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Abstract—We consider several examples of mechanical systems the configuration spaces of which have
the form of smooth manifolds with a unique singular point: two intersecting (or tangent) curves on a
two-dimensional torus, four curves on a four-dimensional torus with a common point, and a two-
dimensional cone (cusp) in . The main problem presented in this paper is the calculation of the
(co)tangent space above the singular point by means of various theoretical approaches. Outside singu-
lar points, the motion of the mechanisms in question is described in the context of classical mechanics.
However, in the neighborhood of a singular point, terms like “tangent vector” and “cotangent vector”
must have conceptually new definitions. In this paper, the approach of the theory of “differential
spaces” is used. In the case of a conical singular point, to calculate (co)tangent space, we use two var-
ious differential structures: the algebra of functions locally constant near the cone vertex and the alge-
bra of restrictions of smooth functions from enveloping space to a cone. In the first case, tangent and
cotangent spaces at the cone vertex are zero. In the second case, the algebra of functions on the cotan-
gent bundle consists of functions locally constant on the cotangent layer above the singular point.
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1. INTRODUCTION
In the general case, a mechanical system has the form of a system of material points and distributed

bodies, the movements of which are restricted (connected). Configuration space of the system represents
a smooth manifold M. Thus, positions of the hinge mechanism are given by the coordinates of the vertices
and the angles of rotation of the rods. If the configuration space of the hinge mechanism contains singular
points, then it is impossible to apply the concepts of differential geometry and classical mechanics to
describe its movement. To formulate problems concerning kinematics in this case, it is necessary to use
methods of the geometry of singular spaces.

There are several approaches to constructing differential geometry on sets for which the structure of a
smooth manifold is not specified. In differential calculus over commutative algebras [1, 2], all concepts of
differential geometry (such as points, tangent vectors, and vector fields) are formulated in terms of the
algebra of functions. In the obtained algebraic terms, the concept of “smoothness” is no longer present.
Other theories, such as differential spaces [3, 4] and Frölicher spaces [5], in addition to the algebra of
functions, also consider the original point space on which topology is assigned.

In [6], we consider the case in which the configuration space of a mechanical system near a singular
point represents a union of two smooth curves. In the present paper, on the basis of this mechanism, we
construct mechanisms whose configuration spaces represent four smooth curves, a cone, or a cusp. The
dynamics on the union of several curves can be divided (formally) into several movements separately for
each curve; however, for a cone or a cusp, such a representation does not exist. For singular points, a set
of velocity vectors of smooth curves passing through a singular point is considered. In studies of the kine-
matics of mechanisms, methods of differential spaces are used. Two differential structures on a cone, their
(co)tangent spaces at a singular point, and phase space T*X are considered.

2. CONFIGURATION SPACES WITH SINGULAR POINTS
Consider several examples of mechanical systems with singularities of configuration space. They are

obtained on the basis of a singular pendulum. The configuration spaces of these mechanisms represent
two intersecting (or tangent) curves, four intersecting (or tangent) curves, and a cone or a cusp.
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Fig. 1. Singular pendulum.
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2.1. Singular Pendulum

Consider f lat double pendulum ABC with rods AB and BC. Point A is fixed (a fixed hinge), whereas
point C moves only along a given curve γ (e.g., an ellipse) [7]. Friction in the model is not taken into
account. We call this mechanism a “singular pendulum.” Each possible position of the mechanism is
given by a pair of angles (ϕ, ψ) of deviations of rods AB and BC from a vertical straight line. The condition
that point C moves only along the given curve γ specifies an additional relation on angles ϕ and ψ (Fig. 1).
Angle u measures the deviation of straight line AC from the AX axis (taking into account the angle sign).

Theorem [7]. The configuration space of the singular pendulum lies on a two-dimensional torus (with coor-
dinates (ϕ, ψ)) and represents in the general case two smooth curves c1 and c2 without common points. We can
choose a curve γ in such a way the curves c1 and c2 have a single common point ω. Geometrically, point ω cor-
responds to the following configuration of the mechanism: rods AB and BC are codirectional (and directed par-
allel to the AX axis) at u = 0.

Note that, locally, it is possible to arrange any degree of a touch of curves c1 and c2 at common point ω.

2.2. Double Singular Pendulum

We modify a singular pendulum by adding a symmetrical pendulum to it. Note that the singular pen-
dulum can be constructed as follows: a double ABC pendulum is “attached” to point C on a given curve γ
and fixed point A. Analogously, we can add symmetrically another double pendulum ADC. The second
pendulum can have the same lengths of rods |AB| and |BC| or other lengths. With two identical (symmet-
rical) pendulums ABC and ADC, we obtain a mechanism similar to “scissors” (Fig. 2). We obtain a “dou-
ble singular pendulum.” The configuration space of a double singular pendulum has the form of four
smooth curves with a common point.

2.3. Rotating Singular Pendulum

The configuration spaces of singular and double singular pendulums are one-dimensional manifolds
with singular points. It is also possible to construct two-dimensional manifolds with singular points. For
example, assume that the vertical axis of a singular pendulum is stationary and the plane of the pendulum
Π rotates around the AX axis. Each position of the f lat pendulum outside a singular point is matched by
an additional degree of freedom: the rotation of the pendulum around the vertical axis (Fig. 3). We call
this mechanism a “rotating singular pendulum.” Vertices B(x1, y1, z1) and C(x2, y2, z2) are located now in

. The configuration space of the pendulum in coordinates (ϕ, ψ, ξ) is the surface of rotation. Angles ϕ
and ψ correspond to the deviations of rods AB and BC from the vertical axis (coordinates on the torus),
whereas ξ is the angle of rotation of the pendulum in the plane orthogonal to vertical axis AX. When
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Fig. 2. Double singular pendulum.
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Fig. 3. Rotating singular pendulum.
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rotated by angle ξ = π, the pendulum passes into a symmetrical position and remains in the same plane.
Coordinates of the pendulum in space  have the following form:

(1)

2.4. Spatial Singular Pendulum

Consider another modification of a singular pendulum. For example, point A and curve γ lie in the
same (fixed) plane Π, while vertex C of pendulum ABC can move freely along curve γ. The two-link ABC
can freely rotate around the AC axis at a fixed position of vertex C. We call this mechanism a “spatial sin-
gular pendulum.” The only singular point of this mechanism corresponds to a singular point of the singu-
lar pendulum: rods AB and BC must be codirectional at u = 0. Outside a singular point, the mechanical

+
R

3 3

= ϕ = ϕ + ψ1 1 2 1 2cos , cos cos ,x l x l l

= ϕ ξ = ϕ + ψ ξ1 1 2 1 1sin cos , ( sin sin )cos ,y l y l l

= ϕ ξ = ϕ + ψ ξ1 1 2 1 2sin sin , ( sin sin )sin .z l z l l
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Fig. 4. Spatial singular pendulum.
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system has two degrees of freedom (Fig. 4). Distance |AC|(u) = d(u) is a smooth function of angle u. If u =
0 corresponds (locally) to the minimum or maximum value of d(u), then we must have d'(0) = 0.

We find the dependence of the coordinates of points B(x1, y1, z1) and C(x2, y2, z2) on angles u, θ, and ξ.
Note that, when rotating around the AX axis, the x coordinates of points B and C do not change. Since
point A and curve γ lie in common plane Π, straight line AC also lies in plane Π. Angle u measures the
deviation of straight line AC from vertical straight line AX in plane Π. Angle θ measures the deviation of
rod AB from straight line AC in the ABC plane. Angle ξ indicates the angle of rotation of point B relative
to straight line AC lying in plane Π (Fig. 4). To determine angle ξ, we can construct plane Π1 (passing
through point B) orthogonal to straight line AC. Assume that Π1 intersects AC at point N. From point N
in plane Π, draw straight line NM perpendicular to straight line AC. Angle ξ is the angle between straight
lines NM and NB.

Proposition. The configuration space of a spatial singular pendulum has a singularity of the type of a con-
ical (or cuspidal) singular point.

Proof. We find the coordinates of point B. Note that its coordinates can be obtained with three rota-
tions around certain axes. If we rotate straight line AC by angle –u (Fig. 4) around point A in plane Π, then
the straight line AC ' will be parallel to the AX axis. Point C will move to C ' and point B will move to B'.
If we then rotate point B' by angle –ξ around the AC ' (or AX) axis, then point B'' will lie in plane Π
(Oxy plane).

Acting in reverse order, we obtain the following sequence of steps. Consider point B'' = (l1cosθ, l1sinθ,
0) in plane Π. We turn point B'' by angle ξ in the plane orthogonal to the AX axis and passing through point
B''. We then rotate straight line AC ' in plane Π by angle u relative to the AX axis. We obtain the coordinates
of vertices B and C:

(2)

At u = 0, angle θ is also zero. In Eqs. (2), at u = 0, θ = 0, and any ξ, we obtain the same coordinates of
points B and C. Their values are B = (l1, 0, 0) and C = (d(0), 0, 0). The velocity vector of the mechanical

= θ − ξ θ =1 1 1 2cos cos cos sin sin , ( )cos ,x l u l u x d u u

= θ + ξ θ =1 1 1 2cos sin cos cos sin , ( )sin ,y l u l u y d u u

= ξ θ =1 1 2sin sin , 0.z l z
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CONICAL SINGULAR POINTS AND VECTOR FIELDS 315
system at a singular point depends on angle ξ, with which the spatial pendulum moves to a singular point.
In fact, the velocity vector at u → 0 and θ → 0 is determined by the following expression:

(3)

Hence, the velocity vector of point B at a singular point depends on limit value ξ. In the general case,
configuration space X has a conical singular point: the directions of tangent vectors from (3) at a given
value of  form a circle in , and the value of  = 0 is matched by one point (0, 0, 0, 0, 0, 0).

If θ'(0) = 0 and d'(0) = 0, then the expression for the tangent vector (3) is simplified,

and does not depend on angle ξ. Therefore, X has a feature of the cusp type at a singular point for θ'(0) =
0 and d '(0) = 0, because the velocity vectors of all smooth curves on X have only one direction at a singular
point.

It is also possible to modify a spatial singular pendulum to distinguish angle ξ with which point B comes
to a singular point (it is matched by the value of angle u = 0). For example, rod AB can be added by an
additional rod DE. In this case, point D is located on segment AB and rod DE itself is attached in such a
way that it is always contained in the plane passing through points A, B, and C. It is assumed that rod AB
cannot rotate around its axis. Then, for different angles ξ, with which vertex B comes to a singular point,
we will obtain geometrically different configurations of a modified spatial singular pendulum.

The motion of a singular pendulum can be divided into two independent motions, in which the coor-
dinates of the vertices change smoothly. However, for a mechanism with a cuspidal singular point, it is no
longer possible to distinguish a finite set of possible one-dimensional movements. To consider the kine-
matics of a spatial singular pendulum, it is necessary to use methods of the geometry of singular spaces.

3. DIFFERENTIAL STRUCTURES ON A CONE
To determine the differential equation by geometric methods, it is necessary to construct a vector field

on the phase space of the system. In the case of space with singularities, these concepts need to be given
accurate definitions. In the case of smooth manifolds, these definitions must coincide with the standard
concepts of differential geometry: tangent vectors, vector fields, etc. Generalizations are based on the fact
that many concepts of differential geometry can be formulated, e.g., in algebraic terms that do not use the
concept of “smoothness.”

3.1. Differential Spaces

We present several calculations for differential spaces on a cone (or a cusp). First, we describe the nec-
essary “dictionary” of terms.

Consider topological space X and the algebra of functions F on it. For  f ∈ F, we have the definition for
smooth shell sc(F) (or a smooth closure) of algebra F:

Taking the second smooth shell does not change the algebra: sc(sc(F)) = sc(F).
Definition. A pair (X, F) is called a differential space if (1) algebra F coincides with its smooth closure:

F = sc(F) and (2) function f is contained in algebra F if and only if, for any point x ∈ X, there exist open
neighborhood Ux and function g ∈ F such that  =  (every local function from F is contained in F).

Definition. Assume that (X, F) and (Y, G) are differential spaces. The mapping h : X → Y is called
“smooth,” if for any function f ∈ G, composition h  f lies in the set of functions F.

Definition. Assume that (X, F) is a differential space and point x ∈ X. Linear operator Δ : F →  is called
a “tangent vector” at point x ∈ X if for it the Leibniz identity

holds.
The set of all tangent vectors at point x ∈ X is tangent space TxX. Tangent space TxX has a natural linear

structure. Similarly, tangent vectors can be obtained using smooth curves.

= θ= = + θ ξ θ ξ
= + θ ⋅ ξ ξ

     


( )1 1 1 2 2 2 1 1 10, 0

1 1
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Definition. Curve c :  → X is called “smooth” if, for any function f ∈ F, composition f  c :  →  is
a smooth function.

The velocity vector of a smooth curve at point x,

is a tangent vector in the operator sense; .
Definition. Assume that (X, F) is a differential space. Linear operator Δ : F → F is called an (operator)

vector field if for it the Leibniz identity

holds.
We denote by D(F) the set of vector fields of algebra F (or differentiations of algebra F). For vector field

V ∈ D(F), the value of the field at point  =  =  determines tangent vector .
Covectors in the singular case can be considered as differentials of functions from the algebra.
Definition. Suppose that  f ∈ F. Differential of the function f at point x ∈ X is the linear mapping df :

TxX →  acting by the rule

We denote the set of all differentials (or covectors) at point x ∈ X by . For the differential space (X,
FX), its tangent bundle TX =  can also be endowed with the structure of differential space. For
the algebra of functions on the tangent bundle, we can take the prototypes of functions in the projection
of π : TX → X and the differentials of the functions

(4)

The cotangent space T*X =  can also be endowed with a structure of differential space:

(5)
Operator V* acts on covector df at point x ∈ X as follows:

The principle of localization [2]. Suppose that (X, F) is a differential space. Assume that there is function
η ∈ F with the following properties: we can find two neighborhoods U1 and U2 of point x (x ∈ U1 ⊂ U2 ⊂ U)
such that η = 1 in neighborhood U1 and η = 0 outside neighborhood U2. The value of vector field Δ : F → F
can be determined “locally”: Δ( f )|x = Δ( f |U)|x.

Assume that, in neighborhood U of point x, algebra F |U is isomorphic to algebra C∞( ) for some n. By
the principle of localization, vector fields outside singular points coincide with vector fields for smooth
manifolds. We use this fact in order to, first, calculate vector fields outside a singular point and, then, find
conditions for coefficients of vector fields.

We now investigate two differential structures on cone X.

3.2. Constant Functions near the Vertex

Consider the algebra of functions Ac that are locally constant near the vertex of the cone (such functions
on the cone are considered, e.g., in ([4], pp. 5–12)):

Proposition. Vector fields for a differential space (X, Ac) turn to zero at a singular point. Tangent space T0X

and cotangent space  have zero dimension.
Proof. Consider vector fields for the differential space (X, Ac). There is smooth function ηε equal to 1

in the (ε/2)-neighborhood of the vertex of the cone and equal to zero outside ball Bε(s) for any ε > 0.
According to the principle of localization, vector fields outside a singular point have the forms of ordinary
smooth vector fields. Conversely, if there is smooth (outside the vertex of the cone) vector field Δ, then
for function f ∈ Ac there exists neighborhood U of the vertex of the cone such that f |U = const. Then,

R  R R

Δ = , ( ) ( )'(0),c x f f c

Δ ∈,c x xT X
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∈∪x X xT X

= π ∈ ∪ ∈* ({ , } { *, ( )}).T X X XF sc f f F V V D F

=( *( ))( ) ( ).xV df x V df

R
n

∞= ∈ ∃ ≡R
0

3
0{ | ( ), : const}.c X U

A f f C U f

0*T X

Δ = Δ = Δ =( ) ( ) (0) 0.
s U ss

f f
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If for each vector field Δ ∈ D(Ac) we determine a value at a singular point as zero, then we obtain oper-
ator Δ : Ac → Ac: any function has a neighborhood in which it is constant and becomes zero when differ-
entiated locally.

The tangent space at a singular point is zero, because tangent vectors are also localizable:

This means that the tangent space at a singular point is zero. Cotangent space  is then also zero.
The structure of functions on the cotangent bundle is as follows:

Hence, the tangent and cotangent spaces for the cone at a singular point are zero.
A smooth curve on X can pass the vertex of the cone with only zero velocity vector or zero momentum.

However, then the curve’s state at the vertex of the cone coincides with the state of rest.

3.3. Functions on the Cone

Consider algebra A =  of the restrictions of smooth functions from enveloping space  to
cone X.

Proposition. For differential space (X, A), operator tangent space T0X and cotangent space  have

dimension 3.

Proof. Embedding a cone into space  gives a description of the tangent space at the vertex of the
cone. In fact, the constraint pr :  → A is surjective. The mapping of tangent spaces d|pr| : T0A →

 is then injective (see ([2], pp. 160–165)). Consequently, the dimension of the tangent space at the
vertex of the cone is not greater than 3. From the vertex of the cone can come three curves γ1, γ2, and γ3

whose tangent vectors , , and  are not coplanar at a singular point. The tangent vector of
each curve gives the operator tangent vector , i = 1, 2, 3. The standard coordinate tangent vectors

are expressed in terms of vectors  and represent linearly independent tangent vectors at the vertex of
the cone. Hence, tangent space T0X is three-dimensional.

For differential df of function f from algebra A and any tangent vector  ∈ T0A, the following relation
holds:

The covectors d0x, d0y, and d0z then generate cotangent space  and are linearly independent.
Hence, the cotangent space at the singular point has dimension 3.

Since algebra A outside the singular point coincides with the algebra of smooth functions on a plane,
the cotangent space outside the singular point is two-dimensional.

Proposition. For differential space (X, A), vector fields V ∈ D(A) turn to zero at the vertex of the cone.

Proof. In the general case, for subset Y of Cartesian space , the following condition is met. For dif-
ferential space (Y, C∞( )|Y), vector field V ∈ D(C∞( )|Y) can be continued to a smooth vector field on

the enveloping space  (see [3]). Space  is endowed with a standard differential structure ( ,
C∞( )).

Assume that vector field V is a continuation of vector field W from the cone to space . Consider three
curves γ1, γ2, and γ3 coming from the vertex of cone S such that tangent vectors , , and  are

not coplanar. For a smooth vector field in  tangent to the cone outside the vertex, we can consider the
corresponding tangent planes to the cone , , and  along curves γ1, γ2, and γ3. Because of the
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smoothness of field V when t → 0, tangent vector V(0) must be contained at the intersection of tangent
planes , , and . However, the intersection  ∩  ∩  consists of only one point,
namely, the vertex of the cone. Thus, vector V(0) is zero; therefore, the value at the vertex of the cone of
the original field W(0) represents a zero vector.

Accordingly, since the value of vector field W tangent to the cone is zero at the vertex of cone S, the
coefficients of vector field W (such that V|X = W) tend to zero when approaching a singular point. We now
describe functions on T*X.

Proposition. Functions on cotangent bundle T*X have the following properties: (1) they are smooth func-

tions on T*X\ , with their value being constant in the layer above a singular point , and (2) they are
continuous functions when x → 0.

Proof. Outside the singular point, the algebra of functions A coincides with the algebra of smooth func-
tions on the plane; therefore, outside the vertex of the cone, the cotangent bundle coincides with the usual
bundle.

Consider generating functions of algebra FT*X. According to the definition, these are functions of two
kinds: liftings of functions f of algebra A with projection π : T*X → X and functions V* for V ∈ D(A). Lift-
ings π  f ( f ∈ A) are constant in layer . For vector field V ∈ D(A), the value of V( f )|0 is zero. Then,
at points w ∈ , the values of the generating functions are constant. Hence, in a smooth shell, they are
constant on the layer .

Functions on cotangent bundle T*X go to a constant when x → 0. In fact, functions of the form π  f
( f ∈ A) tend to a constant value f(0) when x → 0 for the part of the cone without the singularity T*X\ .
The effect of “covector” fields on differentials of the functions V*(df ) → 0 when x → 0, because the coef-
ficients of vector fields in enveloping space  tend to zero when x → 0. Hence, functions f ∈ FT*X are not
only constant on layer , but also tend to this value when x → 0.

3.4. Functions on Cone Blowing

Consider the mapping h :  × S1 → , which represents a parameterization of cone X:

Here, function ψ(x) denotes the distance from the point (x, 0, 0) ∈ Ox to the point on the cone in the
plane tilted at angle ϕ to plane Oxy. Outside the set {0} × S1, the mapping h is a diffeomorphism to the set
X\0. If there is a curve of motion of a mechanism on the cone (and this curve is smooth before a singular
point and after it), then it must also rise to a curve (on the cylinder), which can be discontinuous only at
points on the circle {0} × S1. The cylinder itself Cil =  × S1 with the coordinates (x, ϕ) can be considered
as a cone blowing, which must carry more information than a cone as a set of points: the cylinder also con-
tains directions with which the curves approach the vertex of the cone.

Consider the differential structure on the cylinder obtained by the mapping h: these are functions of
the type g = h*( f ), f ∈ . They have the following property:

Hence, the functions are constant on circle S1. If X is a cusp (ψ'(0) = 0), then

Consider as a cone-singularity model cylinder Cil and the following algebra of functions on it:

We calculate vector fields for space (Cil, ) in coordinates x, y = ϕ.

Proposition. Vector fields Δ for differential space (Cil, ) are arranged as follows:

(6)
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where a and b are smooth and 2π-periodic for y functions on plane u  ≡ 0.

Proof. Consider vector fields for . According to the principle of locality outside a singular point,
vector fields represent ordinary vector fields with smooth coefficients. Accordingly, outside circle S1 on
the cylinder, we obtain that vector field Δ acts on function f ∈  as follows:

An arbitrary function f ∈  by the Hadamard lemma can be presented as follows:

(7)

For f(x, y) = x, we obtain that a(x, y) ∈ . Consider functions g, which represent products of coordi-
nate functions: g = . Functions k and m now can be arbitrary smooth functions. After substitution
in (6), we obtain the condition

Assume that function k(x) is positive; we then divide the left and right sides by k(x):

Consider function m(y) such that m'(y) > 0. Then, from the last expression, it follows that bx = (h –
am)/m' is a smooth function. Hence, the value of function bx on S1 is determined. Consider now function
m(y) with the properties

Assume that  = c. We obtain

it follows that a(0, 0) = c and 2a(0, 1) = c. Since a ∈ , it is necessary that  ≡ 0.

Thus, for function f = xy, we obtain that ay + bx ∈ . With allowance for  ≡ 0, we obtain the con-
sequence bx ∈ . For function f = xy2, we have ay2 + 2bxy ∈ ; it follows that bxy ∈ . Hence, two
conditions are met: bx ∈  and (bx)y ∈ . If bx is not identically equal to zero on S1, then, when mul-
tiplied by y, there are two points in which the values of (bx)y differ. Hence,  = 0. Now, with allow-

ance for bx ∈ ,  = 0, we obtain by the Hadamard lemma bx = 0 + xh(x, y). Then, b ∈ C∞( ).

Hence, it is necessary that a, b ∈ C∞( ),  = 0. However, these conditions are also sufficient: if a, b ∈
C∞( ),  = 0, then vector field (6) transforms functions from  to functions from .

Hence, vector fields of form (6) describe all vector fields for algebra . Note that the coefficient for
the derivative of the y coordinate differs from zero on circle S1. Consequently, vector fields do not turn to
zero at points of S1. However, their action as operators leads to zero values; i.e., their action cannot be
observed.

CONCLUSIONS

For the described example of a spatial singular pendulum, the configuration space of which is a cone
or a cusp, two structures are considered. In the structure with functions constant near the vertex of the
cone, the cotangent space at a singular point is zero: here, the system must not come out of a state of rest.
In the second structure, the functions on cotangent bundle T*X are continuous and their values are con-
stant in the layer above singular point . The results are similar to the results of calculations for the
one-dimensional case [8].

The formulation of the general problems of constructing differential calculus such that there is zero
tangent or cotangent space represents the next step in the study of kinematics problems on singular spaces.
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