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Abstract—Chaotic signals and systems are widely used in image encryption, secure communications,
weak signal detection, and radar systems. Many researchers have focused in recent years on the devel-
opment of systems with an infinite number of coexisting chaotic attractors. We propose some
approaches in this work to the generation of self-reproducing systems with an infinite number of coex-
isting self-excited or hidden chaotic attractors with the same Lyapunov exponents based on mathe-
matical models of Lurie systems. The proposed approach makes it possible to generate extremely mul-
tistable systems using numerous known examples of the existence of chaotic attractors in Lurie systems
without resorting to an exhaustive computer search. We illustrate the proposed methods by construct-
ing extremely multistable systems with 1-D and 2-D grids of hidden chaotic attractors using the gen-
eralized Chua system, in which hidden attractors were first discovered by G.A. Leonov and
N.V. Kuznetsov.
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INTRODUCTION

Chaotic systems are widespread in nature and technology. After the problems of synchronizing oscil-
lations of chaotic systems, many researchers focused on the problems of using chaos in engineering appli-
cations. Chaotic signals and systems are widely used currently in image encryption [1–3], secure commu-
nications [4], weak signal detection [5], and radar systems [6]. The more complex the structure of a cha-
otic system, the more opportunities it provides for potential applications.

G.A. Leonov proposed a new method in 2010 for finding periodic solutions of multidimensional
dynamical Lurie systems [7]. The proposed method was further developed in the works of Leonov and his
disciples, which made it possible to efficiently construct counterexamples to the well-known hypotheses
of Aizerman and Kalman, as well as detecting hidden chaotic oscillations in the classical and generalized
Chua systems for the first time [8, 9]. The results obtained in the mentioned works inspired many scien-
tists to seek and develop dynamical systems with hidden chaotic attractors [10–12].

There have been many works in recent years on constructing extremely multistable dynamical systems
with an infinite number of coexisting chaotic attractors, both self-excited and hidden [13–15]. All the
mentioned articles are based on the idea proposed in [13] for introducing periodic functions into variable-
boostable systems. Let us cite here the definition of such systems given in [16].

Definition. The dynamical system  = F(X) (X = (x1, x2, …, xn)) will be called variable-boostable if there
is a transformation of variables yk = xk – ck that leads the system to the form  = F(Y) + D (Y = (y1, y2, …,
yn), C = (c1, c2, …, cn), (D = (d1, d2, …, dn)). Here, for k ∈ i1, i2, …, im (1 ≤ i1 < i2 < … < im ≤ n), the constants
ck ≠ 0 and ck = 0 for k ∈ {1, 2, …, n}\{i1, i2, …, im}.

Variable-boostable systems include in particular multidimensional cascade systems
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Variables y, z, …, u in system (1) can be boosted by introducing additional constants in its first n – 1
equations. In fact, by substituting x → , y →  + m, z →  + n, …, u →  + p, we arrive at the following
system

It is easy to see that the system transformation displaces the phase f low of system (1) with respect to
the variables y, z, …, u and leaves the dynamics of the variable  = x unchanged. The main idea of con-
structing systems with an infinite (n – 1)-D grid of identical attractors proposed in [13] consists in replac-
ing the variables y, z, …, u in system (1) with periodic functions of these variables. If the new system has a
chaotic attractor after such a replacement, then it has an infinite (n – 1)-D grid of identical attractors [13].
For noncascade systems, the procedure for introducing periodic functions, which makes it possible to
construct a system with a multidimensional grid of attractors, is much more complicated, because such a
procedure can significantly change the dynamics of the system and lead to the destruction of its attractors.

We propose methods in this article for constructing systems with an infinite grid of attractors (both
self-excited and hidden [8]) based on mathematical models of Lurie systems. The proposed methods
make it possible to use many well-known results related to the existence of chaotic attractors for Lurie sys-
tems to generate extremely multistable systems with an infinite grid of identical attractors.

Section 2 proposes a method for constructing a 1-D grid of attractors by periodizing the nonlinearity
of the Lurie system with a degenerate matrix of the linear part. The results of Section 3 are based on the
fact of the existence of a nonsingular linear transformation that reduces the Lurie system with a nonde-
generate transfer function to a cascade system. The latter makes it possible to construct systems with a
multidimensional grid of identical attractors.

1. CONSTRUCTION OF 1-D GRID OF ATTRACTORS BASED ON LURIE SYSTEMS
Consider the following Lurie system

(2)

where A is the constant (n × n)-matrix, b and c are constant n-vectors, and g(σ) is the continuous piece-
wise differentiable scalar function. Let I be the identity (n × n)-matrix. For system (2), we define the frac-
tional rational function χ(p) = cT(A – pI)–1b. Let χ(p) = m(p)[n(p)]–1. The polynomial in the denominator
of the fraction χ(p) has degree n and cannot be reduced with its numerator. In this case, it is said [17] that
the transfer function χ(p) is nondegenerate.

Assume that χ(0) ≠ 0, the matrix A – χ(0)–1bcT has zero eigenvalue, the function g(σ) is odd, and the
equation σ + χ(0)g(σ) = 0 has exactly two nonzero roots σ = ±σ0. Suppose that k = –χ(0)–1. System (2)
can be written as follows

(3)

where ϕ(σ) = g(σ) – kσ, A1 = A + kbcT the matrix A1 has zero eigenvalue, ϕ(±σ0) = 0. Let A1d = 0. From
the assumption that the function χ(p) is nondegenerate, it follows [17] that cTd = μ ≠ 0. Then x = 0 and
x =  are the equilibrium states of system (3).

Assume that the system under consideration has a chaotic attractor Ω, entirely located in the band Π =
{x: –σ1 < cTx < σ1}, where σ1 ≥ σ0. That is, for any x ∈ Ω, the relation cTx(t, x0) ⊂ Π holds true for t ≥ 0. By
replacing the function ϕ(σ) with 2σ1-periodic function ψ(σ), which coincides with ϕ(σ) in [–σ1, σ1], we
will have a system with an infinite number of equilibrium states and a 1-D grid of attractors obtained by
shifting the attractor Ω of system (3) in the direction of the vector d.

Let us illustrate the implementation of the described algorithm for generating a system with a 1-D grid
of attractors using the generalized Chua system considered in [8, 11]. A generalized Chua system is system
(3) with

(4)
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Fig. 1. Hidden attractors of system (4).
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Fig. 2. 1-D grid of attractors of system (4) with periodic nonlinearity.
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Here,

(5)

System (4) has three equilibrium states: (0, 0, 0) and ( , , ), where ρ = [m0 – m1 + (s –
m0)δ][β + m1(γ + β)]–1. Moreover, the matrix A1 = A + kbcT for k = –β(γ + β)–1 has a single zero eigen-
value, and the function ϕ(σ) = g(σ) – kσ has three zeros: σ = 0, σ = ±(γ + β)ρ. Following [11], we chose
the following parameter values: α = 8.4562, β = 12.0732, γ = 0.0052, s = −0.9668, δ = 0.2, m0 = 0.14, m1 =
−1.1468. For such parameter values, as shown in [11], the system under consideration has three hidden
attractors: a cycle and two chaotic twin attractors located in the band |x| ≤ x0 < 2. These attractors shown
in Fig. 1 can be detected by numerically integrating the system with the initial conditions x0 = (–0.458,
−0.107, 2.522)) and x1, 2 = (±1.360, ±1.633, ±1.631).

Now we replace the function ϕ(σ) in (4) with the periodic function ψ(σ) with the period Δ = –2(γ +
β)ρ which coincides with the function ϕ(σ) in [(γ + β)ρ, –(γ + β)ρ]. Then the new system will have a
1-D grid of identical hidden attractors shown in Fig. 2. The following procedure can be used to find
these attractors: if x0 is a point belonging to some attractor of system (4), d is an eigenvector of the

matrix A1, q = , then the points x0 + jq, j = 0, ±1, ±2, … belong to attractors of a 1-D grid. The
chaotic attractors shown in Figs. 1 and 2 have Lyapunov exponents (0.121, 0, –1.13) and the Kaplan–
Yorke dimension 2.107.

It is clear that the described method does not make it possible to generate systems with attractor grids
of dimension greater than 1. In the next section, we will use the fact that multidimensional system (2) can

α + α + γ + α β + γχ =
+ γ + α + + γ + β + αγ + αβ

2

3 2
(1 ) ( )( ) .

( 1) ( )
p pp

p p p
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−Δ 1( )Td c d
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always be reduced to a cascade system using a nonsingular linear transformation. The latter circumstance
will make it possible to use system (4) with transfer function (5) to construct a system with a 2-D grid of
identical attractors.

2. GENERATION OF SYSTEMS WITH A MULTIDIMENSIONAL GRID 
OF ATTRACTORS

The following proposition [17] is well known: Two systems as (2) with the same transfer function are
equivalent up to a nonsingular linear transformation of their coordinates. If χ(p) = (c0 + c1p + … + )(a0 +

a1p + … +  + pn), then system (2) can be reduced as follows by the nonsingular transformation
x = My as shown in [17]

(6)

Moreover, the M transformation matrix can be found from the following system of equations

(7)

System (6) is a cascade system. If system (2) had an attractor, then system (6) obviously also has an
attractor, which can be “cloned” by introducing periodic functions into the system. Therefore, we can try
to construct a multistable system with a (n – 1)-D grid of attractors.

First, let us illustrate the implementation of the described idea by the example of the generalized Chua
system (3), (4) considered in Section 1. Having found the transfer function χ1(p) =  for the
selected parameter values, we write system (6) as follows:

(8)

where a0 = , a1 = , a2 = , c0 = , c1 =
, c2 = α. Having found the M matrix from Eqs. (7), we determine the points that belong to the hid-

den attractors of the transformed system: M–1x0 = (0.0247, 0.0126, −0.2569), M–1x1, 2 = (±0.0160,
0.1933, 0.1595). Knowing the points that belong to hidden chaotic attractors of the transformed system,

we can calculate their Lyapunov exponents and the Kaplan–Yorke dimension. As expected, they coincide
with the characteristics of the attractors shown in Fig. 1.

Now we replace y and z variables with π-periodic functions in system (8): y → 0.64sin(2y), z →
0.542sin(2z). The new system is as follows

(9)

System (9) has a 2-D grid of hidden attractors that can be detected by numerical integration with initial
conditions (0.006, 0.043 ± πk, –0.062 ± πm) and (±0.047, 0.135 ±πk, 0.225 ± πm), k, m ∈ . The
three hidden attractors of this grid as well as a part of the 2-D grid of attractors of system (9) (projection
onto the plane (y, z)) are shown in Figs. 3 and 4. All identical chaotic attractors of system (9) have
Lyapunov exponents (0.126, 0, –0.986) and Kaplan–Yorke dimension 2.138.
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Fig. 3. Hidden attractors of system (9) in a neighborhood of the point (0, 0, 0).
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Fig. 4. Part of a 2-D grid of hidden attractors of system (9).
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Now we turn to the system considered in [16]. Let us write this system in a form convenient for us:

(10)

System (10) has two equilibrium states: (0.5(3.7 ± ); −0.85(3.7 ± ); 0). Moreover, a chaotic
attractor with Lyapunov exponents (0.044, 0, –1.044) and Kaplan–Yorke dimension 2.042 is excited from
the neighborhood of one of them, namely, from the point (3.4, –5.78, 0). The projection of this attractor
onto the plane (y, z) is shown in Fig. 5.

It is obvious that system (10) admits a shift in the variable z. Using this circumstance, the authors of
[16] generated different 1-D grids of identical chaotic attractors replacing the variable z with periodic
functions msin(nz) and mcos(nz) in system (10).

Here, we use the method described above for generating a 2-D grid of chaotic attractors based system
(10). The transfer function of system (10) has the form χ(p) = –(p3 + p2 + 1.7p + 1.7)–1. Therefore, after
the corresponding linear transformation: x → x, y → –1.7x – z, z → –y, we obtain the system

(11)

The attractor of system (11) is visualized during numerical integration with the initial condition (3.4,
0, 0). Its projection onto the plane (y, z) is shown in Fig. 6.
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Fig. 5. Self-excited attractor of system (10).
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Fig. 6. Self-excited attractor of system (11).
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Fig. 7. Part of a 2-D grid of attractors of system (12) (projection onto the plane (y, z)).
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By replacing the variables y and z in system (11) with periodic functions y → 3.1sin(y/2), z →
3.406sin(z/3), we obtain the following system

(12)

System (12) has a 2-D grid of self-excited chaotic attractors, a part of which is shown in Fig. 7.
All attractors of this grid have Lyapunov exponents (0.099, 0, –1.011) and Kaplan–Yorke dimension
2.098.
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CONCLUSIONS

We proposed different approaches in this article to the generation of extremely multistable systems with
infinite grids of clone attractors based on multidimensional models of Lurie systems. We discussed meth-
ods for transforming such systems that make it possible to reduce them to variable-boostable cascade sys-
tems by choosing a special basis. It is therefore possible to generate systems with an infinite grid of chaotic
attractors using numerous known examples of the existence of chaotic attractors in Lurie systems without
resorting to an exhaustive computer search.
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