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Abstract—The author describes the specifics of the multi-scale mathematical modeling of geomedia as 
a case-study of a two-scale model. The first scale modeling assumes the linearly elastic medium, and the 
second scale model includes the plastic strains and internal friction. It is shown that in the first 
approximation, when the micro-scale stress gradients are assumed to be constant, the model acquires 
elastoplasticity with regard to local bends of structural elements of the geomedium. The solution of the 
problem on plane S-waves reveals that the waves possess dispersion and their velocity decreases 
with increasing plastic strains. 
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INTRODUCTION 

Geomedia are commonly all materials which compose envelopes of the Earth: rocks, soil or 
granular materials. The generally acknowledged statement says that a geomedium has many 
scales [1–5]. Multiscaleness is not an exclusive feature of geomedia but rather a general property of 
most real-life media and processes: plastic deformation and failure of solids, turbulent flows of 
viscous fluids, etc. [6–9]. As Galileo said, all these phenomena are “written in mathematical 
language”, and their theoretical research assumes mathematical modeling and analysis. The most 
mathematical models use the concept of a real straight line. A point of a physical space is three reals, 
and a time moment is one real. 

On the other hand, a real straight line is a single scale object. Assuming the single scale as a length 
of a step and starting from any point of a straight line, it is possible to reach any other point of this 
straight line in a finite number of steps (Archimedes’ Axiom) [10]. 

The mathematical apparatus available for describing physical phenomena should be equivalent to 
these phenomena. That is, to describe multi-scale phenomena, it makes sense to re-consider 
the concept of an ordinary, i.e. single-scale, Archimedean real straight line. Some studies addressed 
that subject [11, 12]. For example, according to [12], in geometry, a straight line, or continuum, can 
contain more numerous set of point than a set of ordinary real numbers. Among other things, this 
offers a framework for the geometrical analysis of multi-scale physical phenomena. The present 
study uses one of alternative descriptions of a multi-scale straight line from [5]. 

1. As a new scale in [13], an actually infinitesimal number E is introduced. This is a positive 
number smaller than any value 1 / n  for any natural number n . A manifold 

 (1) (2) 2 (3) 3 ...X x x x x= + Ε + Ε + Ε +  (1) 
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forms a multi-scale number line OX . Here, ,x  (1)x , (2) ,...x  are the numbers isomorphic to real 

numbers, i.e. can be treated as ordinary real numbers. By choosing coordinate axes to be four multi-
scale straight lines (1), we obtain a 3D multi-scale space such that all processes in it run in the one-
dimensional but multi-scale time. We limit ourselves to the plane-strain deformation and to a single 
time scale t . In this case, we have five independent variables: 

 1 1 2 2, , , ,x x tξ ξ . 

Here, 1 2, ,x x t  are the variables of a real-valued scale; (1)
1 1xξ = Ε , (1)

2 2xξ = Ε  are the micro-level 

variables in the axes 1OX , 2OX , 1 1 1X x ξ= + , 2 2 2X x ξ= + . Let 

 1 1 1 1 2 2

2 2 1 1 2 2

( , , , , ),

( , , , , )

u u x x t

u u x x t

ξ ξ
ξ ξ

=
=

 

be the field of displacements and 

 11 22 12 121 1 1 2 2, , ( , , , , )x x tσ σ σ σ ξ ξ=  

be the relevant field of stresses. all functions depend on five arguments. 
In the classical state of a single-scale space—time, only three arguments appear— 1 2( , , )x x t . 

The appearance of additional arguments 1 2,ξ ξ , i.e. new degrees of freedom, leads to the need 

to formulate additional equations. This group of equations should describe connections between 
different scales of a medium. 

The mathematical apparatus offers some tools for describing such connections. First of all, these 
are the conditions of continuity or the conditions of discontinuity of different functions in transition 
between the scales. For example, the changes in the volume and displacements on different scales are: 

 

1 2 1 2

1 2 1 2

2 2

1 2 1 2

1 2 2 1

2 2

1 2 1 2

1 2 2 1

, ,

,

.

x

x

u u u u

x x

u u u u

x x x x

u u u u

ξ

ξ

ε ε
ξ ξ

ξ ξ ξ ξ

∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
Γ = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
Γ = − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

Their differences can be used in closed-type modeling. Furthermore, it is possible to use 
the invariant differences of rotation operations: 

 2 1 2 1

1 2 1 2

1 1

2 2x

u u u u

x xξ ξ ξ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂Ω = − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

. 

It is definite that all laws of conservation and the necessary governing equations should hold true. 
It is also required to use the condition of consistency: if the behavior of a medium on the microscale 
totally repeats its behavior on the real scale, then multi-scale mathematical models should transform 
into the equivalent single-scale models. Evidently, ten equations below: 

 , , , , 1, 2i i ik ik

j j j j

u u
i j k

x x

σ σ
ξ ξ

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
, 

provide sufficient conditions for such transition. They mean that all functions depend not on five but 
only on three arguments. 
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In this fashion, transition to a multi-scale space and time opens up new vistas for mathematical 
modeling of physical processes having the hierarchies of scales. 

Let us discuss a model of a geomedium having two scales. Let the medium be linearly elastic 
on a microscale: 

 

11 1 1 2 2 12

1 2

12 22

1 2

1
11 22

1

2
22 11

2

1 2 12 1 1 2 2

2 1

( , , , )
0,

0,

1
( ),

1
( ),

( , , , , )
,

x x

u

E

u

E

u u x x t

σ ξ ξ σ
ξ ξ

σ σ
ξ ξ

σ νσ
ξ

σ νσ
ξ

σ ξ ξ
ξ ξ μ

∂ ∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂

∂
= −

∂
∂

= −
∂

∂ ∂
+ =

∂ ∂

 (2) 

where E , ν , μ  are the elastic constants. The case when 2 (1 )E μ ν≠ +  might be included [14]. 

Equations (2) hold true at any allowable values of 1 2 1 2, , ,x x ξ ξ . These variables play different 

roles: differentiation is only carried out with respect to the variables 1,ξ  2ξ . The coordinates 1 ,x  2x  

act as parameters. They can be assumed as centers of structural components of the geomedium. 
The variables 1,ξ  2ξ  at constant 1 ,x  2x  belong to a specified structural component. Let the interfaces 

of components locate in the coordinate axes 1OX  2OX . Furthermore, the medium is assumed to be 

anisotropic (Fig. 1). 
Such anisotropy is of interest in the research of granular media [15, 16], mechanics of crystal 

lattices [17–21] and nanomaterials [22–26]. In the case under discussion, at the point –A A A+= = , 
the normal and shear stresses 11,σ  12σ  are continuous. We denote by l  the sizes of a structural 

component and set that l is an actual infinitesimal number. We extend the function 11 1 1 2 2( , , , )x xσ ξ ξ  

to the values 11 1 1 2 2( , , , )x l xσ ξ ξ+ . Then the continuity condition at the point A  is given: 

 
–

11 11

11 1 2 2 11 1 2 2

( ) ( )

or by ( , / 2, , ) ( , / 2, , ).

A A

x l l x x l x

σ σ
σ ξ σ ξ

+ =
+ − =

 (3) 

 
Fig. 1. 
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Similarly 

 
22 1 1 2 22 1 1 2

12 1 2 2 12 1 2 2

12 1 1 2 12 1 1 2

( , , , / 2) ( , , , / 2),

( , / 2, , ) ( , / 2, , ),

( , , , / 2) ( , , , / 2).

x x l l x x l

x l l x x l x

x x l l x x l

σ ξ σ ξ
σ ξ σ ξ
σ ξ σ ξ

+ − =
+ − =

+ − =
 (4) 

Now we switch to kinematics. At the interfaces of structural components, sliding is possible. 
Dilatancy is excluded for the simplicity, and the normal displacement can be assumed as continuous 
therefore: 

 1 1 2 2 1 1 2 2

2 1 1 2 2 1 1 2

( , / 2, , ) ( , / 2, , ),

( , , , / 2) ( , , , / 2).

u x l l x u x l x

u x x l l u x x l

ξ ξ
ξ ξ

+ − =
+ − =

 (5) 

Discontinuity of the shear displacement is another name of sliding. For the plastic materials, 
sliding is governed by the shear stresses; for the materials with internal friction—by the ratio of 
the shear and normal stresses at the relevant interfaces. 

This: 

 

2 1 2 2 2 1 2 2

12 1 2 2 11 1 2 2

1 1 1 2 1 1 1 2

12 1 1 2 22 1 1 2

( , / 2, , ) ( , / 2, , )

( ( , / 2, , ), ( , / 2, , )),

( , , , / 2) ( , , , / 2)

( ( , , , / 2), ( , , , / 2)).

u x l l x u x l x

l f x l x x l x

u x x l l u x x l

l g x x l x x l

ξ ξ
σ ξ σ ξ

ξ ξ
σ ξ σ ξ

+ − − =
=

+ − =
=

 (6) 

Equations (6) are constitutive. The functions f  and g  alongside with the density ρ  and elastic 

constants are assumed to be known. So, we come at the system of thirteen equations: five 
equations (2) describe deformation of structural components of the medium, six equations (3)–(5) 
describe the required conditions of continuity and two equations (6) are the constitutive equations for 
sliding between the structural components. The obtained system is unconventional. The variables 1x , 

2x , 1ξ , 2ξ  play different roles in it. Equations (2) hold true at all 1x , 2x , 1ξ , 2ξ  belonging 

in the domain of deformation, the rest equations hold true only when 1 2, / 2lξ ξ = . This system 

similarly comprehensively the behavior of the medium both on the macroscale of the variables 1x , 2x  

and on the microscale 1ξ , 2ξ . This is an excessive accuracy which complicates analytical description 

and qualitatively increases the volume of the computations. 
2. It is interesting to analyze cases when the microscale can limit to only first approximations 

with respect to 1ξ , 2ξ . 

We choose the linear approximation of the stresses: 

 

0
11 11 1 1

0
22 22 2 2

0
12 12 3 1 4 2

,

,

,

k

k

k k

σ σ ξ
σ σ ξ

σ σ ξ ξ

= +

= +

= + +

 (7) 

where 0
11σ , 0

22σ , 0
12σ , 1 4k k−  are the constant values within a unit volume, i.e. depend only on 1x , 2x , 

and, moreover, 4 1k k= − , 3 2k k= − . 

This stress pattern agrees with the displacements below: 
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2 2
0 0 1 2
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2 2
0 0 2 1

2 1 1 2 2 22 11 2 2 1 1 2 2 3

0
1 2 1 2

1
( , , , ) ( )

2 2

( , ),

1
( , , , ) ( )

2 2

( , ),

E
u x x k k k k

E

u x x

E
u x x k k k k

E

u x x

ξ ξξ ξ σ νσ ξ ν ξ ξ ν
μ

σ ξ ξ
μ

ξ ξξ ξ σ νσ ξ ν ξ ξ ν
μ

ξ

⎡ ⎤⎛ ⎞= − + − + + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

+ − Ω +

⎡ ⎤⎛ ⎞= − + − + + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

+Ω +

 

where Ω , 0
1u , 0

2u  are the constants of integration over 1ξ , 2ξ . 

Let us discuss the case of the point contacts of structural components. This means that the 
connections between structural components are the points –A , –B , –C , –D  (Fig. 1). In the line 

– –C A , 2 0ξ =  and 

 

2
0 0 01

1 11 22 1 1 1

2
0 01

2 12 1 2 3 2

( ) ,
2

.
2

Eu k C

E E
Eu C k k C

ξσ νσ ξ

ξα σ ξ ν
μ μ

= − + +

⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8) 

In the line – –D B , 1 0ξ =  and 

 

2
0 02

1 12 2 4 1 1

2
0 0 02

2 22 11 2 2 2

(1 ) ,
2

( ) .
2

E E
Eu C k k C

Eu k C

ξα σ ξ ν
μ μ

ξσ νσ ξ

⎛ ⎞ ⎛ ⎞= − − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − + +

 

The equations connect the displacements, stresses and the stress gradients at the contacts, i.e., 
they are the constitutive equations for the unit volume – – – –A B C D . The right-hand side is 
introduced with the even and odd degrees of the microscale variables 1ξ , 2ξ . The coefficients of 

the odd degrees are found in terms of the difference of the displacements and the coefficients of the 
even degrees—in terms of the relevant sums. For example, it follows from the first equation of (8) 
that 

 

2
– 0 0 01

1 11 22 1

2
– 0 0 01

1 11 22 1

( ) ( ) ,
2 2 2

( ) ( ) .
2 2 2

kl l
Eu С C

kl l
Eu A C

σ νσ

σ νσ

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (9) 

Then 

 

– –
0 01 1
22 22

2– – 2
01 1 1 11
1

1

( ) ( ) 1
( ),

( ) ( ) 1 1
.

2 2 2 2 8

u A u C

l E

u A u C k l l
C

E

σ νσ

σ
ξ

−
= −

+ ∂⎛ ⎞= = +⎜ ⎟ ∂⎝ ⎠

 (10) 
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The analogous equations are incidental to the second pair of the points – –,B D  and to the 

displacement 2u . All in all, there are eight equations. After exclusion of stiff transition and rotation 

from the equations, we have five equations: stresses appear in three equations of the type of (9) and 
the stress gradients appear in the rest two equations of the type of (10): 

 

– – – –
1 1 1 1 11 12

1 2

– – – –
2 2 2 2 12 22

1 2

2

( ) ( ) ( ) ( )
2 ,

2 2

( ) ( ) ( ) ( )
2 ,

2 2

1 1
.

32

u A u C u B u D

u A u C u B u D

l

E

σ ση
ξ ξ

σ ση
ξ ξ

νη
μ

⎛ ⎞+ + ∂ ∂
− = −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞+ + ∂ ∂
− = −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞−= +⎜ ⎟
⎝ ⎠

 (11) 

Having conditions at the contacts, we can pass to the difference equations on the macroscale. 
In their first approximations, it is possible to assume that η  is the constant of the material and that 

0l → . Then the equations of the type of (9) become the differential equations, and equations (11) 
become the finite equations relative to the displacements: 

 ( ), ( ); ( ), ( )i i i i i iv u A u C w u B u D= = . 

The appearance of two additional equations (11) means that the closed system is introduced with 
two new unknown functions, i.e., instead of one field of displacements u , we have two vector 
fields v  and w . 

Then, as 0l → , with an accuracy to 2l , we arrive at the equations below: 

 

1 1 2
11 22

1

2 2 1 12
22 11

2 1 2

11 12
1 1

1 2

12 22
2 2

1 2

( , 0, , 0) 1
[ ],

1
[ ], ,

2 ,

2 .

v x x

E

w v w

E

v w

v w

σ νσ
ξ

σσ νσ
ξ ξ ξ μ

σ ση
ξ ξ

σ ση
ξ ξ

∂
= −

∂
∂ ∂ ∂

= − + =
∂ ∂ ∂

⎛ ⎞∂ ∂
− = −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
− = −⎜ ⎟∂ ∂⎝ ⎠

 

Let us take the stress continuity conditions (3). Thence, with an accuracy to 2l , it follows that 

 

11 1 2 11 1 2

1 1

22 1 2 22 1 2

2 2

12 1 2 12 1 2

1 1

12 1 2 12 1 2
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( , 0, , 0) ( , 0, , 0)
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ξ
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ξ
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ξ

σ σ
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=

∂ ∂
∂ ∂

=
∂ ∂

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂

 (12) 
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For the displacements, we have 

 

1 1 2 1 1 2

1 1

2 1 2 2 1 2

2 2

2 2 1 1

1 1 2 2

( , 0, , 0) ( , 0, , 0)
,

( , 0, , 0) ( , 0, , 0)
,

, .
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x
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x

u u u u
f g

x x

ξ

ξ

ξ ξ

∂ ∂
=

∂ ∂
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=
∂ ∂

∂ ∂ ∂ ∂
− = − =

∂ ∂ ∂ ∂

 (13) 

The eight equations (12), (13) show how the microscale stresses and displacements govern the 
stress–strain behavior of the medium on the macroscale. Insertion of (12) and (13) in the equations of 
equilibrium and in the constitutive equations lead to the closed-type system of equations on the 
macroscale: 

 

11 1 2 12 12 22

1 2 1 2

1 2
11 22 22 12

1 2

2 1 12
12 11 12 22

1 2

11 12 12 22
1 1 2 2

1 2 1 2

( , 0, , 0)
0, 0,

1 1
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( , ) ( , ),
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x x x x

σ σ σ σ

σ νσ σ νσ

σ σ σ σ σ
μ

σ σ σ ση η

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
∂ ∂

= − = −
∂ ∂
∂ ∂

+ = + +
∂ ∂

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− = − − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

In this manner, on the macroscale, we come to the equations including local bends. In a special 
case of these equations, 0f g≡ ≡  in [27, 28], the formulations of the boundary problems, the unicity 

theorem and the numerical solutions of some quasi-static problems are analyzed. 
Solving of the dynamic problems needs taking into account inertia forces. We confine ourselves to 

an approximation when the inertia components are only included on the macroscale. The closed 
system of equations reduces toe the form: 
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 (14) 

where 

 1 1
1 2

v w
V

+= ,   2 2
2 2

v w
V

+=  

are the components of the average displacement of the unit volume. Accordingly, average strains are 
connected with both the stresses and the second space derivatives of the stresses. Therefore, 
model (14) can be assumed as to be the gradient-type model [29–33]. 
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In the problem on propagation of plane S-waves in a geomedium possessing structure, let 0f = , 

12 22 12( , ) /g Gσ σ σ= , constG =  and 1/ 0x∂ ∂ ≡ . In this case, system (14) reduces to a single wave 

equation 

 
2 2 4

12 12 12
2 2 2 2 2
2 2

1

x C t t x

σ σ σρη∂ ∂ ∂= −
∂ ∂ ∂ ∂

, 

where 

 
( )

G
C

G

μ
ρ μ

=
+

. 

In case of the harmonic wave 

 12 2exp( )i t ik xσ ω= − , 

we have the dispersion equation below: 

 
2 2 2

1 1 1

С k
ρη

ω
= + . 

At 0η =  the wave have the velocity equal to C . With the decreasing G , i.e. with the increasing 
part of the plastic strains, the wave velocity lowers. When 0η ≠  dispersion of S-waves appears. 

It is worthy of mentioning that equations (14) are based on assumption (7) of taking into account 
only the linear stress distribution within a unit volume. In case of inclusion of square members and 
members of higher degrees, it is possible to arrive at more complex mathematical models. 

CONCLUSIONS 

The mathematical model of a geomedium, which includes two scales, leads to a system of 
nonconventional equations. In the first approximation, the equations reduce to the description of the 
elastoplastic medium with respect to local bends. 

As the role of plastic strains increase, the velocity of S-waves decreases. The local bends of the 
structural components of the medium lead to dispersion of S-waves. 
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