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Abstract—The purpose of the study is to analyze the inhomogeneity effect on the natural transverse
vibrations of square thin plates using asymptotic methods, when the thickness and/or stiffness of the
plate can be assumed almost constant. The results of calculations by asymptotic formulas, which are
determined by the perturbation method, are compared with the numerical results obtained by the
finite element method using the COMSOL software package.
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1. INTRODUCTION
The structure of the spectrum of natural transverse vibrations of isotropic and homogeneous rectan-

gular plates under various boundary conditions is a well-studied problem. The list of studies on this topic
is extensive, and a systematic review of the research results is given in [1].

A large number of studies are also devoted to the vibrations of inhomogeneous rectangular plates.
Thus, in [2], the inhomogeneity influence on the vibrations of rectangular thin plates with thickness lin-
early varying along one direction was studied under different boundary conditions applying the Rayleigh–
Ritz method with the use of two-dimensional boundary characteristic orthogonal polynomials. In the
plates considered, the inhomogeneity was also associated with linear changes in Young’s modulus and
density of the material. In [3], it was proposed to solve problems on natural vibrations of rectangular plates
of variable thickness under complex boundary conditions using the numerical-analytical spline-colloca-
tion method in combination with the discrete-orthogonalization method. In [4], a simple algorithm based
on the Ritz method and the expression of the basic displacement function through a polynomial coordi-
nate function that approximately satisfied the essential (geometric) boundary conditions, made it possible
to obtain the fundamental natural frequency for a rectangular plate with a bilinearly varying thickness.

Apparently [5] was one of the first studies in which the finite element method was used to investigate
the vibrations of rectangular variable thickness plates and to find natural frequencies and vibration modes
of rectangular cantilever plates with linearly varying thickness. In [6], natural frequencies of transverse
vibrations of rectangular thin variable thickness plates obtained by different methods, such as, the
Rayleigh–Ritz method using different shape functions, the optimized Kantorovich method, and the finite
element method, were compared for different combinations of boundary conditions. In [7], transverse
vibrations of a rectangular plate in different boundary conditions were investigated under the assumption
that the thickness is the product of two linear functions h(x, y) = h1(x)h2(y). Sequential approximations
were found by the Rayleigh–Ritz method using the basis functions satisfying the essential (geometric)
boundary conditions.

The perturbation method was used in [8] to analyze bending vibrations of rectangular plates with aver-
age slowly varying thickness, and approximate formulas for free vibration frequencies were obtained in
explicit form at arbitrary functions of thickness. The mixed boundary grid method (FBGM) was proposed
in [9] to analyze free vibrations of variable thickness cantilever plates. The authors obtained the funda-
mental differential equations for plate bending, which were transformed into integral equations, whose
numerical solution was chosen as the Green function to obtain the characteristic equation of natural fre-
quencies.
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Fig. 1. Rectangular plate with a linearly varying thickness.
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Multiple frequencies of square plates with the same boundary conditions at all edges are of special
interest. Here, any variation of thickness or stiffness causes a certain loss of symmetry, and we can expect
a splitting of multiple frequencies. In [10], the finite element method was used to study the vibrations of a
square plate with a parabolically varying thickness and clamped edges. Particular attention was paid to the
modes of the plate vibrations that displayed a combination of radial and square symmetries and resulted
from the axisymmetric distribution of thickness and the square symmetry of the boundary.

The objective of our study is to obtain asymptotic formulas describing the effect of inhomogeneity of a
thin plate thickness or stiffness parameters on its natural frequencies. The algorithm for obtaining such
formulas was described, for example, in [11]. The present study continues the research of asymptotic
methods of vibrations of inhomogeneous plates of different shapes, which was started by the authors in
[12]. In the study, it is assumed that the geometric and physical parameters of the plate are smooth func-
tions of coordinates, constant in one direction and close to constant in the other.

2. EQUATIONS OF VIBRATIONS OF A THIN SQUARE PLATE 
WITH VARIABLE PARAMETERS

Natural transverse vibrations of a rectangular thin plate with variable parameters (Fig. 1) are described
by the following equations

(1)

where w = w(x, y, t) is the plate deflection, D = D(x, y) =  is the cylindrical stiffness; Δ is the

Laplace operator; H = H(x, y) is the plate thickness; E = E(x, y), ν = ν(x, y), γ = γ(x, y) are Young’s mod-
ulus, Poisson’s ratio, and the density of the plate material; and x, y, and t are the spatial coordinates and
time. In this paper, the plates with γ = const and ν = const are considered. Below, ν = 0.3 in all examples.

Let us separate the variables as

(2)

and express them in a dimensionless form; then Eq. (1) can be written as follows:

(3)

where

and h0 and E0 are the characteristic values of thickness and Young’s modulus.
Next, we consider square plates with k = 1 and Δk = Δ.
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The variables can be separated only when the parameters change along one coordinate h(ξ, η) = h(ξ),
E(ξ, η) = E(ξ), and the opposite sides of the plate are simply supported along the other coordinate. In this
case, the solution can be represented as W(ξ, η) = sin(mπη)w(ξ), and function w(ξ) is defined by equation

(4)

Equation (3), together with the boundary conditions, forms the boundary value problem on eigenval-
ues for λ. Below, only the homogeneous boundary conditions at the plate edges (ξ* = 0 or ξ* = 1) of the
simply supported (S) or clamped (C) type are considered in the following form:

(5)

In order to compare different approximations of the vibration modes, it is useful to normalize them,
whereby normalized solution W(ξ) can be written as

(6)

and in the linear ε approximation, we have

(7)

3. NATURAL FREQUENCIES OF A SQUARE PLATE WITH VARIABLE THICKNESS
The perturbation method is used to study the vibration frequencies of a square plate with stiffness and

thickness parameters close to constant. We assume that

(8)

Upon substituting (8) into Eq. (4) and equating the coefficients at equal powers of ε, we obtain a series
of boundary value problems, whose condition for the existence of a solution is the orthogonality of the
right-hand sides of the equation to solutions w0(ξ) [11].

Let us consider a square plate with variable thickness simply supported at all sides, assuming a constant
Young’s modulus, E(ξ) = 1. The boundary value problem in the zero approximation can be written as

(9)

and its solution are the following frequencies and modes:

(10)

Having substituted expressions (10) into first approximation equation

(11)
where

we require the orthogonality of its right-hand side to mode w0(x). Calculating the integrals, we obtain the
formula for the first frequency correction,

(12)

Let us consider various perturbing functions as examples (see Table 1).
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Table 1. Perturbing functions and the corresponding first corrections of frequencies for variable thickness plates

h1(ξ) λ1

1 ξ

2 ξ − 1/2 0
3 ξ2

+ π2 21/4 m n

π − + π − ν + + π −
π +

2 4 2 4 2 2 4 2 2 2 2 2 6 4

2 2 2 3/2
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12
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( )
m n m m n m n m n n n

n m n
In the first case (linear increase in thickness at ε > 0 or its decrease at ε < 0), the increase in the plate
stiffness is the determining factor. All frequencies increase with the increase in , and no splitting of mul-
tiple frequencies, i.e., frequencies  and , occurs in the first approximation.

A linear variation of thickness, while maintaining the plate mass (the second case), has no effect on the
frequencies in the first approximation. Similarly, no perturbation in the form of an odd function with
respect to the middle of the plate (ξ = 1/2) has an effect on the frequencies in the first approximation.

When the thickness varies parabolically (the third case), both the shift and the splitting of the multiple
frequencies occur in the first approximation, and the magnitude of the frequency splitting can be written
as follows:

(13)

If n ≈ m at m → ∞, then δ = O(1/m) at m → ∞. If n = m + O(1), then δ = O(1/m2) at m → ∞. In other
words, the more that wave numbers m and n differ, the more noticeable is the frequency splitting effect.

In order to construct the first approximation solution, we should substitute the value of λ1 into Eq. (11)
and solve it using three of the four boundary conditions of the (S) type. The fourth condition will be ful-
filled automatically. The analytical expressions for the first approximations of vibration modes (w1(ξ)) and
the second corrections of frequencies (λ2) were found by using the Mathematica 11.3 software package.

Since the formulas are cumbersome, we give expressions only for the vibration modes with fundamen-
tal frequency (m = n = 1) of a plate with a parabolically varying thickness:

(14)

For this plate, the abovementioned modes normalized to formulas (7) are shown in Fig. 2.
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Fig. 2. The first vibration mode of a constant thickness plate (red line) and of a plate with a parabolically varying thickness
(blue line) at ε = 0.6.
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Fig. 3. Dependence of lower frequencies (a) and multiple frequencies of the λm, 1 and λ1, m type (b) on small parameter ε
for a plate with a parabolically varying thickness.
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The dependence of the lower frequencies of the plate with a parabolically varying thickness on small
parameter ε is shown in Fig. 3a, where (m, n) are the wave numbers corresponding to the frequencies. In
the specified range of ε variation, all frequencies increase monotonically with the increase in ε, except the
frequencies of λm, 1 type at large values of m. These frequencies reach their maximum at ε = O(1/m2), with
the maximum point rapidly tending to zero with the increase in m (Fig. 3b). In Fig. 3, solid lines corre-
spond to the frequency values calculated by the asymptotic formulas, and dots correspond to the values
obtained using the COMSOL Multiphysics 5.4 finite-element software package. At small values of ε, the
asymptotic results are in good agreement with numerical ones. However, with the increase in the wave
number values, the applicability range of the asymptotic formulas narrows.

4. NATURAL FREQUENCIES OF A SQUARE PLATE
WITH VARIABLE STIFFNESS

The variable stiffness effect on the natural frequencies of the plate is investigated in a similar way. We
assume that h(ξ) = 1, and Young’s modulus E(ξ) is variable. The values of the first corrections of the fre-
quencies for the same types of perturbations as those considered earlier are given in Table 2.

The influence associated with the stiffness variation is qualitatively close to the influence of the thick-
ness variation, but is less significant. As an example, we consider the effect of a linear variation of the plate
stiffness on the vibration frequencies (see Fig. 4).

When E(ξ) = ξ, the lower frequencies grow with the increase in ε and split poorly. When E(ξ) = ξ – 1/2,
when the mean stiffness of the plate is constant, all frequencies reach their maximum at ξ = 0. The greatest
splitting is observed for frequencies of the λm, 1 and λ1, m type at m > 1.

5. CONCLUSIONS
It is found that natural frequencies of a plate are split only in the second approximation if the stiff-

ness/thickness variations are linear with respect to ε and a coordinate. However, if the parameter varies
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Table 2. Perturbing functions and the corresponding first corrections of frequencies for variable stiffness plates
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Fig. 4. Dependence of lower frequencies on small parameter ε for a plate with stiffness E(ξ) = ξ (a) and dependence of
multiple frequencies of the λm, 1 and λ1, m type on small parameter ε for a plate with stiffness E(ξ) = ξ − 1/2 (b).
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nonlinearly, for example, parabolically along the coordinate, the multiple natural frequencies split in the
first approximation. In addition, the asymptotic formulas make it possible to determine, which of the two
multiple frequencies corresponding to wave numbers n and m varies faster with the variations of the small
parameter.
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