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Abstract—The mathematical methods of structural design optimization using the optimality criteria are 
reviewed. The resultant and nearly optimal design of a fan bade ensures the design goals at the selected 
criterion. The optimal design based on topology optimization was carried out in ANSYS. The optimization 
problem solution provided optimal distribution of the impeller blade mass for axial mine fans. It is validated 
to be possible to decrease the the blade mass by 60% as compared with a monolithic blade at the preserved 
rotation speed and ratio of flow path diameters. 
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INTRODUCTION 

Safety of underground mining depends on the efficiency of mine ventilation and its master link 
represented by main fans. Design and engineering of high-end main mine fans is yet a critical 
objective. The most efficient way of enhancing the main mine fan capacity is increasing the 
circumferencial speed of fan blades. Commonly used in mines in Russia, axial two-stage fans (series 
VOD), have tip speed of blades at 78.5 m/s. The ultimate tip speed of blades of the most main mine 
fans manufactured in Russia is no higher than 105–120 m/s. This is conditioned by high value of 
normal inertia of blades and by strength of the blade materials. In case of higher velocity, it is required 
to ensure the strength of the blades and impeller. The tip speeds of blades above 150–160 m/s dictate 
reduced normal inertia and, consequently, lower weight of the blades. 

With a view to decreasing the weight of blades at the preset loads, it is possible to select materials 
having lower density and higher strength, or to optimize structural topology of the blades [1, 2]. 
Earlier, the Institute of Mining, SB RAS has succeeded in reduction of the blade weight by designing 
a cellular structure of the core [1, 2]: the cellular structure core with working and auxiliary surfaces 
(plates) as in Fig. 1. As a consequence, the weight of AK7 aluminium alloy blades [3] was reduced by 
51%, the tip speed of the blades was increased to 140 m/s and the capacity of mine fans was enhanced 
by 1.5–1.7 times. The weight reduction became possible thanks to topological optimization of core 
material. 

This study objective is optimization of design values of axial fan blades in order to reduce their 
weight and, thus, to increase their rotational speeds up to 230 m/s at the stresses and strains 
maintained within permissible ranges (effective stresses should never exceed critical stresses). 
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Table 1. Blade optimization results 

Rotational speed of impeller, rpm 
 / tip speed of blades, m/s 

Blade weight, kg 
Stresses, MPa / displacements  

in blades before optimization, m at weight 
constraint at maximal stress constraint 

v = 0.6 
1200 / 251.3 29.84 38.44 406.0 / 0.001970 
1000 / 209.4 30.09 40.59 282.0 / 0.001370 
800 / 167.5 26.12 35.20 180.0 / 0.000876 
600 / 125.6 22.12 37.36 101.6 / 0.000492 
400 / 86.8 21.93 36.46 45.1 / 0.000219 

v = 0.5 
1200 / 251.3 39.19 53.75 224.4 / 0.00270 
1000 / 209.4 39.05 53.08 155.8 / 0.00171 
800 / 167.5 39.03 53.52 99.7 / 0.00123 
600 / 125.6 39.08 52.79 56.1 / 0.00069 
400 / 86.8 39.24 52.71 24.9 / 0.00027 

The common pattern of the material distribution in the blade structure under the action of 
centrifugal forces is as follows: at the maximal stress constraint—two fan-out branches (Figs. 3a 
and 3b); at the weight constraint—one branch with a fork in the periphery (Fig. 4b). 

The structure of the optimized blade core experiences the influence of the blade weight and the 
weight distribution along the blade length: in case of a longer and narrower blade (sleeve ration of 
0.5 and less), the foot is less heavier than in a wider blade of the same length. For blades with the 
sleeve ratio of 0.6, the foot is heavy, with short and extensional branches. The blade structure may 
differ depending on the optimization constraints: at для v = 0.6 and at the weight and maximal stress 
constraints, the structure has a heavy foot and two branches (Figs. 3a and 3b); at v = 0.5 and at the 
weight constraints, there is a heavy foot and two branches, too (Fig. 4a) while at the maximal stress 
constraint, there is a heavy foot and one branch (Fig. 4b). 

  (a)  (b) 

Fig. 3. Material distribution in blade core at v = 0.6 after optimization: (a) 400 rpm; (b) 1000 rpm. 
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Fig. 4. Material distribution in blade core (1000 rpm, v = 0.5) after optimization at (a) maximal stress constraint  
and (b) weight constraint. (c) Smoother model of blade core (1000 rpm, v = 0.6). 

3. VERIFICATION OF STRENGTH OPTIMIZATION RESULTS

For the checking calculation of strength in case of the optimized blade geometry, the obtained 
model is converted to solid geometry, and the final calculation model has a different shape. The 
differences can be insignificant (e.g. smoothing of the geometry), or significant (correction of 
voids, uncoupled geometrical elements, etc.). Optimization should always be verified by means of 
the checking calculation of strength. 

Figure 4c shows the blade model after mesh smoothing and preparation for the checking 
calculation of strength. The weight of the smoothed model is 74.8 kg, which is 10.5% more than the 
weight of the blade without smoothing (67.7 kg, blade weight before optimization is 96.1 kg). The 
optimized distribution of the material in the blade volume (Figs. 3 and 4) is independent of the 
material density; i.e., for the aluminium alloy with the density of 2700 kg/m3 and steel with the 
density of 7850 kg/m3, the structure represented by the heavy foot and two fan-out branches 
remains unchanged. The optimized blade weight (21.9–30.1 kg) is comparable with the weight of 
the blade of a tree structure (45 kг) examined in [1] at the same level of stresses. The explanation is 
that the tree structure is almost an optimum. 

Fig. 5. (a) Displacements in the core and (b) von Mises stresses in the core and stem of the blade after checking 
calculation at 1000 rpm, v = 0.6. 
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Figure depicts the checking calculation aimed at the stress–strain analysis of the blade core and 
stem after optimization. It follows from Fig. 5b, the maximal stresses are 180 MPa, which agrees with 
the permissible stresses at the safety factor n = 1.8 given by max/yn σ σ=  ( yσ  is the yield stress, 

maxσ  is the maximal stress in the structure). 

4. FREE AND FORCED OSCILLATIONS IN THE BLADE  

The free and forces oscillations are analyzed in the optimized structure and solid structure blades. 
Resonances appear in blades when the frequencies of free oscillations of blades become equal or 
multiple by rotary speed ( )cf kn= . The multiplicity k is determined based on the machine layout. 
Rotor unbalance can induce oscillations in blades at a frequency equal to rotary speed per second, at 
k = 1 [12]. Hazardous modes can appear in axial fans due to vibrations of the blades under the action 
of transient aerodynamic forces which are induced because of nonuniform flow in interaction between 
guide apparatus ribbing and straightener blades. In this case, the multiplicities are proportional to the 
number of guide apparatus ribs, NP, and in reverse, to the number of straightener blades, NCA. The 
oscillations can be induced by stalling flutter, which is self-exciting oscillations of blades under 
interference of aerodynamic forces and elastic forces of blades. When flow energy is sufficient to 
maintain the process, the oscillations become sustained. The stalling flatter can be caused by the stall 
in flow through blades at high angle of incidence. Stalls are observed not at all blades but on a group 
of blade, and the stalling zone can move along the circumference. This phenomenon is called rotating 
stall. For such oscillations, frequency depends on the number of the stall zones in the rotational flow, 
NBO, and in general case is aliquant by the rotary speed of impeller. The resonance frequencies in case 
of the two latter types of oscillations can be given by [13–15]: 

 P
n PnNω ω= ,   CA

n CAnNω ω= ,   (1 )BO
n BOnNω α ω= − , 

where n = 1, 2, 3, … is the number of harmonic of the exciting forces; 0 1α< < . 
For VOD-40 fan, at the rotational speed of the fan impeller 104.70ω =  s–1 (1000 rpm), number of 

the guide vane ribs, NP = 12, number of the straightener blades, NCA = 15, and the number of stall 
zones in rotational flow, NBO = 2–4, the frequencies of the exciting forces generated by the guide vane 
ribbing, straightener blades and rotating stall are given by: 

 12P
n nω ω=  s–1,   15CA

n nω ω=  s–1,   4BO
n nω ω=  s–1, 

 or  1256.4P
n nω =  s–1,   1570.5CA

n nω =  s–1,   418.8BO
n nω ≤  s–1. 

Table 2 compiles calculations of frequencies of free oscillations in solid and optimized blades, as 
well as frequencies of exciting forces. The free frequencies in the optimized blades are much higher 
(up to 4 times) than in the cast solid blades. Furthermore, the exciting frequencies can exceed the free 
frequencies up to 8.7 times, which eliminates any resonance phenomena. 

Table 2. Frequencies in blades at sleeve ratio v = 0.6 

Number of 
harmonic  

Free frequency, Hz  Exciting frequency  

Solid blade Optimized blade P
nω  CA

nω  BO
nω  

1 61.68 252.03 1256.4 1570.5 418.8 
2 160.52 295.53 2512.8 3141.0 837.6 
3 207.99 576.85 3769.2 4711.5 1256.4 
4 322.32 671.25 5025.6 6282.0 1675.2 
5 465.77 720.20 6282.0 7852.5 2094.0 
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CONCLUSIONS 

Topological optimization has enabled the optimized distribution of material in the core of a blade 
of the axial mine fan impeller, at the essential reduction in the blade weight under the same stresses 
and strains experience by the structure within the permissible range of the rotation speeds and 
sleeve ratios. The weight of the blade is reduced by 50–70% as compared with the solid blade. For 
the fan with the impeller diameter of 4.0 m and sleeve ratio ν = 0.6, the blade weight after 
optimization is 36.3 kg (at the boundary conditions represented by the maximal von Mises stresses) 
and 23.5 kg (at the boundary conditions represented by the minimal weight of the blade). The free 
oscillation frequencies of the blade after its weight optimization are much higher (up to 4 times) 
than in the cast solid blade. The exciting frequencies can exceed the free frequencies up to 
8.7 times, which eliminates any resonance phenomena. The obtained results enable designing fan 
blades capable to preserve strength at the tip speeds of blades up to 230 m/s. 
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