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Abstract—We study transverse vibrations of an inhomogeneous circular thin plate in this work. Using
the perturbation method, asymptotic formulas are obtained for free-vibration frequencies of a plate
whose thickness and Young’s modulus linearly depend on radius. The effect of the boundary condi-
tions on frequencies and the behavior of frequencies for a plate with the fixed mass are analyzed. For
lower frequencies of the plate, the asymptotic results are compared with the results of analysis by finite
elements.
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1. INTRODUCTION

The structure of the spectrum of free transverse vibrations of circular thin plates under different
boundary conditions has been well-studied. This is due, firstly, to the frequent use of such building blocks
in engineering structures and, secondly, to the simplicity of the geometry, which makes it possible in some
cases to obtain an analytical solution. The list of works on this topic is extensive; a systematized review of
the results of the research is presented in [1]. The number of works devoted to vibrations of inhomoge-
neous circular plates (in particular, plates of variable thickness and stiffness) is also quite large. Numerical
methods make it possible to find values of frequencies and forms of free vibrations for a thin plate of any
geometry. In particular, to solve such problems, researchers use the Rayleigh–Ritz method [2–4], the dif-
ferential quadrature method [5], and the Frobenius method (infinite power series) [6, 7]. The analysis is
most often conducted for plates whose parameters depend only on the radial coordinate. A series of works
consider vibrations of plates with various forms of inhomogeneity in thickness: linear [2, 6], quadratic [2,
3], polynomic [4, 7], stepwise [8], exponential [9], and a plate with a central hole [10, 11]. Fewer works
are related to vibrations of plates with variable Young’s modulus [12]. The purpose of our study is to obtain
asymptotic formulas that describe the effect of inhomogeneity of the parameters of a thin plate (thickness
or stiffness) on its natural frequencies. The algorithm for the derivation of such formulas is described, e.g.,
in [13]. It is assumed in this study that a plate’s parameters (geometric and physical) are smooth functions
of coordinates. The asymptotic approach in the study of vibrations of plates with inhomogeneity in the
form of holes is used in [10, 11]. 
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Fig. 1. Circular plate of variable thickness and plate’s cross-section.
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2. VIBRATION EQUATIONS OF A CIRCULAR THIN PLATE 
WITH VARIABLE PARAMETERS

Consider free transverse vibrations of a circular thin plate with nonconstant Young’s modulus E and
thickness h. The rest of the parameters of the plate (density of the material ρ and the Poisson coeffi-
cient ν) are considered to be constant. The effect of the Poisson coefficient on the fundamental frequency
is investigated in [14].

In the plate model that uses the Kirchhoff–Love hypotheses, transverse-vibration equations are pre-
sented as [1]

(1)

where D(x1, x2) =  is stiffness of the plate, E(x1, x2) is Young’s modulus, h(x1, x2) is thick-

ness of the plate, and w(x1, x2, t) is the  deflection. We separate the variables in Eq. (1) by the formula

(where ω is free vibration frequency), take the polar system of coordinates x1 = rcosϕ and x2 = rsinϕ, and
obtain the vibration equation of a circular plate with nonconstant parameters

(2)

whose coefficients are

Consider the case where parameters of the plate depend only on its radius. After separating the spatial
variables

(where m is the number of waves in the circumferential direction), Eq. (2) takes the form
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Coefficients of the linear differential operator L are

(4)

For the particular case of axisymmetric vibrations (m = 0), Eq. (3) is presented as

(5)

Here and then, index m is omitted: w(r) = wm(r). Such an equation is considered in [5]. For conve-
nience, we pass in Eqs. (3) and (5) to dimensionless variables with the ~ sign, which later is omitted:

Here, λ is the dimensionless natural frequency. Equation (3) takes the form

where coefficients of the operator L are determined by formulas (4). For  the   plate with constant  param-
eters, D(r) = 1 and h(r) = 1.

3. THE PERTURBATION METHOD

To investigate variation frequencies of a circular plate with stiffness and thickness parameters that are
close to constants, we use the perturbation method. Suppose

(6)

After substitution (6) in Eq. (5) and equating coefficients at identical degrees of ε, we obtain the series
of boundary problems

(7)

Here, Δ is a Laplacian. The existence condition for a solution of the system is the orthogonality of the
right sides of the equations to the solution w0(r) [2]. For example,

from where we determine the value of λ1, which is the first correction to frequency. The explicit form of
the operators Fij is presented below.
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4. NATURAL VIBRATION FREQUENCIES OF A CIRCULAR PLATE 
OF VARIABLE THICKNESS

Consider a circular plate of variable thickness; here, we assume that Young’s modulus is constant,
namely, E(r) = 1. Suppose the dependence of thickness of the plate on its radius is linear and close to con-
stant; assume that

where h0 is unperturbed thickness and ε is a small parameter. When choosing a, consider two cases: 1) the
thickness changes according to the formula h(r) = h0(1 + εr) (h(0) = h0 and a = 0) and 2) the thickness
change is assigned in such a way that the volume and therefore the mass of the plate are retained. In the
second case, the parameter a is found from the condition

Consider two kinds of boundary conditions, namely, a built-in edge and a simply supported edge. In
the first case, the boundary conditions are presented as

in the second case,

where M(r) is a transverse moment. Write the general solution of the zero-approximation equation

where Jm(r), Im(r), Ym(r), and Km(r) are the Bessel functions and the modified Bessel functions of the first
and second kind, while C1, C2, C3, and C4 are constants determined from the boundary conditions. Since
the functions Y(r) and K(r) are singular at zero, it is necessary to put C3 = C4 = 0. For clamped conditions,
the unperturbed frequency λ0 is found from the equation [2]

(8)
while for the simply  supported edge conditions,

(9)

The forms of vibrations in both cases are

Using frequency Eqs. (8) and (9), we determine the two-parametric families of frequencies , where
n is the number of waves in the radial direction. The operators F11 and F12 in (7) are given by the formulas

where

From which we obtain the formula for the first correction to frequency
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Table 1. Lower frequencies of axisymmetric vibrations and the  first  corrections

n
a = 0 a = 2/3

0 13.19622 1.27289 0.20749

1 16.30644 1.88521 −0.21694

2 19.43950 2.58903 −0.55747

3 12.57713 3.32796 −0.86441

4 15.71644 4.08319 −1.15562

5 18.85654 4.84731 −1.43820

λ0,
0

n
λ0,

1
n

The integrals I11 and I12 can be determined analytically, but the formulas for determining λ1 are cum-
bersome. In turn, the numerical determination of corrections using the Maple 2015 package according to
these formulas is not very difficult. Table 1 shows the lower frequencies  and the  first  corrections to
them that are calculated at ν = 0.3 for a plate with the clamped edge.

Figure 2a shows the dependence on the parameter ε of lower frequencies of transverse vibrations of the
clamped plate whose thickness varies according to the formula h(r) = h0(1 + εr). Here and then, a solid
line corresponds to frequencies calculated by asymptotic formula (6) and a point line, to numerical values
of frequencies obtained using the COMSOL Multiphysics 5.4 package. As a plate’s thickness increases, its
stiffness and mass increase, but the effect of stiffness depending on cube of thickness is more significant
(this explains the monotonous increase in frequency with the growth of ε). For small ε, asymptotic values
are close to accurate values. The decrease in frequency with a significant edgewise decrease in plate’s
thickness is noticeably faster than the decrease in frequency according to the linear dependence.

Consider the case where the mass of a plate does not change with a linear change in its thickness.
Figure 2b shows the dependence on the parameter ε, of lower frequencies of transverse vibrations of the
simply  supported plate whose thickness varies according to the formula h(r) = h0(1 + ε(r – 2/3)). When
retaining the mass of the plate, lower frequencies poorly depend on a change in thickness. Under various
boundary conditions, the difference in the nature of the dependencies of lower frequencies on the param-
eter ε is small; however, the fundamental frequency decreases with a growth of ε for a simply  supported
edge of the plate and increases for a rigid restraint. With a growth of the wave numbers m and n, the depen-
dence of frequencies on the change in thickness increases (being close to linear) and the sequence order

λ0,
0

n
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Fig. 2. Lower frequencies of transverse vibrations of (a) clamped plate with thickness h(r) = h0(1 + εr) and (b) simply  sup-
ported plate with thickness h(r) = h0(1 + ε(r – 2/3)).
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Fig. 3. Lower frequencies of transverse vibrations of (a) simply  supported plate with Young’s modulus E(r) = E0(1 + εr)
and (b) clamped plate with E(r) = E0(1 + ε(r – 2/3)). 
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of the frequencies is disturbed, e.g., the sequence of frequencies λ2, 1 < λ0, 2 < λ5, 0 for ε = 0 goes to λ5, 0 <
λ2, 1 < λ0, 2 for ε = –0.6.

5. NATURAL VIBRATION FREQUENCIES OF A CIRCULAR PLATE 
WITH VARIABLE YOUNG’S MODULUS

Consider a circular plate of constant thickness h(r) = 1. We assume that the dependence of Young’s
modulus of the plate’s material, on radius is linear (close to constant); suppose

where E0 is the unperturbed Young’s modulus and ε is a small parameter. When choosing a, we consider
two cases: 1) E(r) = E0(1 + εr) (a = 0) and 2) the change of Young’s modulus in such a way that its average
value retains (under this condition, a = 2/3). Then, the operators F11 and F12 in (7) are assigned by the
formulas

where

Figure 3a shows the dependence on the parameter ε of lower frequencies of transverse vibrations of the
simply  supported plate whose Young’s modulus varies according to the formula E(r) = E0(1 + εr). With
a monotonous growth of Young’s module, frequencies are predictably increased. With a significant reduc-
tion of ε, frequencies’ descending is sharply accelerated (due to the low bending stiffness of the plate).
Choosing boundary conditions has a weak impact on the behavior of frequencies when ε is changed.

Finally, consider vibrations of the plate that retains the average value of Young’s modulus (a = 2/3);
see Fig. 3b. Also in the case where the average value of Young’s modulus is retained, the nature of the
curves’ behavior poorly depends on boundary conditions. The dependence of frequencies on ε is close to
linear, even for perturbation-parameter values that are close to unity in magnitude; here, lower frequen-
cies are almost constant. For the frequencies λm, 0, the first  correction λ1 grows with the growth of m; for
the rest of the frequencies, λ1 < 0 and the correction decreases with the growth of wave numbers.
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CONCLUSIONS

Using the asymptotic formulas obtained in this work, it is possible to find good approximations for the
natural vibration frequencies of plates in the case of a relatively small linear change in the thickness param-
eters and Young’s modulus. Here, when creating a structure, it is possible to estimate the change in lower
frequencies with a small variation of the geometry or properties of the plate material and the conservation
of the mass of the plate. It is of interest to study spectrum properties for a small nonlinear change in
parameters (e.g., quadratic or exponential) that is encountered in applications.
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