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Abstract—Modeling of heat exchange processes in water-saturated rock mass during shafting with artificial 
freezing is performed. The problem of adjusting thermophysical properties of rock layers by the 
experimental measurements of temperature in the check thermal wells spaced from the freezing perimeter is 
analyzed. In terms of the abuilding shafts at Nezhinsky Mining and Processing Plant, significance of 
adjusting the the thermophysial parameters borrowed from the geological engineering survey data is 
illustrated. The number of independent adjustment parameters is determined from the analysis of the system 
of equations in two-dimensional two-phase Stefan problem in the dimensionless form. An inverse Stefan 
problem is formulated for a horizontal layer of rocks. The numerical algorithm is proposed for the inverse 
Stefan problem solution based on the gradient descent method. The algorithm minimizes functional of 
discrepancies between the model and measurement temperatures at the locations of the check wells. The 
functional of discrepancies in the phase space of the thermophysical properties and the algorithm 
convergence are analyzed. 
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INTRODUCTION 

Implementation of complex process systems in any industry and, in particular, mining is not 
complete without prior mathematical modeling of related physical and engineering processes, 
forecasting of system parameters in the future. This is done to minimize material costs and risks 
of accidents. 

In this paper, heat exchange processes are simulated mathematically in water-saturated rock mass 
during shafting by artificial freezing of rocks [1]. When applying this method, wells are drilled along 
the contour of shaft designed for sinking, into which freezing pipes are lowered. Due to the operation 
of freezing stations, a cooling agent (brine) is circulated through the pipes. As a result of cooling brine 
circulation in the freezing pipe, the surrounding rock mass is gradually cooled, and the water 
containing in the rock mass crystallizes. After some time, single ice cylinders are formed around the 
freezing pipes, which subsequently close in to form a frozen wall. The latter serves to prevent the 
groundwater penetration to the opening of abuilding shaft during the entire construction process, up to 
the building of tubing columns and sealing of their joints (Fig. 1). 

Shafting with artificial freezing of rocks requires systematic monitoring of their condition [2]. 
There are a number of control methods, the most advanced of them is continuous monitoring of the 
rock mass temperature using check thermal wells located at some distance from the contour 
of freezing pipes (Fig. 1) [3]. 
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Fig. 1. The system of rock mass artificial freezing near abuilding shaft, the system for monitoring frozen wall 
condition. 

Before shaft construction starts, engineering and geological surveys are carried out on the industrial 
site: investigations of physico-mechanical, thermophysical, mineralogical and petrographic properties of 
rock samples taken from wells. Thermophysical parameters of rock layers obtained as a result 
of engineering and geological surveys often have high inaccuracy, and mathematical models 
describing heat and mass exchange processes in rocks and constructed using these parameters are 
ineffective in solving practical problems. 

The results of the data analysis on rock mass freezing obtained in monitoring of the temperature near 
abuilding shafts nos. 1–2 at the Nezhin Mining and Processing Plant (GOK) show a significant 
difference between the initial values of thermal parameters taken from engineering geological surveys 
and their adjusted values on the measured temperatures of rocks in check thermal wells. Figure 2 
presents a comparative analysis of discrepancies between the initial and adjusted properties of different 
rock layers in terms of dimensionless thermophysical complexes (Fourier numbers Fo and Stefan 
numbers Ste) determined by the formulas: 
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where ρ  is the rock mass density, kg/m3; c  is the rock mass heat capacity, J/(°Сkg); λ  is the rock 

mass thermal conductivity, W/(°Сm); w  is the moisture content in the rock mass, kg/kg; L  is 
specific heat capacity of the phase transition, J/kg; 0T  is the temperature of undisturbed rock 

mass, °С; FT  is the freezing temperature, °С; tΣ  is characteristic time (modeling time), с; l  is 

characteristic dimension of computational domain, m. 
From Fig. 2 it is evident that relative discrepancy reaches 70%. It was difficult to reliably 

determine the relative discrepancy of individual physical properties, since the temperature field 
depends on the combination of thermophysical properties in (1). 
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Fig. 2. Relative discrepancies of thermophysical properties of rock layers for the conditions of industrial site of 
Nezhinsky GOK mine: Fofr, Stefr—Fourier and Stefan numbers for frozen rock mass; Foth, Steth—Fourier and 
Stefan numbers for thawed rock mass. 

Adjustment was made by minimizing the temperature discrepancy criterion I at check wells 
measured experimentally and calculated theoretically by solving direct Stefan problem: 
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Here, ( )m
iT and ( )e

iT  are the model and experimental temperatures at an i-th well, °С; cN  is the number 

of check wells; tΣ  is the freezing time, days. The formulation of direct Stefan problem used in [3] will 

be considered further. 
The modeling results of frozen wall formation dynamics obtained from the initial engineering-

geological and adjusted values differ significantly from each other. This indicates the need for 
adjustment of thermophysical parameters of rock layers obtained from engineering-geological 
surveys, before using them to predict the formation time for frozen wall of the required thickness and 
determine the energy-efficient operating modes of the freezing stations. 

The issue of thermophysical rock properties adjustment applicably to the problem of controlling 
frozen wall formation has not previously been considered. The available works on frozen wall are either 
dedicated to solving the direct Stefan problem using the preset thermophysical rock properties, which 
are accepted as true [4–8], or contain a description of experimental studies on frozen wall condition and 
shaft sinking technology [1, 5, 9, 10]. 

This paper is dedicated to the selection of adjustment parameters from a variety of thermophysical 
properties of rock layers and construction of an automated method for adjusting thermophysical 
properties, based on solving coefficient inverse Stefan problem. 

1. SELECTION OF ADJUSTMENT PARAMETERS 

The adjustment parameters are thermophysical properties of the rock layers—heat capacity, thermal 
conductivity, density, moisture content. An increased inaccuracy of their determination in the course 
of engineering and geological surveys is caused by the following factors [11]: 

1. Insufficiency of core sampling and insufficient quantity of check wells drilled before the shaft 
construction; 

2. Heterogeneity and anisotropy of the real rock mass. 
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The additional factors leading to inaccuracy in the mathematical model and also requiring 
adjustment of the model parameters are the following process factors: 

3. The presence of voids between the rock mass and walls of the freezing wells due to poor quality 
cementing of well annular space; 

4. Deviation of well axes positions from the vertical due to the imperfection of well drilling 
procedure and inaccuracy in the measurement of this deviation (well survey inaccuracy). 

The third factor worsens the intensity of heat transfer, while the fourth factor leads to an 
inaccuracy in localizing heat sources for each rock layer. Consideration of the process factors 2–4 
indicates that thermophysical properties of the medium, which are required to be determined during 
adjustment, will not be true thermophysical properties of this medium, but will have some effective 
values. 

The number of parameters, which can be used to adjust a mathematical model, is determined 
according to the type of mathematical model, i.e. the number of independent dimensionless 
complexes on which the resulting solution depends—temperature distribution and concentration 
of the frozen phase. 

To select the adjustment parameters, let us formulate a mathematical model of heat exchange 
processes occurring in a water-saturated horizontal layer of the rock mass with isotropic and 
homogeneous properties during its artificial freezing (Fig. 3). It is assumed that the heat transfer in the 
vertical direction is negligible compared to the horizontal direction [7], which makes it possible 
to proceed to a two-dimensional formulation. The moisture migration under the action of pressure and 
temperature gradients is not taken into consideration. It is also assumed that the phase transition takes 
place in a preset temperature range according to a linear law [12, 13], which is expressed by the 
following functional dependence of specific enthalpy H on temperature T: 
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Here, ρ  is the density, kg/m3; c  is the specific heat of soil per unit mass, J/(°Сkg); w  is the moisture 

content in soil, kg/kg; L  is the specific heat of phase transition, J/kg; 1pT  and 2pT  are the 

temperatures of the beginning and end of crystallization, °С; iceφ  is the solid phase concentration of 

groundwaters. The index “th” corresponds to thawed rocks, “fr”—to frozen rocks. 

 

Fig. 3. Horizontal layer of the rock mass, loop of freezing pipes, check wells. 
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It is assumed that ice concentration in porous rock mass increases linearly with decreasing 
temperature, since this is in good agreement with laboratory tests for samples of the rocks in question. 
In some cases, the ice concentration may increase according to a more pronounced nonlinear law [14]. 

In accordance with (3), the formulation of mathematical model is made in enthalpy form [3, 15–17]: 
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where ( ) (1 )ice ice fr ice thλ φ φ λ φ λ= + −  is thermal conductivity function of the rock mass from ice phase 

concentration, W/(°Сm); t  is physical time, с; α  is the heat transfer coefficient, W/(°Сm2); 0T  is the 

temperature of undisturbed rock mass, С; FT  is the brine temperature in freezing pipes, С; ( , )x y  are 

the physical coordinates, m; F FiΩ = Ω  are the boundaries with all freezing pipes 1,...,i N= ; outΩ  is 

the outer boundary of modeling domain; n  is the coordinate along the normal to FΩ , m. 

To write the system of equations (3)–(8) in the dimensionless form, the respective variables are 
introduced: 
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The index i takes the value “th” or “fr”; tΣ  is total modeling time, s; l  is characteristic length (the 

radius of design contour of freezing pipes can serve as this value), m. 

Two-dimensional two-phase Stefan problem (3)–(8) in dimensionless coordinates for the 
horizontal layer of rocks has the following form: 
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where τ  is the dimensionless time variable; ,X Y  are the dimensionless coordinates; 1FΘ =  is the 

dimensionless freezing temperature; 0 0Θ =  is the dimensionless temperature of undisturbed rock 

mass; F FiΩ = Ω  are the boundaries with all freezing pipes 1,...,i N= ; outΩ  is the outer boundary of 

modeling domain; N  is dimensionless coordinate along the normal to FΩ ; Bi / frlα λ=  is the 

dimensionless Biot number. 
The system of equations (10)–(15) allows finding the distribution of temperatures Θ  as a function 

of two dimensionless coordinates X  and Y , two dimensionless temperatures of phase 
transition 1 2,p pΘ Θ  and six dimensionless complexes Foth , Steth , Ste fr , Bi , /fr thρ ρ , /fr thλ λ . 

Under high hydrostatic stress of rocks at a depth, the rock density changes insignificantly, and the 
complex /fr thρ ρ  can be excluded from consideration. 

Since moisture migration is absent in this model, the moisture content of water-saturated rock mass 
in the solid and liquid phases will be the same. In this case, instead of the criterion /fr thλ λ , we can 

take Fo fr  expressed in terms of other criteria: 
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This expression is written under the condition of equal rock mass density in thawed and frozen states. 
Taking into account the accepted simplifications, the solution of problem (10)–(15) depends on 

5 dimensionless complexes, which contain the information about thermophysical properties of the 
medium under consideration: Foth , Fo fr , Steth , Ste fr , Bi , and two dimensionless temperatures 

1 2,p pΘ Θ  characterizing phase transition. 

In the simplest case, up to 5 thermophysical properties included into dimensionless complexes 
presented above can be taken as adjustment parameters of the heat transfer model in the “rock mass–
freezing wells” system. In a more complex case, the condition of minimum integral deviation of 
ajustable thermophysical parameters ip  from their initial values (0)

ip  obtained from engineering and 

geological surveys can be additionally considered. For example, the following functional can be 
chosen: 

 (0) 2( ) mini i
i

F p p= − →∑ . (17) 

In this case, a greater number of adjustment parameters can be selected. 
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In this study, the conditions for minimum integral deviation of adjustable thermophysical 
parameters from their initial values will not be considered. It is also assumed that the temperatures 
of the beginning and end of the phase transition 1pΘ  and 2pΘ  are unalterable. 

2. FORMULATION OF THE OF INVERSE STEFAN PROBLEM 

The purpose of the analysis of direct Stefan problem in dimensionless quantities was to determine 
the number of dimensionless complexes on which the solution—the temperature field depends. This 
objective has been accomplished, so for convenience we will make the transition back to the system 
of dimensional values. 

Adjustment of the thermophysical parameters from problem (3)–(8) represents the solution to 
coefficient inverse Stefan problem [18, 19]. To formulate the inverse problem, let us redefine the direct 
problem (3)–(8) by introducing preset measured temperatures ( ) ( )c

iT t  to the location place ( , )t ix y  

of each check well no. i : 
 ( )( , , ) ( )c

iT t x y T t= ,   1,..., Ci N= , (18) 

CN  is the number of check wells. 

The solution to inverse Stefan problem is to determine the temperature field ( , , )T t x y  and the 
values of thermophysical parameters of the rock mass satisfying the system of equations (3)–(8), (18). 
Instead of stringent condition (18), the functional of discrepancies between the theoretical and 
experimentally measured temperatures in the check wells was considered in this paper: (2). The 
solution to the inverse Stefan problem consists in minimization of functional (2) subject to conditions 
(3)–(8) [18, 20]. 

3. STUDY OF TEMPERATURE DISCREPANCY FUNCTIONAL 

The type of functional I  in the phase space of rock mass thermophysical properties was investigated. 
A multiparameter numerical calculation of direct two-dimensional Stefan problem for horizontal layer 
of rocks was carried out. The finite difference method, an explicit scheme for the enthalpy formulation 
of the Stefan problem on a regular inhomogeneous Cartesian grid with condensations near freezing 
wells was applied (Fig. 4). The choice in favor of the Cartesian grid in this case is due to the fact that 
with increasing depth, the freezing pipes are significantly shifted relative to the initial ideal circular 
contour, as a result of which the advantage, for example, of polar grid disappears. 

The grid size at a distance from the wells and condensation near the wells were selected on the 
basis of preliminary calculations in such a way as to ensure temperature distribution that does not 
depend on the grid properties. At the boundary with freezing wells, the heat flow was calculated from 
the effective heat exchange area, formed by the faces of the cells bordering the wells (Fig. 5). When 
calculating the value of heat flow through the effective area, a reduction factor, equal to the 
physical/effective heat exchange area ratio, was used. 

   

 
Fig. 4. Finite-difference grid. Fig. 5. Physical physS  and effective effS

surfaces of heat exchange of freezing wells. 
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The number of cells in the final grid adopted for calculations was 172040. The grid quality was 
estimated according to the Maximum aspect ratio criterion, which is equal for the case of a regular 
grid to the maximum ratio of two characteristic cell sides. The value of the criterion for all grid cells 
is not more than 20, which is admissible. In the numerical solution of system (3)–(8), an explicit first-
order in time and second-order in space schemes were used. To speed up the calculations, 
parallelizing was performed on the CPU cores using the TPL.Net Framework library. 

As a result of multiparameter numerical calculation of direct Stefan problem, the dependences of 
temperature discrepancy functional on thermophysical properties—thermal conductivities and heat 
capacities of the frozen and thawed rock mass, and moisture content were obtained (Fig. 6). The 
calculation was carried out for the following set of parameters: freezing wells radius—0.073 m; the 
number of freezing wells—41; the radius of circular contour of freezing wells—8.5 m; width and 
height of the computational domain—30 m; rock mass density in thawed and frozen state—
2000 kg/m3; moisture content in the rock mass in the thawed and frozen state—0.2 kg/kg; brine 
temperature in freezing wells— –20°С; brine consumption in freezing wells—10 m3/h; the 
temperature of undisturbed rock mass— +10°С; chilling temperature of groundwater—0°C; 
temperature of complete crystallization of groundwater— –1°C; the number of check wells—1. 

 
Fig. 6. Temperature discrepancy functional of rocks in check thermal wells: (a) as a function of thermal conductivity 
of the thawed and frozen rock mass; (b) as a function of thermal conductivity of the thawed rock mass and moisture 
content; (c) as a function of heat capacities of the thawed and frozen rock mass; (d) as a function of moisture 
content and thermal conductivity of the frozen rock mass. 
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Fig. 7. Time dependence of rock mass temperature in model check well. 

The function ( )cT t  obtained as a result of solution to direct Stefan problem was accepted as the 

temperature measured in check well, for parameters: heat capacity of the thawed soil—900 J/(kg°С); 
heat capacity of the frozen soil—700 J/(kg°С); thermal conductivity of the thawed soil—3 W/(m°С); 
thermal conductivity of the frozen soil—4 W/(m°С) (Fig. 7). 

The temperature discrepancy functional has a pronounced minimum on the phase plane of 
variation in soil thermal conductivities (Fig. 6a). With increasing time, the isolines of discrepancy 
functional on the plane of soil thermal conductivities tend from an elongated ellipsoidal shape 
to a circular one, which is caused by an increase of the frozen soil zone and increased effect of 
thermal conductivity of the frozen soil on the temperature field [21]. At short modeling times, when 
the ice zone occupies a relatively small part of the computational domain, the effect of thermal 
conductivity of frozen soil is manifested in the boundary condition at the wells, determined by the 
Biot number, and at the phase transition front in Fo Stefr fr  complex. In the range of parameters under 

study (Fig. 6), a small modeling time is a time in the range from 0 to 30 days. 
The temperature discrepancy functional is almost independent of the heat capacity of frozen rock 

mass for the case under consideration, due to the fact that at short modeling times the temperature 
distribution in the ice zone is established much faster, than the phase transition boundary moves 
(Fig. 6c). Hence, thermal conductivity of the frozen soil as an inertia measure of heat distribution in it 
does not play a significant role in this range of values. 

At small modeling times, ambiguity is also observed in determination of moisture content and 
thermal conductivity of frozen rock mass (Fig. 6d). When considering the moisture content and 
thermal conductivity of thawed rock mass, such ambiguity was not revealed and the functional (1) 
had a clear minimum (Fig. 6b). This is stipulated by the fact that at small modeling times, the solution 
depends on the complex Fo Stefr fr  (heat flow to the frozen soil), in which moisture content and 

thermal conductivity of frozen rock mass are present only in the form of relationship. 

4. SOLUTION ALGORITHM FOR THE INVERSE STEFAN PROBLEM 

Minimization of the functional (2) in the phase space of thermophysical properties of the rock 
mass was carried out using a modification of the gradient descent method. At each iteration of 

1N +  time algorithm, a direct Stefan problem is solved to determine partial derivatives of the 
functional F  using N  different minimization parameters. 
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Let 1( ,..., )np p=p  be the vector of adjustable problem parameters; I  is the current value of 

discrepancy functional also representing the error of inverse problem calculation; maxε  is the 

maximum admissible error of inverse problem solution. Then the algorithm proposed includes 
the following steps: 

1. Determination of the initial approximations of 0p . 

2. Calculation of direct Stefan problem, determination of the current error I  by the formula (2), 
comparison with the maximum admissible error maxε . If maxI ε< , then the required accuracy 

is obtained and calculation should be completed, otherwise return to step 3. 
3. Selection of small deviations of the adjustable parameters kΔp  at -kth iteration of the algorithm. 

Calculation of direct Stefan problem for each component of the vector kΔp . Calculation of partial 

derivatives of the functional I : 
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4. Calculation of the new values of adjustable parameters at (k + 1)th iteration of the problem using 
the formula: 
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where [ )0, 1μ ∈  is the parameter characterizing the past history factor; 0σ >  is the parameter 

determining the velocity of gradient descent. 
5. Check for the entry of adjustment parameters into the range of admissible values: 

 min max[ , ]k
i i ip p p∈ ,   1,..., Ci N= . (21) 

6. If the maximum number of iterations is exceeded, then calculation should be completed, 
otherwise return to step 2. 

Figures 6а, b present the solution to inverse Stefan problem using this algorithm for the parameters 
0.4μ =  and 1σ = . 

The solution algorithm to inverse Stefan problem is implemented in the C# language in Visual 
Studio medium and included as the basic axial module into Frozen Wall software system developed 
by Mining Institute of the Ural Branch of the Russian Academy of Sciences. 

CONCLUSIONS 

The two-dimensional two-phase direct Stefan problem in dimensionless coordinates has been 
formulated. Based on the fact that there are 5 different dimensionless complexes characterizing 
thermophysical properties of the rock mass in this problem, it was concluded that in the proposed 
statement of the problem, no more than 5 different independent thermophysical properties should 
be adjusted. Adjustment of “water-ice” phase transition parameters was not considered in this 
paper. 

The formulation of the inverse Stefan problem consisted in minimizing the discrepancy 
functional of the numerically calculated and experimentally measured temperatures in check 
wells. The discrepancy functional properties have been investigated. It was obtained that at the 
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initial stage of frozen wall forming at small times (up to 30 days), heat capacity of the frozen soil 
should not be adjusted, moisture saturation and thermal conductivity of the frozen soil should not 
be adjusted simultaneously. 

An iteration algorithm for solving the inverse Stefan problem has been formulated. The 
presented algorithm as a part of FrozenWall software system was used to adjust thermophysical 
parameters of the rock mass layers when sinking shafts of the Nezhinsky GOK mine by 
artificial freezing. As a result of mathematical prediction of frozen wall condition using the 
adjusted properties, a time period was determined during which a frozen wall of preset 
thickness was formed, after which recommendations were given on the beginning of sinking 
mine shafts nos. 1–2. 

FUNDING  

This work was supported by the Russian Science Foundation, project no. 17-11-01204. 

REFERENCES 

 1. Trupak, N.G, Zamorazhivanie gornykh porod pri prokhodke stvolov (Freezing of Rocks in Shaft Sinking), 

Moscow: Ugletekhizdat, 1954. 

 2. Safety Rules in Underground Structures Construction PB 03-428-02. Approved by Gosgortekhnadzor 

of Russia on 02.11.2001, No. 49. 

 3. Levin, L.Yu., Semin, М.А., and Zaitsev, А.V., Kontrol i prognoz formirovaniya ledoporodnogo 

ograzhdeniya s ispolzovaniem optovolokonnykh tekhnologiy. Strategiya i protsessy osvoeniya georesursov: 

sb. nauch. tr. (Control and Prediction of Frozen Wall Formation Using Optic Fiber Technologies. Strategy 

and Processes of Georesources Development: Collected Papers), Perm: GI UrO RAN, 2016. 

 4. Amosov, P.V., Lukichev, S.V., and Nagovitsyn, O.V., Influence of Rock Mass Porosity and Cooling 

Agent Temperature on Frozen Wall Formation Rate, Vestn. KNTS RAN, 2016, vol. 27, no. 4, pp. 43–50. 

 5. Gendler, S.G., Integrated Safety Provision in Developing Mineral and Spatial Subsol Resources, Gornyi 

Zhurnal, 2014, no. 5, pp. 5–6. 

 6. Sopko, J., Coupled Heat Transfer and Groundwater Flow Models for Ground Freezing Design and 

Analysis in Construction, Geotech. Frontiers, 2017, p. 11. 

 7. Vitel, M., Rouabhi, A., Tijani, M., and Guerin, F., Modeling Heat Transfer between a Freeze Pipe and the 

Surrounding Ground during Artificial Ground Freezing Activities, Comput. Geotech., 2015, vol. 63, pp. 99–111. 

 8. Kim, Y.S., Kang, J.M., Lee, J., Hong, S., and Kim, K.J., Finite Element Modeling and Analysis for 

Artificial Ground Freezing in Egress Shafts, J. Civ. Eng., 2012, vol. 16, no. 6, pp. 925–932. 

 9. Schmall, P.C. and Maishman, D., Ground Freezing a Proven Technology in Mine Shaft Sinking, Tunnels 

and Underground Construction Magazine, 2007, vol. 59, no. 6, pp. 25–30. 

 10. Igolka, D.A., Igolka, E.Yu., Luksha, Е.М., and Kologrivenko, А.А., Frozen Wall Temperature Effect 

in Designing Casing for Mine Shafts, Gorn. Mekh. Mashinostr., 2014, no. 3, pp. 36–41. 

 11. Levin, L.Yu., Semin, М.А., Parhsakov, О.S., and Kolesov, Е.V., A Method for Inverse Stefan Problem 

Solution to Monitor Frozen Wall Condition in Shaft Sinking, Geolog. Neftegaz. Gorn. Delo, 2017, vol. 16, 

no. 3, pp. 255–267. 

 12. Jame, Y.W., Heat and Mass Transfer in Freezing Unsaturated Soil, Ph.D. Dissertation, University 

of Saskatchewan, 1977. 



168 LEVIN et al. 

JOURNAL OF MINING SCIENCE   Vol. 55   No. 1   2019 

 13. McKenzie, J.M., Voss, C.I., and Siegel, D.I., Groundwater Flow with Energy Transport and Water-Ice 

Phase Change: Numerical Simulations, Benchmarks, and Application to Freezing in Peat Bogs, Adv. 

Water Resour., 2007, vol. 30, no. 4, pp. 966–983. 

 14. Kurylyk, B.L. and Watanabe, K., The Mathematical Representation of Freezing and Thawing Processes 

in Variably-Saturated, Non-Deformable Soils, Adv. Water Resour., 2013, vol. 60, pp. 160–177. 

 15. Dmitriev, A.P. and Goncharov, S.A., Termodinamicheskie protsessy v gornykh porodakh (Thermodynamic 

Processes in Rocks), Moscow: Nedra, 1990. 

 16. Budak, B.M., Solov’eva, E.N., and Uspenskii, A.B., Difference Method with Coefficient Smoothing for 

Solving Stefan Problems, ZHVMiMF, 1965, vol. 5, no. 5, pp. 828–840. 

 17. Shamsundar, N. and Sparrow, E.M., Analysis of Multidimensional Conduction Phase Change via the 

Enthalpy Model, J. Heat Transfer, 1975, vol. 97, no. 3, pp. 333–340. 

 18. Alifanov, О.М., Obratnye zadachi teploobmena (Inverse Problems of Heat Exchange), Moscow: 

Mashinostroenie, 1988. 

 19. Tikhonov, A.N. and Arsenin, V.Y., Solutions of Ill-Posed Problems, Washington, DC: Winston & Sons, 1977. 

 20. Levin, L.Yu., Semin, М.А., Bogdan, S.I., and Zaitsev, A.V., Solution of Inverse Stefan Problem when 

Analyzing Groundwater Freezing in the Rock Mass, IFZH, 2018, vol 91, no. 3, pp. 655–663. 

21.  Levin, L.Yu., Semin, М.А., and Parhsakov, О.S., Mathematical Prediction of Frozen Wall Thickness 

in Shaft Sinking, J. Min. Sci., 2017, vol. 53, no. 5, pp. 154–161. 


