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Abstract—Random sequences with random or stochastic indices controlled by a doubly stochastic
Poisson process are considered in this paper. A Poisson stochastic index process (PSI-process) is a
random process with the continuous time ψ(t) obtained by subordinating a sequence of random vari-
ables (ξj), j = 0, 1, …, by a doubly stochastic Poisson process Π1(tλ) via the substitution ψ(t) = ,
t  0, where the random intensity λ is assumed independent of the standard Poisson process Π1. In
this paper, we restrict our consideration to the case of independent identically distributed random vari-
ables (ξj) with a finite variance. We find a representation of the fractional Ornstein–Uhlenbeck pro-
cess with the Hurst exponent H ∈ (0, 1/2) introduced and investigated by R. Wolpert and M. Taqqu
(2005) in the form of a limit of normalized sums of independent identically distributed PSI-processes
with an explicitly given distribution of the random intensity λ. This fractional Ornstein–Uhlenbeck
process provides a local, at t = 0, mean-square approximation of the fractional Brownian motion with
the same Hurst exponent H ∈ (0, 1/2). We examine in detail two examples of PSI-processes with the
random intensity λ generating the fractional Ornstein–Uhlenbeck process in the Wolpert and Taqqu
sense. These are a telegraph process arising when ξ0 has a Rademacher distribution ±1 with the prob-
ability 1/2 and a PSI-process with the uniform distribution for ξ0. For these two examples, we calcu-
late the exact and the asymptotic values of the local modulus of continuity for a single PSI-process
over a small fixed time span.

Keywords: fractional Ornstein–Uhlenbeck process, fractional Brownian motion, pseudo-Poisson
process, random intensity, telegraph process, modulus of continuity.
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1. INTRODUCTION
After the publication of Mandelbrot’s papers [1, 2], stochastic processes with continuous trajectories

and self-similarity properties acquired not only a theoretical interest, but also important practical appli-
cations, especially in the fields of finance and telecommunications. The major process among self-similar
stochastic processes is, certainly, the fractional Brownian motion (fBm), which is the Gaussian process
with a zero initial value, stationary increments, and exponential growth of the variance t2H, where the time
t  0. Here H ∈ (0, 1] is the so-called Hurst exponent. In this paper, we study the fBm at H ∈ (0, 1/2) for
a concave function of the accumulated variance. In this case, near zero, the fBm is locally approximated
by the fractional Ornstein–Uhlenbeck process (fOU). In this paper, the fOU is considered in the sense
presented by Wolpert and Taqqu in [3] as a fractional derivative of the solution of the classical Langevin
stochastic differential equation (SDE) (see, e.g., [4]). The classical Ornstein–Uhlenbeck process (OU)
(stationary Gaussian–Markov process) is a stationary solution of the Langevin SDE. After Lamperti’s
pioneering paper [5], where a nonrandom change of time, the so-called Lamperti transform, was used to
find the direct relation between the Brownian motion and the OU process, it became possible to study
Brownian motion via the OU process and vice versa. This relation was later extended to the fBm. However,
in order to apply the Lamperti transform to obtain the fBm, it is necessary to consider another fOU pro-
cess, the fOU in the sense of Barndorff-Nielsen [6, 7]. Note another extension of the OU process to the
“fractional” case, when fBm increments are considered in the Langevin SDE instead of ordinary Brown-
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ON SOME LOCAL ASYMPTOTIC PROPERTIES OF SEQUENCES 309
ian motion increments (see, e.g., [8]). The fOU processes constructed in all senses designated here are
always stationary and Gaussian.

The PSI-processes studied in this paper are doubly stochastic Poisson subordinators for the sequences
(ξ) = (ξj),  j = 0, 1, …, consisting of independent identically distributed random variables with a zero mean
and finite variance. A more detailed description of the PSI-processes is presented in the next section of
the paper.

We propose in this paper the method of construction of the fOU process in the sense of Wolpert and
Taqqu, based on the approximation by the sums of independent identically distributed PSI-processes with
a random intensity  having a gamma-distribution with a random gamma-distributed scale (see formula
(14) from Theorem in Section 3), or, which is equivalent, by the root of a reversed beta-distribution (see
formula (27)).

This distribution of the random intensity  makes it possible to obtain the required covariance of the
PSI-process coinciding with the fOU process covariance in the Wolpert–Taqqu sense. The subsequent
application of the central limiting theorem for vectors establishes a weak convergence of finite-dimen-
sional distributions and allows us to derive some asymptotic relations. To continue studying the limits of
sums of the PSI-processes with a random intensity to find the facts of convergence in the functional
spaces, the lemma about the local modulus of continuity of the PSI-processes is proved in this paper.
The functional limit theorem for normalized sums of PSI-processes with a nonrandom intensity is proved
in [9].

One of the simplest but comprehensive examples of a PSI-process is the so-called telegraph process
[10]. We consider the telegraph process as the basic trial process for the further study of the total modulus
of continuity of PSI-processes, that is the supremum of the local modulus of continuity taken over the
whole time period of the process.

The calculation of the exact distribution of the local modulus of continuity for an arbitrary distribution
of terms of the sequence (ξ) is a rather complicated and demanding problem. We propose a solution of this
problem for two cases: the Rademacher distribution describing the telegraph process and the uniform dis-
tribution. At the end of the paper, we present the exact and the asymptotic values of the local modulus of
continuity for a PSI-process with the intensity  over a small fixed time span for these two types of dis-
tributions.

Let us recall the necessary definitions and properties of the standard fBm.

Definition 1. The standard fractional Brownian motion WH(t), t ∈ , with the Hurst parameter (self-sim-
ilarity index) H ∈ (0, 1] is defined as a Gaussian process starting at zero with zero mean and the following
covariance function:

(1)

The trajectories of the fBm processes are continuous and nondifferentiable anywhere (except the
degenerate case H = 1, when the trajectories are almost surely random rays in the right half-plane). The
fBm processes are characterized by their stationary increments and, most importantly, by the power self-
similarity property

(2)

The sign  denotes the equality of the finite-dimensional distributions.

It is important that if the variance of a centered Gaussian process increases as t2H and the process has
stationary increments, then this process is necessarily fBm with the Hurst parameter H ∈ (0, 1]. The fol-
lowing classification of cases is adopted: when H ∈ (0, 1/2) and the function of accumulated variance is
strictly concave, the fBm increments are negatively correlated; when H = 1/2 and the function of accu-
mulated variance is linear (standard Brownian motion), the increments are independent; when H ∈ (1/2, 1)
and the function of accumulated variance is strictly convex, the fBm increments are positively correlated;
and when H = 1 and the process trajectories are linear with probability one, the increment correlation is
unity. Note that the Markovian property is fulfilled for fBm only in the standard Brownian motion case,
i.e., when H = 1/2.
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2. PSI-PROCESSES: DEFINITION AND BASIC PROPERTIES
We describe the algorithm of subordination of a random sequence index by a doubly stochastic Poisson

process used in this paper. Consider the standard Poisson process with a unit intensity Π1(t), t  0. Let
(ξ) = (ξn), n = 0, 1, …, be a certain sequence of random variables, and λ = λ(ω), ω ∈ Ω be a certain non-
negative random variable, where λ, (ξ), and Π1 are jointly independent.

Definition 2. We call the Poisson stochastic index process (PSI-process) a random process ψλ with contin-
uous time obtained by randomization of the sequence (ξ) by a doubly stochastic Poisson process with a
random intensity λ,

(3)

We call the Poisson process Π1 a leading process, and we call the sequence (ξ) a subordinate or a driven
process.

We consider the telegraph process [10] as a simple (but already nontrivial) example of a PSI-process.
The telegraph process is canonically defined as:

(4)

where c is a random variable with the Rademacher distribution, which takes the values ±1 with the prob-
abilities 1/2, independent of the Poisson process Πμ with the nonrandom intensity μ > 0 . The telegraph
process with the random positive intensity μ: Πμ(s) is also defined naturally: Πμ(s) in (4) should be
replaced with Π1(μs), where Π1 and μ are assumed independent.

According to the “coloring theorem” ([11], Ch. 5), the telegraph process has the distribution of a
PSI-process, when the terms of the sequence (ξ) are independent and have the identical Rademacher dis-
tributions, while the intensity of the corresponding telegraph process decreases twice, i.e.,

(5)

where the identity of distributions is understood in the Skorokhod space  over .
Definition 2 of the PSI-process implies that the random process ψ is strictly stationary, if the subordi-

nate sequence (ξ) is strictly stationary.
We consider in this paper only the situation when the driven sequence (ξ) consists of independent iden-

tically distributed random variables. It was shown in [12] that in this case, when  = 0,  = 1, the pro-
cess ψ has the covariance function

(6)

where LX(t) = , t  0, is the Laplace transform of the nonnegative random variable X.
In addition to the PSI-processes, we consider the properly normalized sums of their independent cop-

ies. We assume that all terms of the driven sequence have zero mean and unit variance.
Definition 3. The limiting PSI-process Ψλ is a process obtained as a N → ∞ limit of sums of N ∈  inde-

pendent copies of a PSI-process normalized by  as N → ∞

Here  are the independent copies of the process ψλ and the convergence ⇒ is understood in the sense
of a weak convergence of finite dimensional distributions.

Note that the processes of the  type, i ∈ , depend on the random intensities (λi) as on random
variables, while the limiting PSI-process Ψλ depends on λ exclusively via its distribution.

Applying the central limiting theorem for vectors and equality (6), one can see [12] that, according to
the assumptions in Definition 3, the limiting PSI-process exists and is a stationary Gaussian process with
the covariance function

(7)
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3. THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS IN THE WOLPERT–TAQQU 
SENSE AND THE CONVERGENCE OF PSI-PROCESSES TO IT

We consider a stationary fractional Ornstein–Uhlenbeck process in the Wolpert–Taqqu sense (fOUW–T)
, t  0, with the velocity parameter β > 0 and the scale parameter σ > 0, which is expressed in the form

of the stochastic integral

(8)

Here W is the Gaussian measure with independent values, which is set on the Borelian sets  and has a
structural Lebesgue measure.1 Apparently,  is the centered Gaussian function.

The process Zκ is defined in [3], where the following properties of the stochastic process Zκ are proved.
(1) The process Zκ is obtained by the fractional integration of the classical OU process: stationary

Gaussian Markov random process. The parameter κ sets the order of the fractional integration. Here the
integration is understood in the trajectory-wise sense.

(2) The stationary Gaussian process , t  0, at 1/2 < κ < 1 approaches locally in a neighborhood of
zero the fBm in the mean-square sense, more precisely, the variance of the increment {Zκ(t) –Zκ(0)} is
equivalent to b2t2H as t → 0+, when the Hurst exponent H ∈ (0, 1/2) is equal to κ – 1/2, i.e., 2H = 2κ – 1;
the multiplier b is set by the equality

(9)

(3) The covariance of Zκ can be written as follows:

(10)

This formula for the covariance is presented in the original paper of Wolpert and Taqqu [3] under num-
ber (7) on p. 1525.

(4) As it was shown by Wolpert and Taqqu in their original paper (see formula (8) of [3]), the covari-
ance function  at nonnegative t can be expressed through the modified Bessel function of the second
kind :

(11)

It is easy to calculate the variance Z κ and to transform it using the properties of the Bessel function and
the Legendre duplication formula for the gamma-function:

(12)

Here the latter expression is presented in [3] on p. 1525.
(5) In [3], the spectral density of the process Zκ is calculated:

(13)

We present the following theorem as one of the basic results of this paper.

1 Note that an integral written in the form of (8) can be equivalently defined as a stochastic integral over the increments of stan-
dard two-direction Brownian motion dW(s), s ∈ , with the increments introduced formally into (8) instead of W(ds) (see,
e.g., [13], Ch. IX).
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Theorem. For  < κ < 1, the stochastic process , t  0, up to the multiplier V from (12) is a limiting PSI-

process Ψλ in the sense of Definition 3, when all drive sequences (ξ) type consist of totally independent and
identically distributed random variables with zero means and unit variances, and the random intensity λ has
the following distribution:

(14)

where β > 0 is the nonrandom scale parameter; the random variable η has the gamma distribution Γ2κ – 1 with
a unit scale and the shape parameter 2κ – 1; the random variable γ1 − κ is independent of η and has the
gamma-distribution Γ1 – κ with a unit scale and the shape parameter 1 – κ.

The density pκ of the random intensity  from (14) for the PSI-process implementing Zκ can be
written as

(15)

 denotes the indicator function.

The following asymptotic takes place at t → 0+:

(16)

Note that (14) describes a mixture of gamma-distributions with the random rate parameter η/(2β)
which, in turn, has a gamma-distribution.

Proof of Theorem begins with formula (10) describing the covariance function of the process Zκ. First,
we show that this covariance is the value at the point t of the Laplace transform of a certain nonnegative
random variable of λ, up to the scalar multiplier V2 that is defined in (12).

For κ < 1, the expression   > 0 as a function of t  0 is the Laplace transform of the
gamma-distribution:

(17)

Substitute this equality into (10) and change the order of integration:

(18)

Make the substitution  = y in the inner integral to obtain the equality
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Substitute it into (18) and change the order of integration once again:

(19)

Equality (19) shows that λ  β(Y + 1), where Y has the density on (0, ∞) proportional to .
We find the proportionality factor. Having replaced r = 2/(y + 2) at 1/2 < κ < 1 we obtain the chain of
equalities:

(20)

where B denotes the beta-function. Thus, the density of Y is:

(21)

whence formula (15) for the density of λ follows.
All that remains is to note that

(22)

where the multiplier next to V2 as a function of t is the Laplace transform of the “gamma over gamma”
distribution with the shift by β: β + , where  has the distribution  with a unit scale and is
independent of the random variable η, which, in turn, has the distribution  with a unit scale.

We consider N ∈  independent copies of a PSI-process with a random intensity distributed as λ. All
terms of all subordinate sequences (ξ) are jointly independent, have identical distributions, zero means,
and variances given by equality (12). According to the central limit theorem for vectors, the sum of N inde-
pendent copies normalized by  converges at N → ∞ to the distribution of the process Zκ in the sense
of weak convergence of finite-dimensional distributions.

Now we move to the proof of the asymptotic. The following representation of the modified Bessel
function of the second kind is known (see, e.g., [14], Ch. 9):

(23)

where  is the modified Bessel function of the first kind that can be expanded in the series:
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As the corollary, at t  0, the covariance function ρκ can be expanded in the following series:

(25)

From this we can find the expansion of the increment variance in the Taylor series up to an arbitrarily
high accuracy (the sums have different lower boundaries since the covariance function is positive at zero):

(26)

Note another representation of the random variable  via the beta-distribution. For simplicity, we
suppose that the parameter β = 1.

Statement 1. The following equality for the distribution takes place

(27)

where the random variable βa, b has the beta-distribution with the density proportional to  – z)b – 1,
a, b > 0, z ∈ (0, 1).

Proof. Indeed, a simple calculation shows that at x > 1

(28)

When a = κ –  and b = 1 – κ, this expression gives , which is reduced to

the form (15) by using the Legendre duplication formula for the gamma-function.

4. THE LOCAL MODULUS OF CONTINUITY AT ZERO 
FOR A PSI-PROCESS WITH A RANDOM INTENSITY

To obtain results on stronger convergence of PSI-processes, in particular, the convergence in func-
tional spaces, we need to estimate the probability of large oscillations of PSI-processes with a random
intensity. The lemma below in this section creates a certain basis for these estimations.

Definition 4. We define the random process χδ of the local modulus of continuity of the PSI-process ψ
with the parameter δ > 0 as follows:

(29)

Due to the stationarity of ψλ, it is obvious that χδ is a stationary process. According to the stationary
extension theorem [15] we can assume t ∈ .
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Lemma. Let (ξ) = (ξ0, ξ1, …) be a sequence of independent identically distributed random variables with
the distribution function F(x) = (ξ0  x), x ∈ , λ be a nonnegative random variable with the Laplace trans-
form Lλ(t) = (e–λt), and Π1(s) = Π(s), s  0, be the standard Poisson process. We assume that ξ, λ, and Π
are jointly independent. We consider a PSI-process ψλ as defined in Definition 2, with a random intensity λ.
Then for an arbitrary fixed δ > 0, the equality

(30)

holds for all those r > 0, for which F(x) and F(x + r) have no common points of discontinuity.
We call a the expression on the left-hand side of (30) local modulus of continuity, which is a nonrandom

function of δ and r. Note that the local modulus of continuity is independent of t.
Proof. First, we assume that λ is fixed. If Π(λs) has no jumps on [0, δ]  s, then ψλ(s) = ψλ(0). If Π(λs)

has k > 0 jumps on [0, δ], then χδ(0) = max{|ξ1 – ξ0|, …, |ξk – ξ0|}. Since the terms of (ξ) are independent
and identically distributed, then, by the total probability formula, integrating over x, the condition
imposed on the initial value of the PSI-process, ψ(0) = ξ0 = x, we obtain

When F(y) and F(y + r) as functions of y have no common discontinuity points, the following equality is
true

For the fixed λ, the Poisson process Π(λs) has k jumps on the interval [0, δ] with the probability ;

therefore, according to the total probability formula, summing over k and using the exponent expansion,
we obtain the chain of equalities

where the change of the order of summation and integration is justified by the Fubini theorem. We also

use the obvious property  = 1.

It remains to note that equality (30) is obtained by averaging over λ. The change of the integration order
is also ensured by applying the Fubini theorem.

Note that it is easy to make an estimation for the probability in (30) in terms of a concentration function
for the distribution of the random variable ξ0. We recall the definition of the concentration function Q for
the random variable X:

Having made direct calculations, we obtain that representation (30) that implies

(31)
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E >
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5. THE TELEGRAPH PROCESS AS A SPECIAL CASE OF A PSI-PROCESS
We assume that the distribution of independent identically distributed terms of the driven sequence (ξ)

has a discrete component. Then  = ξn occurs with the positive probability for each n ∈ . This means
that when the leading process Π1(λt) makes the nth jump, the PSI-process does not make any jump. This
is a difficulty when working with the discretely distributed (ξn). However, in the example below this diffi-
culty is easily managed due to the symmetry.

Example. We consider independent identically distributed random variables with the Rademacher dis-
tribution, i.e., taking the values ±1 with the probabilities 1/2, as a driven sequence (ξ). Then, as was men-
tioned above, a PSI-process with the fixed intensity 1 is a telegraph process with one-half intensity. To
verify this statement, we note that the events {ξ0 = ξ1}, {ξ1 = ξ2}, … are a sequence of independent events,
each with probability 1/2. Therefore, if we consider only the points of the Poisson process Π1, at which

 changes the sign, then, according to the coloring theorem (see [11, Ch. 5]), they form the Poisson
process with the intensity P{ξ0 = ξ1} = 1/2 along the positive half-line, which provides the representation
on the right-hand side of (5).

Since (5) is fulfilled as the equality of distributions of processes, it is possible to make a random
replacement of time, introducing a positive random multiplier λ: t  λt, and to obtain

For this process, it is easy to calculate the distribution of the local modulus of continuity χδ, since, by
construction, χδ(t) takes only two values for any t: 0, if Π1(λs/2) has no jumps on the interval s ∈ [t, t + δ],
and 2, if at least one jump occurs on this interval. Therefore, at all t  0, we obtain

(32)
Let us find the same probabilities by using formula (30); thus, we can verify formula (30) using the test

example:

where the distribution function F(x) of the random variable ξ0 takes the values: 1/2 on the interval
[‒1, 1)  x, 0 on the left of this interval, and 1 on the right of it. The latter integral transforms into the sum
of two summands

and each of them is equal to 1 – Lλ(δ/2) at r ∈ (0, 2) or 0 at r > 2, in perfect agreement with (32).
Corollary. For the telegraph process with the random intensity , the asymptotic of probability of its incre-

ment near zero instantly follows:

(33)

where the denotation for b2 is introduced by equality (9).
The covariance function of the process χδ(t), t  0, is set by the expression

(34)

(due to the stationarity, s can be arbitrary).
Statement 2. For the telegraph process with the random intensity λ that has the Laplace transform Lλ, the

covariance of the process of local modulus of continuity χδ can be written as:

(35)

Proof. If 0 ≤ t ≤ δ, then the intervals [0, δ] and [t, t + δ] intersect and form three intervals [0, t], [t, δ],
[δ, t + δ]. The product χδ(0)χδ(t) is equal to zero, if there are no jumps either in the first and second, or in
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the second and third, or on all three specified intervals; otherwise, the product is equal to 4. At the fixed
intensity λ we have (χδ(0)χδ(t) = 0|λ) =  –  + . Therefore, when calculating the
mathematical expectation over λ, we obtain  = 4(1 – 2Lλ(δ/2) + Lλ((t + δ)/2)). Subtracting
the squared mathematical expectation  = 2(1 – 2Lλ(δ/2)), which is found from formulas (32), we
obtain the first case in formula (35).

If t > δ, then the intervals [0, δ] and [t, t + δ] do not intersect, and the product  is equal to 4
only in the case, when there are jumps on both intervals, and is zero otherwise. Therefore,  | λ) =
4(1 – . Averaging over λ and subtracting , we obtain the second case in (35).

Note that if the intensity λ is degenerate (as it is in the “real” telegraph process), then at t  δ, the cova-
riance vanishes, since in this case, the values of χδ(0) and χδ(t) are independent. However, at a nondegen-
erate random intensity, the covariance is positive and does not tend to zero at t → ∞.

6. MODULUS OF CONTINUITY OF A PSI-PROCESS 
FOR UNIFORMLY DISTRIBUTED TERMS OF A DRIVEN SEQUENCE

We consider the case of a PSI-process with a uniform distribution of terms of a driven sequence (ξ). In
this case, it is possible to carry out the explicit calculations.

Statement 3. Let random variables ξ0, ξ1, … be independent and have an identical uniform distribution on
[–a, a], a > 0; the intensity λ is an arbitrary nonnegative random variable with the Laplace transform L(λ).

Then

(36)

This statement follows from Lemma by a direct calculation that is relatively simple, since the argument
of the Laplace transform in formula (30) is a piecewise linear function.

We obtain the formula for the local modulus of continuity in the case when the intensity has the
Laplace transform proportional to the covariance function (10) of the fOUW–T process (8).

Distribution (36) of the local modulus of continuity χδ(0) has an atom at zero, and this corresponds to
a situation when the leading Poisson process has no jumps on [0, δ]. Obviously, when δ → 0+, the weight
of this atom approaches 1. However, provided that χδ(0) > 0, the distribution has the following nontrivial
asymptotic.

Statement 4. Let the terms of the driven sequence (ξ) have identical uniform distributions on [–a, a], and
the leading doubly stochastic Poisson process has a random intensity . Then the following limiting relation is
fulfilled for χδ:

(37)

Note the dependence of this limiting conditional distribution on κ, which is explained by a nonzero
probability that there is more than one jump for the considered random intensity , on condition that the
jumps occur on the small interval [0, δ]; this probability considerably depends on κ.
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Proof. From relation (25), using the Legendre duplication formula and the Euler reflection formula for
gamma-function, we find the asymptotic expansion at zero of the Laplace transform Lλ of the random
intensity  (and simultaneously the expansion of the covariance ρκ)

(38)

Designating for brevity

(39)

and substituting the relation

into formula (36) at A and B equal to the values of, accordingly, upper and lower limits of integration in
(36), we obtain that at δ → 0+, the following is fulfilled

Having divided this expression by the probability of the condition (χδ(0) > 0) = 1 – Lλ(δ) ~ Cδ2κ – 1,
δ → 0+, we obtain formula (37).

FUNDING

The contributions of O.V. Rusakov and Yu.V. Yakubovich were partially supported by the Russian Foundation
for Basic Research, project no. 20-01-00646 A.

REFERENCES
1. B. Mandelbrot, Fractales, Hasard et Finance (Flammarion, Paris, 2009; Regulyarnaya Khaoticheskaya Dinami-

ka, Moscow, 2004).
2. B. Mandelbrot and R. L. Hudson, The (Mis)behavior of Markets. A Fractal View of Risk, Ruin, and Reward (Basic

Books, New York, 2006; Vil’yams, Moscow, 2006).
3. R. L. Wolpert and M. S. Taqqu, “Fractional Ornstein–Uhlenbeck Lévy processes and the Telecom process: Up-

stairs and downstairs,” Signal Process. 85, 1523–1545 (2005). 
https://doi.org/10.1016/j.sigpro.2004.09.016

4. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).
5. J. W. Lamperti, “Semi-stable stochastic processes,” Trans. Am. Math. Soc. 104, 62–78 (1962).
6. O. E. Barndorff-Nielsen and V. Pérez-Abreu, “Stationary and self-similar processes driven by Lévy processes,”

Stoch. Proc. Appl. 84, 357–369 (1999). 
https://doi.org/10.1016/S0304-4149(99)00061-7

7. O. Rusakov and M. Laskin, “Self-similarity in the wide sense for information f lows with a random load free on
distribution,” in Proc. 2017 Eur. Conf. on Electrical Engineering and Computer Science (EECS 2017), Bern, Swit-
zerland, Nov. 17–19, 2017 (IEEE, Piscataway, NJ, 2017), pp. 142–146. 
https://doi.org/10.1109/eecs.2017.35

8. Y. Hu, D. Nualart, and H. Zhou, “Parameter estimation for fractional Ornstein–Uhlenbeck processes of gen-
eral Hurst parameter,” Stat. Inference Stoch. Process. 22, 111–142 (2017).

9. O. V. Rusakov, “Tightness of the sums of independent identically distributed pseudo-Poisson processes in the
Skorokhod space,” J. Math. Sci. 225, 805–811 (2017). 
https://doi.org/10.1007/s10958-017-3496-z

κ

( )
( ) ( ) κ−κ

λ

Γ − κρ β= = − + →
Γ κ +

2 1
2

2

3
( ) 2( ) 1 ( ), 0+.

1 2
2

t tL t O t t
V

κ−Δ
κ−

β Γ − κ=
Γ κ +

2 1

2 1
(3/2 )

2 ( 1/2)
C

δ
κ− κ− κ κ

δ

− + = − − δ − κ + δ δ → +
δ 

2 1 2 2 1 2 2 22 (1 ( )) 2( ) ( )/ ( ), 0 ,
B

A

Cy O y dy B A C B A O

( )
( ) ( )

κ
κ−

δ

κ κ
κ−




χ = − δ + δ >κ

  − − − κ − δ + δ > > κ  

P

>

> >
2

2 1 2

2 2
2 1 2

0, 2 ;

( (0) ) 1 ( ), 2 ;
2

1 (1 ) 1 ( ), 0.
2

r a

C rr O a r a
a

C r r O a r
a a

P

VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 53  No. 3  2020



ON SOME LOCAL ASYMPTOTIC PROPERTIES OF SEQUENCES 319
10. M. Kac, “A stochastic model related to the telegrapher’s equation,” Rocky Mt. J. Math. 4, 497–510 (1974). 
https://doi.org/10.1216/RMJ-1974-4-3-497

11. J. F. C. Kingman, Poisson Processes (Claderon Press, Oxford, 1993; MTsNMO, Moscow, 2007).
12. O. V. Rusakov, “Pseudo-Poissonian processes with stochastic intensity and a class of processes which generalize

the Ornstein–Uhlenbeck process,” Vestn. St. Petersburg Univ.: Math. 50, 153–160 (2017). 
https://doi.org/10.3103/S106345411702011X

13. J. L. Doob, Stochastic Processes (Wiley, New York, 1953; Inostrannaya Literatura, Moscow, 1956).
14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical

Tables (Dover, New York, 1972; Nauka, Moscow, 1979).
15. K. R. Parthasarathy and S. R. S. Varadhan, “Extension of stationary stochastic processes,” Theory Probab. Appl.

9, 65–71 (1964). 
https://doi.org/10.1137/1109006

Translated by N. Semenova
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 53  No. 3  2020


	1. INTRODUCTION
	2. PSI-PROCESSES: DEFINITION AND BASIC PROPERTIES
	3. THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS IN THE WOLPERT–TAQQU SENSE AND THE CONVERGENCE OF PSI-PROCESSES TO IT
	4. THE LOCAL MODULUS OF CONTINUITY AT ZERO FOR A PSI-PROCESS WITH A RANDOM INTENSITY
	5. THE TELEGRAPH PROCESS AS A SPECIAL CASE OF A PSI-PROCESS
	6. MODULUS OF CONTINUITY OF A PSI-PROCESS FOR UNIFORMLY DISTRIBUTED TERMS OF A DRIVEN SEQUENCE
	REFERENCES

		2020-08-21T09:53:46+0300
	Preflight Ticket Signature




