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Abstract—Recently, W. Lao and M. Mayer (2008) developed U-max-statistics, where instead of aver-
aging the values of the kernel over various subsets, the maximum of the kernel is considered. Such sta-
tistics often appear in stochastic geometry. Their limit distributions are related to the distributions of
extreme values. In this paper, we begin to consider the limit theorems for the generalized perimeter
(the sum of side powers) of a random inscribed polygon and U-max-statistics related to it. We describe
extreme values of the generalized perimeter and obtain limit theorems for the cases where the side
powers involved in determining the generalized perimeter do not exceed 1.
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1. INTRODUCTION
In this paper, we consider the limiting behavior of U-max-statistics appearing in stochastic geometry.

Suppose ξ1, ξ2, … is a sequence of independent equally distributed random variables with values in mea-
surable space ( , ), and the real-valued symmetrical Boreal function h(x1, …, xm) called an m-degree

kernel is defined in space .
U-max-statistics are determined as follows:

where n ≥ m and the set J = {(i1, …, im) : 1 ≤ i1 < … < im ≤ n} is the set of ordered m-elemental permutations
with many indices from the set {1, …, n}. U-min-statistics are determined analogously.

U-max-statistics are introduced independently by Lao and Mayer in their theses [1] and [2]. They
developed a method of studying the limiting behavior of U-max-statistics using the Poisson approxima-
tion from the monograph [3]. Their basic limit theorem from [4] is presented as follows.

Theorem 1. Consider the U-max-statistics Hn = maxJh( , …, ) introduced above and determine the fol-
lowing functions for each z ∈ :

then for all n ≥ m and for all z ∈  the following inequality is true:

In [5], Silverman and Brown offer the conditions under which the general theorem proved in [4], leads
in the limit to the nonsingular Weibull law.
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Theorem 2. In terms of Theorem 1, if for a certain sequence of transformations zn : T → , T ⊂  for each
t ∈ T the conditions

(1)

(2)

are fulfilled, the equality limn → ∞ (Hn ≤ zn(t)) =  for each t ∈ T holds.
Remark 1. If m ≥ 2, condition (2) can be replaced with

(3)

for each r ∈ {1, …, m – 1}.
The main application field of the concept of U-max-statistics is currently related to stochastic geome-

try: we talk about maximum areas, perimeters, volumes, and similar metric characteristics of figures built
by a set of random points on a plane or in spaces of a larger dimension. The form of a geometric figure is
determined by the kernel h. Lao and Mayer consider kernels only of small degrees; mostly, they study tri-
angles. Koroleva and Nikitin in [6] pass on to U-max-statistics of a more complex nature. In particular,
they consider the maximum perimeter among all perimeters of convex m-sided polygons whose vertices
are chosen among n points that are independent and uniformly distributed on a circumference. This study
summarizes and develops the results of [6].

2. GENERALIZED PERIMETER OF A POLYGON
Consider the generalization of the concept of a perimeter. Assume that di, i = 1, …, m are the sides of

an inscribed m-sided polygon with vertices U1, …, Um and suppose h(U1, …, Um) =  is its perimeter.

We propose to consider the value hy(U1, …, Um) =  for y ∈  and call it the generalized perimeter
of a polygon.

It is well known that among all the convex inscribed polygons, the largest perimeter (and the square
area) has a regular polygon (see, e.g., ([7], Problem 57a)). This was known at least to Legendre [8].

It turns out that this property is retained also for generalized perimeters when 0 < y < 1, while for y <
0, in contrast, on a regular polygon, the minimum of the generalized perimeter is achieved. We have not
found evidence of this fact, which is of independent interest, in the literature. Therefore, we present the
proof of this fact here.

Lemma 1. Assume that there exist m points V1, …, Vm lying on a unit circumference. Then for y < 0 the func-
tion hy(V1, …, Vm) attains a minimum only at the vertices of a regular m-sided polygon and its minimum value

is equal to .

Analogously, when y ∈ (0, 1), the function hy attains its maximum only at the vertices of a regular m-sided

polygon and its maximum value is again equal to .

Proof. First, consider the case of negative y. Without detracting from the generality, assume that the
points V1, …, Vm are located on the circumference in the assigned order; then the function hy is presented

as hy(V1, …, Vm) = , where Vm + 1 = V1.

Introduce the notation γi = , where i ∈ {1, …, m}. We have  = 2sin , where i ∈ {1, …,

m}. It follows that

We can assume that γi ∈ (0, 2π), otherwise hy = ∞. Consider the function f(x) = sinyx for x ∈ (0, π).
We find its first two derivatives

(4)
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436 SIMAROVA
It is clear that for negative y this function is strictly convex on (0, π). Then by Jensen’s inequality for
any y1, …, yn ∈ (0, π), we obtain

provided  = 1, αi > 0. Note that

At the same time, because of the strict convexity, the equality is achieved only in the case where all γi
are identical. Hence, in the case where y < 0, the function hy(V1, …, Vm) attains the minimum equal to

 =  only at the vertices of a regular m-sided polygon.

The case where 0 < y < 1 is considered analogously. If y ∈ (0, 1), then f ''(x) < 0; therefore, the function
is strictly concave. By similar reasons, the function hy attains its maximum only at the vertices of a regular
m-sided polygon.

Suppose the points U1, …, Un are independently and uniformly distributed on a unit circumference S1.
Then the following two limit theorems hold; they are the main results of this study.

Theorem 3. Suppose  = . Then when y < 0, for any t > 0 the following equality
holds:

where K1(y) = .

Theorem 4. Suppose  = . Then when y ∈ (0, 1), for any t > 0 the following
equality holds:

where K2(y) = .

3. PROOF OF THE MAIN RESULTS
Proof of Theorem 3 is similar to the corresponding proof in [6] but has several distinctions.
Consider the points U1, …, Um ∈ S1. From Lemma 1 it follows that the minimum of the function hy is

 and is achieved only at the vertices of a regular m-sided polygon. Introduce the notation βi =

 (in the counterclockwise direction). Analogously to the work [6], when z > , we

obtain

(5)
In what follows, we assume that U1, …, Um lie on the circumference in this order in the counterclock-

wise direction.
We call the angles of the form  central angles. Consider the largest and smallest central

angles. Assume that these are the angles  + 2ϕ1 and  – 2ϕ2 where ϕ1, ϕ2 > 0.
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Lemma 2. Suppose the inequality hy(U1, …, Um) <  + s holds. Then there are constants C, D > 0

depending only on y such that for 0 < s < D we have ϕ1, ϕ2 < . In other words, with small s, the central

angles differ from  by O( ).

Proof. Consider another polygon, which has the same central angles but these two specified angles are
adjacent to each other. Then the lengths of the sides of the polygon and values of the function hy do not
vary, and the following inequality holds:

Replace the central angles  + 2ϕ1 and  – 2ϕ2 by two identical angles  + ϕ1 – ϕ2. With this

replacement, the function value could be reduced no more than by s; therefore,

(6)

Consider one of the terms. The Taylor expansion with the remainder in the Lagrange form gives

where i ∈ {1, 2} and θi ∈ . Consequently, due to (6) the following inequality holds:

Note that when y < 1 and x ∈ (0, π) we have (sinx)y – 2 ≥ 1 and ycos2x – 1 < 0, along with the estimate
|ycos2x – 1| > min(|y – 1|, 1). Hence, for y < 0 the constant in (ϕ1 + ϕ2)2 can be estimated from below as

C1(y) > 0. Consequently, C1(y) (ϕ1 + ϕ2)2 < s and then ϕ1 + ϕ2 < , and this proves Lemma 2.

In what follows, we need the following proposition.
Lemma 3. In terms of Theorem 1, it is true that

Proof. Introduce the notation αk = βk – , α0 = 0, and αm = 0. Recall that βi is uniformly and inde-

pendently distributed on the interval [0, 2π]. Hence, αk are independent and uniformly distributed on the

intervals , respectively. In the new designations, the function hy is presented as follows:

If for small s the condition hy(U1, …, Um) <  + s holds, then by Lemma 2 we have αk = .

This allows us to expand each term by the Taylor formula with the remainder in the form of Lagrange at
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the point . We use (4), together with the third-derivative formula for siny(x). To shorten the writing, we

put Δk := . We obtain

where ηk ∈  by Lemma 2.

Since the linear term disappears, the condition h(U1, …, Um) <  + s is equivalent to the rela-

tion

In turn, this is equivalent to the inequality

(7)

where
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Analogously, we can obtain the inequality

Consider the quadratic form Q(α) =  –  =  – . Applying the rea-

soning from [6] and with the help of orthogonal transformation replace this quadratic form by the qua-

dratic form W(Y) = , where λk = 1 – cos , k = 1, …, m – 1. It is clear that all λk > 0; hence,

the condition W(Y) < s implies the condition Yk = . Therefore, αk = . It follows that there exists
a constant L depending only on the quadratic form Q such that αk < . We can consider that L ≤ 2C;
hence, the condition of the smallness of αk can be removed from under the probability sign. Transforming
the previous relations, we obtain the inequality

(9)

We estimate the left-hand and right-hand sides of the inequality using the following lemma. The proof
of this lemma is analogous to the reasoning from ([6], p. 104).

Lemma 4. For any positive F > δ > 0 and 0 < s < Z(δ) the following equality holds:

where Z(δ) is a certain positive constant depending only on δ.
We put in formula (9) the result of Lemma 4 and obtain the two-sided inequality
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Remove the conditions of ordering angles using condition (5) and also divide by . We obtain the
new two-sided inequality

Let s tend to 0. It is clear that the upper and lower estimates join each other; hence,

By substituting the value of D from (8), we obtain the result of Lemma 3.

Consider for t > 0 the function zn =  + . Then

Suppose s = ; then  = . Check condition (1) from Theorem 2:

The last limiting transition was performed due to Lemma 3. We prove that condition (3) also holds.

Lemma 5. For any r ∈ {1, …, m – 1}, the following relation holds:
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I = (i1, …, ) and J = ( j1, …, ) are two permutations of m – 1 elements. Introduce the event Q =
{ < … < ,  < … < } and estimate the probability

(10)

By Lemma 2 we have  <  for i < m. Analogously we obtain  < .

Denote by l the number of the position of the element m – r in the permutation I and by ti, the number of
the position of γi in the permutation J. Then for i ≥ m we obtain the inequality

Therefore, probability (10), due to the distribution of βi, can be estimated as .

Summing this estimate by all permutations and substituting s = , we obtain the inequality

Return to the proof of Theorem 3. We can use Theorem 2, because we proved that its terms are met.
Then limn→∞ (  ≥ zn(t)) =  for any t ∈ T. Consequently,

Hence, for any t > 0 it is true that

Theorem 3 is completely proved.

Proof of Theorem 4 is similar to the proof of Theorem 3 and therefore is omitted. The condition y ∈ (0, 1)
guarantees that the function (sinx)y has the strictly negative second derivative on [0, π] (it can be consid-
ered that at the ends of the segment the first two derivatives are determined by continuity); therefore, the
strict convexity is replaced by the strict concavity. Then keep the reasoning (here, we change the signs in
the probabilities, because now we consider the maximum, not the minimum).

Remark 2. These arguments are not applicable for y = 1, because the second derivative of the function
sinyx is not separated from 0 on [0, π]. However, [6] presents a method for the proof of Lemmas 1 and 2
without this fact. Therefore, the obtained constant is applicable also for y = 1.
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