
not the only one possible for the geometric method [1], but it is one of the simplest from the point of view
of derivation of equations.

Equations (3) satisfy both elliptic and hyperbolic motion. In this case, different combinations of upper
and lower signs for seven angles between vectors correspond to 64 sets of equations for the ellipse and 32
for the hyperbola. A detailed description of the combinations of angles for triplets of vectors was presented
in [6]. Moreover, the specified 64 sets of equations for elliptic motion include all cases with angles differ-
ing by values that are multiple of 2π from the specified ones. Therefore, to find a solution on an arc with
any number of revolutions around the attractive center, it is sufficient to consider 64 systems of equations (3).

3. TRANSITION TO NEW VARIABLES

Topocentric distances can only take positive values. Accordingly, the region of the desired solutions is
an open quadrant, which should be restricted to maximum values. To do this, it was proposed in [6] to
switch to normalized dimensionless variables. Consider unit vector N = (Nx, Ny, Nz), which is the vector
of the normal to the plane of the desired orbit. For convenience of relating N with the orbital elements, let
us select an ecliptic coordinate system. Let us express ρi (i = 1, 2, …, 5) through N. If Eqs. (1) are scalarly
multiplied by N, we obtain expressions for ρi [8]:

(4)

The singularity condition of N can be defined as follows:

(5)

We can now substitute (4) into all equations for noncoplanar orbits. We obtain (3) with constraint (5)
and dimensionless unknowns Nx, Ny, and Nz. The solution domain is bounded by the surface of a unit
sphere. Intersection points f1 and f2 are possible directions of N. Since curves (3) are symmetric with
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454 KUZNETSOV
respect to the ecliptic plane, one can select one of the hemispheres with prograde or retrograde orbital
motion. Condition (5) can then be written as

(6)

and the solution domain of the unit sphere can be mapped onto the unit region of the ecliptic circle.
Therefore, we are back to the 2D case with unknowns Nx and Ny. An additional advantage of the new vari-
ables is that they are not directly related to specific observations and their number, and this simplifies the
work on creating the target function. Regions with negative topocentric distances and orbital parameter p
should be excluded from the unit circle. Introducing such constraints makes it possible to narrow the
search for a solution from the entire unit circle to its individual regions.

We reduced the problem to finding a solution in the unit circle. However, the circle is not very conve-
nient for partitioning and dense coverage by simple geometric shapes, such as triangles. For triangulation,
a square that describes the given circle, i.e., with a unit half-side, is more suitable. The mapping of a circle
of unit radius to the corresponding square is carried out by the following formulas [9]:

(7)

where Nxs and Nys are the coordinates corresponding to the square. Hereinafter, index s indicates these
coordinates everywhere.

4. ORDER OF OBJECT POSITIONS IN THE ORBIT

In geometric solutions, the order of the points of intersection of lines of sight (observations) with the
orbit is usually not taken into account. Hence, there can be solutions for which the order of orbit points
does not correspond to the chronological one. To control them on orbital arcs Δθ51 < 2π for calculations
with 16 significant figures, the following conditions can be used:

(8)

where Δθij are the values of the angles between ri and rj and a relative error of 10–7 is not exceeded in the
chronological order of the points and is knowingly exceeded if it is violated. The latter condition implies
not using very close observations corresponding to similarly small arcs.

5. SINGULAR POINTS IN THE SEARCH DOMAIN

On the resulting square, there exist singular points in which all ρi from (4) become indeterminate.
Depending on whether the numerator or denominator turns to zero, the value of the corresponding topo-
centric distance can become either infinitesimal or infinitely large. In addition, the positivity of the dis-
tances requires the same sign for the numerator and denominator. The ten equations derived from the
numerators and denominators of (4) define a grid of ten curves the pairwise intersection of which defines
the boundaries of the domains where the desired solution can be found. Knowing the coordinates of the
intersection points of the curves determined by the numerators and denominators of (4) makes it possible
to determine the smallest scale of triangulation. The equations in “square” coordinates will be as follows
(i, j = 1, 2, …, 5):

(9)

where Ri = (Xi, Yi, Zi) are the ecliptic vectors of the Sun’s position relative to the topocenter and ej = (ejx,
ejy, ejz) are the unit ecliptic vectors of the observed direction to the object.

System (9) is nonlinear, and, in order to find its roots, it is convenient to apply the method of contin-
uation of the solution by the parameter with the best parametrization [10]. The problem can be reduced
to a system of three ordinary differential equations (i, j = 1, 2, …, 5):
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(10)

where the third equation in square brackets represents the mixed product of vectors in the ecliptic coordi-
nate system, while the lower indices of the vector product denote the corresponding components in the
first two equations. We should integrate system (10) in the direction of increase of parameter μ until ν =
0 is reached. The solution of system (10) gives us 25 points the minimum and maximum coordinates of
which will make it possible to constrain our square to a rectangular region with the finest structure of the
solution domain and the densest possible arrangement of the solutions of system (3).

6. TRIANGULATION OF THE SOLUTION SEARCH DOMAIN
It is proposed to search for solutions of system (3) in the form of a minimum of the target function

(11)

Moreover, the search is based on the use of triangulation, i.e., the partitioning of the domain of possi-
ble solutions into nonintersecting triangles [11]. These triangles are needed as an initial approximation for
variable simplexes, by means of moving the triangles of which the minimum of the target function is
searched using the Nelder–Mead method [12, 13].

The whole maximum possible solution domain is a square with a unit half-side. As a basic triangula-
tion, we divide this square into 1024 small squares, each with a side length of 0.0625. We then divide these
“small squares” into four equal triangles with a common vertex in the center. With these isosceles triangles
with a base length of 0.0625, we fill the entire region for which at least one of the triangle vertices satisfies
the positivity condition of five equations (4). The exception is the “region of singular points” (described
in the previous section). It increases in all directions until it coincides with the boundaries of the nearest
“small square” and takes the form of a rectangle with a side length that is a multiple of 0.0625. Next, we
divide this region into squares with a side length of 0.03125. We then divide the obtained “small squares”
into triangles with a common vertex in the center. For these, we also check that, for at least one vertex, all
ρi > 0 (i = 1, 2, …, 5) and (if necessary) condition (8).

Therefore, we fill the entire domain of possible solutions with triangles of two kinds. They are ordered
in sequence, as they are filled line by line from the lower left corner of the “large square” to the upper right
corner. The “large triangles” are followed in sequence by “small triangles” according to the same rule.

7. DETERMINING TRIANGLE RANKS
From the perspective of searching for solutions, the resulting set of several hundred triangles can be

divided into several classes. Samotokhin and Khutorovskii [11] introduced the notion of the rank of a tri-
angle. The authors proposed a linear interpolation of a possible solution by the values of functions f1 and
f2 at the vertices of the triangle. Let us denote them as f1i and f2i (i = 1, 2, 3). Then the coordinates of the
linear interpolation point (Nxs0), Nys0) can be expressed as follows:

(12)

where (Nxsi), Nysi) (i = 1, 2, 3) are the coordinates of the corresponding vertices,

(13)

The point (Nxs0, Nys0) will be inside the triangle if the following conditions are satisfied:

(14)
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456 KUZNETSOV
This interpolation is a generalization of the method of chords for solving a nonlinear equation with one
variable. However, it should be noted that such a linearization does not guarantee the existence of a real
solution inside the triangle if (14) is satisfied. Here, conditions (3) correspond to two straight lines, the
zero lines intersecting at (Nxs0), Nys0).

Let us describe the possible ranks of the triangles: 0, none of the zero-level lines intersect any side of
the triangle (the values of f1 and f2 for all vertices have the same sign); 1, only one of the zero-level lines
intersects the sides of the triangle (the values of either f1 or f2 have different signs for different vertices);
2, both zero-level lines intersect the sides of the triangle, but the point (Nxs0), Nys0) is outside the triangle
(values of f1 and f2 have different signs for different vertices, but condition (14) is not met); 3, the point
(Nxs0, Nys0) lies inside the triangle, but one of its sides does not intersect any of the zero-level lines (con-
ditions (14) hold, but the sums of the signs of the products of f1 and f2 for the vertices of each side are
nowhere zero); and 4, the point (Nxs0, Nys0) lies inside the triangle and all its three sides intersect the
zero-level lines (conditions (14) are satisfied and there are sides for which the sums of signs of the products
of  f1 and f2 for their vertices are zero).

Such a ranking is convenient to reduce the amount of computation. If there are triangles with ranks 4
and 3, the search for a solution should begin with them. Then, if there is no result or to check its complete-
ness, it is necessary to proceed to triangles with rank 2. Usually, this is sufficient to find all admissible solu-
tions. Triangles with rank 1 should be used only if there are no solutions, in order to be absolutely sure of it.

8. THE NELDER–MEAD METHOD

After the triangles are ranked, we can proceed to the search for solutions. The Nelder–Mead method
[12] is well suited for this purpose. This iterative method belongs to the gradient-free method; i.e., it does
not use derivatives. It only evaluates the values of the target function in the vertices of the deformed trian-
gle at each iteration. A description of the algorithm and the source code in the Fortran language were pre-
sented in [14, 15].

The isosceles triangle from Section 6 is considered as a zero approximation. After evaluating the target
function in all vertices of the simplex, we find point 1 with maximum fgoal(N1) and point 3 with min-
imum fgoal(N3). We then construct the “center of gravity,” point 0, by the two remaining vertices 2
and 3:

(15)

The search for a new vertex occurs along the line 1–0. First, the “reflection” operation is per-
formed: we find the reflection of point 1 with respect to point 0:

(16)

where α > 0 is the reflection coefficient.
If f(N4) ≤ f(N3), the vector N4–N0 is extended according to the following relation:

(17)

where γ > 1 is the extension coefficient. If  f(N5) <  f(N3), then N1 is replaced by N5; otherwise, N1 is
replaced by N4. Then, we start the next iteration with the “reflection” operation.

If f(N4) > f(Ni) for all i ≠ 1, then the vector N1–N0 is extended according to the following ratio:

(18)

where 0 < β < 1 is the compression ratio. We replace N1 with N6; then, we start the next iteration with
the “reflection” operation.

If f(N4) > f(Ni), then, for i = 1, 2, vectors Ni–N3 are reduced by a factor of 2 according to the fol-
lowing formula:

(19)
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Table 1. Observations of the comet 2I/Borisov (Minor Planet Center)

Here, t is the world time (year, month, day); α is the right ascension (hours, minutes, seconds), and δ is the declination of the
comet (degrees, minutes, seconds) represented in the equatorial coordinate system referenced to the equator for the J2000.0
epoch [16].

t (UT) (year, month, day) α(2000) (h, min, s) δ(2000) (deg, min, s) Observatory

2019 09 08.630642 08 44 37.105 +30 57 54.54 Mauna Kea
2019 09 28.234820 09 21 15.673 +24 15 06.14 OGS, Tenerife
2019 10 18.14757 09 57 58.12 +15 25 08.0 Piszkesteto Stn. (Konkoly)
2019 11 07.19364 10 34 06.83 +04 03 59.1 Buchloe
2019 11 27.22933 11 09 09.82 –09 44 49.4 Tacande, La Palma
Then we start the next iteration with the “reflection” operation. The criterion for ending the iteration
process is to check the condition

(20)

where  is an arbitrary small number.

9. FINDING SOLUTIONS AND REPRESENTING OBSERVATIONS

As described in Section 6, the solutions are sought by all triangles with ranks 4 and 3, if there are any,
and with rank 2, if necessary. The resulting solutions should be pairwise compared and multiples should
be discarded. The multiplicity condition will be the distance between points smaller than a given small
number. We then convert squared coordinates N to coordinates on circle (7), and we move from ecliptic
coordinates to equatorial coordinates: Neqv = { , , }. By substituting Neqv into (4), we obtain
values of five topocentric distances ρi (i = 1, 2, …, 5). After substituting them into (1), we determine the
heliocentric position vectors for the five times. From the vectors for the first and fifth observations, we
can calculate the orbits for all the found solutions. The representation by the orbits of the central observa-
tions (the second, third, and fourth) will allow us to select the desired solution in the best possible way
(O–C values).

10. EXAMPLE

As a numerical example, let us consider determining the orbit of the comet 2I/Borisov on a short
arc (only the upper signs are taken in Eqs. (3)). This comet was discovered on August 30, 2019, by
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Fig. 1. Graphs of Eqs. (3). General view.
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Fig. 2. Neighborhoods of intersection points of curves (9).
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Gennadii Borisov at the MARGO Crimean observatory (in the town of Nauchny). This is the first inter-
stellar comet moving along a hyperbolic trajectory with eccentricity e = 3.36 (see [16] and Table 1).

The plots of Eqs. (3) in “square” coordinates are created on the Nxs and Nys axes in Figs. 1 and 2. The
regions with negative topocentric distances and orbit parameter p are colored in gray; where condition (8)
is not satisfied, correspondingly, the regions of possible solutions are colored in white.

In Fig. 1, we can see a trapezoidal area of white on the right and a triangular area on the left formed by
the intersection of curves (9) and conditions (8). In Fig. 2, two more smaller triangular areas can be seen
in the center. The points of contact of these areas correspond to the simultaneous equality of the numer-
ator and denominator (4) to zero. Equations (4) are not defined at these points; consequently, system (8)
is not defined either. However, in their close neighborhoods, functions f1 and f2 are close to each other.
Next, we find the coordinates of intersection points (9) from the solution of system (10). All 25 points are
located in the rectangle [–0.293, 0.221] × [–0.894, 0.757]. Let us expand its boundaries to multiples of
0.0625: [–0.313, 0.250] × [–0.906, 0.781], and we obtain a rectangle with a side ratio of 9 : 28. It is con-
venient to divide it into 18 × 56 “small” squares and 4032 “small” triangles. The fraction of “large”
squares will be 772, and the fraction of triangles will be 3088. After checking whether domains of possible
solutions are covered, 1302 triangles will remain: 1081 “large” and 221 “small” triangles.

The triangles’ ranking yields 5 triangles of rank 4, 6 triangles of rank 3, 37 triangles of rank 2, 258 tri-
angles of rank 1, and 996 triangles of rank 0. The search for minima of target function (11) was performed
by the Nelder–Mead method with the following given parameters: α = 1, β = 0.5, γ = 2, and  = 10–16.
Five triangles of rank 4 yielded three solutions. Six triangles of rank 3 gave five solutions. Of the 37 trian-
gles of rank 2, solutions were found for 31. Obviously, the number of real solutions is less than 39, and it
is necessary to discard all duplicates and leave only the one in each case, with the smallest value of the
target function. The value of 10–3 was taken as the minimum distance between different solutions. After
checking it, eight sets of solutions were obtained. The target function takes the minimum values in the
solutions presented in Table 2.

After proceeding to ecliptic coordinates on circle (7) and from them to equatorial coordinates, the val-
ues of topocentric distances were obtained from (4). The first solution contained a negative value of topo-

e
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Table 2. Solutions for the comet 2I/Borisov

Here, No. is the set number, Nxs and Nys are the “square” coordinates of the solution point, and fgoal is the value of the target
function at that point.

No. Nxs Nys fgoal No. Nxs Nys fgoal

1 0.39143 0.06996 2.76 × 10–17 5 0.99008 0.00045 6.48 × 10–17

2 –1.00000 –0.05046 2.81 × 10–12 6 –1.00000 –0.04986 2.81 × 10–12

3 –0.17961 0.11626 8.26 × 10–18 7 0.62035 –0.16045 1.05 × 10–16

4 –0.57975 –0.47088 6.98 × 10–17 8 1.00000 0.05041 2.81 × 10–12
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Table 3. Elements of solutions of the orbits of the comet 2I/Borisov

Here, T0 is the time of perihelion passage and M0 is the value of the mean anomaly at the time of the third observation. The sec-
ond, sixth, and eighth solutions are close hyperbolic orbits perpendicular to the ecliptic plane. The third solution corresponds to
an elliptical orbit. The elements of the fourth solution coincide well with the elements of the reference orbit. The O–C values in
Table 4 confirm this.

Orbit T0/M0, deg a, au e i, deg ω, deg Ω, deg

2 2019 11 11.56 –0.711 2.217 90.000 218.008 272.045
3 108.666 0.782 0.253 12.294 50.101 237.209
4 2019 12 08.52 –0.851 3.360 44.044 209.110 308.155
6 2019 11 11.55 –0.714 2.213 90.000 217.963 272.021
8 2019 11 11.56 –0.711 2.217 90.000 218.005 272.043

MPC 2019 12 08.55 –0.851 3.357 44.053 209.127 308.149

Table 4. Representation of the observations of the comet 2I/Borisov by orbit 4

t1 t2 t3 t4 t5

Δα, arcsec 0 –0.3 –1.8 –3.3 0
Δσ, arcsec 0 7.9 8.8 5.1 0
centric distance ρ1, and the fifth and seventh solutions had negative values of orbital parameter p and were,
therefore, immediately discarded. For the remaining five solutions, the orbital elements are presented in
Table 3 and the orbital elements of the comet 2I/Borisov for the epoch 2020 05 31.0 obtained taking into
account all perturbations on the MPC website [16] are given as a reference.

The extreme observations at times t1 and t5 accurately represent all orbits. However, only the fourth
solution represents well the mean observations at times t2, t3, and t4; therefore, other solutions can be dis-
carded.

ADDITIONAL INFORMATION
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metrical Method,” Vestnik of St. Petersburg University. Mathematics. Mechanics. Astronomy, 2021, vol. 8(66), no. 4,
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