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Abstract—The nonlinear model is developed to describe geomechanical and hydrodynamic fields in the 
vicinity of a vertical well in a fluid-saturated formation for the case when the permeability k depends on the 
effective stress σf  by the exponential law. The analytical solutions are obtained for the porous–elastic and 
porous–elastoplastic modes of deformation of the well vicinity, based on which the change in the pressure 
and rate of flow under the variation of parameters characterizing the dependence k(σf) is analyzed. It is 
found that the rate of flow exponentially decreases with an increasing horizontal stress of the external field; 
the permeability of the irreversible strain zone around the well decreases with the distance from the well 
boundary. The test scheme is proposed for permeability of samples with the center hole under side loading, 
and the experimental data interpretation procedure is put forward, which enables finding the empirical 
dependence k(σf). 
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INTRODUCTION 
The knowledge of reservoir rock properties in oil and gas fields is indispensable in solving many 

problems associated with petroleum exploration and development which include, but are not limited 
to the substantiation of efficient drilling and production strategies; production potential assessment of 
wells; production planning; interpretation of well-log data [1, 2]. The permeability ( k ) and porosity 
estimated by logging is assumed to be piecewise constant within the target pay interval [3–6]. 
Meanwhile, the laboratory testing of reservoir rocks [7, 8] and coal [9], as well as the field studies 
[10, 11] show that permeability varies with effective stress σσ += pf  ( p  is the fluid pressure and 
σ  is the mean normal stress in the rock matrix). As long as deformation is elastic, the )( fk σ  
dependence is well approximated [9, 12] by the exponential function:  

 0( ) exp( )f fk kσ βσ= ,   (1) 

where 0k  is the permeability found in a standard way in core samples [13], and β  is an empirical 
constant. At the post-limiting stage (plasticity and failure), permeability can either decrease [7] or 
increase [11] as the effective stress increases. 

Drilling produces a heterogeneous stress field around the well [14] and zones of irreversible strain 
(failure) at depths [15], which leads to changes in the reservoir properties of rocks in the well vicinity. 
These effects are commonly taken into account by introducing a skin factor into the model 
(parameters of a local zone inferred from the pressure recovery curve [16–18]), but this conventional 
approximate approach is not always workable [19]. Various models of failure for reservoir 
engineering practices were discussed in [20, 21]. 
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In this study, forward analytical solutions are obtained for a steady-state fluid flow toward a well 
in a rock mass in the conditions of stress-dependent permeability and porous–elastic or porous–
elastoplastic deformation [22]. The solutions are used to constrain the empirical constant β  in (1) 

from laboratory testing. Previously, an asymptotic solution was obtained [23] for a similar nonsteady 
problem in a porous–elastic formulation. 

1. BOUNDARY PROBLEM FORMULATION 

The modeling is performed for a vertical well of the radius 0r  penetrating a homogeneous fluid-

saturated bed of the thickness h  located at the depth H  ( Hh << ). 
Geomechanical model. Let the horizontal stress of the natural field be equal, then the model is 

symmetrical and the stress state of rocks around the well in the cylindrical coordinates (r is the radius 
and θ is the polar angle) is described by a system of equations including [22]:  
the equilibrium equation  

 , 0rr
rr r r

θθσ σσ −+ = ;   (2) 

the Cauchy equations 

 , ,rr r

u
u

rθθε ε= = ;   (3) 

Hooke’s law for porous–elastic deformation  

 
( 2 ) ,

( 2 ) ,
rr rr

rr

p

p
θθ

θθ θθ

σ λ μ ε λε
σ λε λ μ ε

= + + −
= + + −

   (4) 

and the Mohr-Coulomb criterion for failure zones [24] 

 | | | | tg 2rr rr cθθ θθσ σ σ σ ϕ τ− = + + ,  (5) 

where rrσ , θθσ  and rrε , θθε  are the stress and strain tensor components; p  is the pore fluid pressure; 

u  is the radial displacement; λ  and μ  are the Lamé constants; ϕ  is the internal friction angle; cτ  is 

the cohesion. 
Fluid dynamic model. The steady-state fluid flow in the well vicinity is described with [25, 26]:  

the continuity equation 
 0)( , =rrv    (6) 

and the linear Darcy law 
 η/,rkpv −= ,   (7) 

where v  and η  are, respectively, the radial Darcy velocity and viscosity of the fluid; the permeability 

k  is a function of effective stress according to (1). 
Boundary conditions. Problem (1)–(7) is solved within the ring }{ 10 rrrD ≤≤= , with the 

following conditions at its internal and external boundaries: 

 00)( prrr −=σ , Srrr −=)( 1σ ,   (8) 

 00 )( prp = , 11)( prp = ,   (9) 

where VqS σ=  ( q  is the lateral pressure; gHV ρσ = is the overburden pressure; ρ  is the rock density; 

g is the acceleration due to gravity), the compressive stresses are assumed to be negative; during 

production app =0  ( ap is the atmospheric pressure); during drilling gHp 00 ρ=  ( 0ρ  is the drilling mud 

density); 1p  is the pressure at the external boundary, 1rr = . 
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2. GEOMECHANICAL AND GEODYNAMIC FIELDS IN THE WELL VICINITY 

Porous–elastic model. The common solution to system (2)–(4), reduced to an ordinary second-
order equation, is:  

 
2

2

( ) 2 ( ) ,

( ) 2 [ ( ) ( )],

rr r A Br r

r A Br r p rθθ

σ δ
σ δ

−

−

= − − Φ

= + + Φ −
   (10) 

where νδ 21−=  (ν  is Poisson’s ratio); ∫−=Φ
r

r

dprr
0

)()( 2 ξξξ . The constants A  and B  are found 

from boundary conditions (8): 

 0pcA −= , crB 2
0= , 1 0

2 2
0 1

2 ( )

1 /

r S p
c

r r

δ Φ − +=
−

, 

at 10 rr << , we have 12 ( )A r Sδ= Φ − . As follows from (10), the effective stress:  

 pAprrf )1()(5.0 δσσσ θθ −+=++= .   (11) 

The system of equations (1), (6) and (7) that describe pressure distribution in the study domain is 
reduced to the equation:  

 0f
p

re
r r

βσ∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
.  (12) 

This equation allows separation of variables, with regard to (11), and has the general solution:  

 rBAe ee
pe ln+=α , 

where νβα 2=e .  

With the constants eA  and eB  found from boundary conditions (9), we obtain:  

 ⎥
⎦
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⎡
−+=

)/ln(
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eeerp ppp
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then the well discharge (flow rate) is:  
 0)()( QFQ eee αα = ,   (14) 

where 1 0
1 0( ) exp(0.5 / )( ) / [ ( )]e ep p

e e e eF A e e p pα αα α ν α= − − ; 0 0 1 0 1 02 ( ) / [ ln( / )]Q Hk p p r rπ η= −  is the 

flow rate at eα = 0 (Dupuit equation [26]). As expected, 0)( =eQ α  at 10 pp = , 1)0( =eF . 

Thus, the solution within porous–elastic model (1)–(4) at the steady flow to the well shows that the 
flow rate decreases exponentially at increasing horizontal stress S  in the external field. 

Porous–elastoplastic model. Modern production wells reach depths of 3–4 km [27] where the hoop 
stress θθσ  is as high as 80–100 MPa [15], even if drilling uses heavy mud ( 0ρ =1500–700 kg/m3), which 

exceeds the ultimate strength for most of reservoirs [28]. Therefore, drilling induces zones of 
irreversible strain (failure) with altered reservoir properties around the well [7]. 

Let the criterion of equation (5) hold true for some combination of the values ϕ , cτ , 0p , 1p  and S . 

The failure zone }{ *0 rrrDp ≤≤=  forms in D , and the deformation is elastic within the subdomain 

/e pD D D= . Within pD , the solution to (2), (5) and (8)1 is found in terms of elementary functions: 

 1 0

1 2 0

( ) ( ) ,

( ) ( ) 2 ( ) ,
rr r R r p

r R r R r pθθ

σ
σ

= −
= − −

   (15) 

where 1 0( ) [1 ( / ) ] /cR r r r mτ Ω= − , 2 0( ) [ ( / ) ] / (1 )cR r r r mτ Ω= − , tanm φ= , )1/(2 mm −=Ω . 
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In the elastic subdomain, the stresses rrσ  and θθσ  are also expressed by equations (10), but the 

constants A  and B  are found from the continuity condition of stresses (10) and (15) at the boundary 

*rr = , then, in eD : 

 

2
*
2

2
*
2

( ) 2 ( ),

( ) 2 [ ( ) ( )],
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e
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r r

r

Br
r r p r
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σ σ δ

σ σ δ

= − − Φ

= + + Φ −
   (16) 

where * 2 * 1 * 0( ) ( ) ( )e p r R r R r pσ δ= − + − , * 2 * *( ) ( ) 2 ( )B p r R r rδ δ= − − Φ . 

Failure zone size. Drilling velocity can reach 1 m/min [29]; therefore, it can be assumed that 
drilling in a thin fluid-saturated reservoir instantly induces a perturbed stress field—irreversible strain 
zone pD  in the well vicinity, provided that the strength criterion is fulfilled. For finding the radius *r  

let 0=δ  in (16)1 and the condition (8)2: 
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As the condition 0* rr >  is satisfied within pD , the right-hand side of transcendent equation (17) 

should 1 at 1* rr << . Thus, the respective horizontal stress in the external field can be estimated as:  

 
m

pS c

−
+>

10
τ

 ,  (18) 

and the depth of drilling-induced failure is:  

 
))(1( 0ρρ

τ
−−

>
qmg

H c . 

Figure 1 shows the dependence of *r  on the dimensionless value cpSs τ/)( 0−=  at different 

internal friction angles ϕ . 
At the next step, the pressure distribution in the domain D  is found assuming that the constant β  

in (1) takes different values in the zones of elastic and inelastic deformation: 

 
,

.
e

p p
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β α
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Fig. 1. Function )(* sr  at different angles ϕ . 
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According to (16), the average stress σ  in the subdomain eD  is pressure-dependent. It follows 

from (15) that σ  in pD  varies as the known function of the radius. Therefore, equation (12) allows 

separation of variables everywhere in the domain D  and has the analytical solution:  
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e e e e
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unknown constants eA , eB , pA  and pB  are found from (9) and from the continuity conditions for 

pressure and filtration velocity at the interface of eD  and pD : 

 *** )0()0( prprp =+=− , )0()0( ** +=− rvrv . 

Omitting cumbersome intermediate derivations, the final result is obtained as:  
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The pressure *p  at the boundary *rr =  is found from the transcendent equation: 

 10** )()()()( *11*
p

pp
p

ee
p

ee
p

pp
eppe erGerGerGerG αααα αααα +=+ .   (21) 

Parametric analysis. The calculations were performed at 0r  = 0.1 m, 1r  = 200 m, ν  = 0.22, 

cτ  = 5 MPa, ϕ  = 12°, S  = 30 MPa, and 0p  = 0.1 MPa; the values of 1p , eα  and pα were varied. The 

permeability k is plotted in Fig. 2 for different pα  at 1p = 30 MPa in the well vicinity. The increase in 

pα  leads to a reduction in k  from the maximum at the well wall to the minimum at the failure zone 

boundary. 
Figure 3 shows the pressure behavior at p1 = 20 MPa and at different eα  and pα . It is seen that the 

permeability decreases with increasing eα , and the pressure in the well vicinity grows 

correspondingly (Fig. 3а). Note that the permeability is continuous at the boundary *rr =  at ep αα = , 

and the pressure is a smooth function therefore.  

 
Fig. 2. Permeability in the well vicinity at p1=30 MPa, eα =0.002 MPa−1 and different values of pα . 
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Fig. 3. Pressure in the well vicinity at (a) pα  = 0.01 MPa−1 and (b) eα  = 0.02 MPa−1.  

The well flow rate is found using (19): 
 )()( pppp FQQ αα = , 
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The dependence of the relative flow rate Fp on the pressure at the well wall is plotted in Fig. 4 for 

eα = 0.02 MPa−1, S = 30 MPa and different pα . Note that Q  is expectedly decreases with increasing 

pα  and grows nonlinearly with elevating 1p . 

3. METHOD OF DETERMINING EMPIRICAL DEPENDENCE OF PERMEABILITY  
ON EFFECTIVE STRESS BY EXPERIMENTAL DATA  

Reservoir properties are determined from core testing as a rule [13]. The experimental scheme for 
determining empirical relationship of permeability and effective stress is analogous: the steady-state 
flow along the axis of a sample exposed to triaxial or less often biaxial compression [7, 9]. 

The radial permeability can be obtained in two main ways [1, 2, 30]: standard procedure applied to 
samples drilled out of a core orthogonally to its axis; radial flow of injected fluid through a hole made 
at the sample center.  

Each way has its advantages and shortcomings, but in the first method, the linear dimensions of a 
sample are diminished by an order of magnitude. This greatly complicates penetration testing under 
loading using standard equipment (especially, at the post-limiting stage).  

In this study, we consider the second method of finding the empirical constant β  in (1) under 
porous–elastic and porous–elastoplastic deformation. Leaving technical details of the testing 
procedure aside, the experimental program and the data processing work flow are outlined below.  

3.1. Experimental Program 
1. Several samples are made from a full-size core; some are used to determine Poisson’s ratio ν  

and strength characteristics (internal friction angle ϕ  and cohesion cτ ) following the conventional 

procedures [31–33]. The ultimate radial stress / (1 tan )L cS τ ϕ= − is estimated from equation (18). 

2. A constant fluid pressure 0p  is created in a hole of the radius 0r  drilled at the center of a 

cylindrical sample (radius 1r , height H ). 

3. Stepwise increasing radial compression iS  ( ni ,...,0= ) is applied to the lateral sample surface 

( Ln SS < ). The rate iW  of the steady flow is recorded at each loading step i . 
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Fig. 4. Function Fp(p1) at 

eα  = 0.02 MPa−1  

and S = 30 MPa. 

4. The radial stress is increased to * ,LS S>  and the flow rate *W  is measured on the lateral surface 

of the sample. 
3.2. Data Interpretation 

The stress and pressure fields in the tested samples are described by equations (1)–(8), which 
allows using the solutions (at 10 rr << ) obtained within the limits of the porous–elastic and porous–

elastoplastic models. 
At LSS < , the flow to the lateral surface of the sample is found according to (13): 
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At LSS > , the flow rate pQ  at the surface 1rr =  is found from the pressure distribution in the 

subdomain eD  (20): 
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where *p  and *r  implicitly depend on pα  and S  (17), (21). Thus, with the known eα , the empirical 

parameter pα is found from the equation:  

 **
*

0

( , , ) exp
2
e

e p

SW
T S

W

αα α
ν

= .   (22) 

Figure 5 demonstrates the one-valued solvability of (22): the straight line eα  = const has a single 

intersection with each line of the function T in the cross-section *S = const. 

Note that within the analyzed porous–elastic and porous–elastoplastic models, eα  and pα  are 

determined without regard to the fluid viscosity η  and permeability 0k . 

Fig. 5. Lines of the function T at *S  = 30 MPa, p0 = 15 MPa, 

 p1 = 0.1 MPa, 0r  = 2.5 mm,  and 1r  = 25 mm. 
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CONCLUSIONS 

Drilling in producing formations initiates concentration zones of stresses potentially higher than 
ultimate strength. The latter conditions formation of irreversible strain zones with altered filtration 
properties. Within the framework of the porous–elastic and porous–elastoplastic models, the analytical 
solutions are obtained, which describe the distribution of steady-state geomechanical and geodynamic 
fields in the well vicinity under condition that permeability k depends on effective stress fσ .  

The dimensions of the failure zones as well as their depth of origin are estimated using the Mohr–
Coulomb criterion. The numerical analysis has provided relationships between flow rate, 
permeability, and pressure under variation in the horizontal component S of the external stress and 
and parameters characterizing the dependence ( )fk σ  in the zones of elastic deformation and failure. 

Specifically, it is found that the flow rate increases at decreasing S and increasing external pressure. 
The filtration test setup is developed for cylindrical samples with a central hole, and, using the 
obtained solution, the experimental data processing procedure is proposed for determination of the 
parameters in the dependence ( )fk σ . 
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