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Abstract—Statistical data on aircraft collisions with birds of prey (Falconiformes and Accipitriformes) are
analyzed. The basis of the analysis was the results of study at the Severtsov Institute of Ecology and Evolution,
Russian Academy of Sciences (IPEE RAS). The reasons and factors attracting birds of prey to airfields are
considered. In the period from 2005 to 2022, seven species of birds of prey involved in 29 collisions with air-
craft were identified. The largest number of birdstrikes occur with the Common Kestrel Falco tinnunculus and
the common buzzard Common Buzzard Buteo buteo. Most collisions occur at the airport or in its vicinity;
strikes occur 4.3 times more often during take-off than during landing. Primarily the engine or wing structure
is damaged by collisions with raptor birds. Recommendations are given to control bird behavior to minimize
strikes with birds of prey at the airfield.
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INTRODUCTION
Identification of the bird species involved in a col-

lision with an aircraft is extremely important, as it
allows one to determine the biological risks for a par-
ticular aerodrome and to take adequate measures to
manage the behavior of the corresponding bird species
to curb the increase in the number of collisions. With-
out species definition it is impossible to determine the
location of the collision. Determining the species of
birds that have not been involved in collisions or that
were involved but did not cause damage to the aircraft
is also useful for predicting the possible risks of colli-
sions with aircraft (AC) in the future. It is quite fair
that the act of having a particular species near an aero-
drome is qualified in an ICAO document as a “dan-
gerous approach” (Aerostandart…, 2022). The defini-
tion of species is also necessary for the design of pro-
tective devices for aircraft engines, which is especially
important at the present time, when the creation of
new domestic types of aviation equipment is becoming
an urgent problem.

With the goal of solving problems of aerodrome
ecology, namely the protection of aircraft from bio-
damage caused by birds and other animals, as well as
development of joint proposals for the prevention of
collisions between aircraft and animals at airports, in
February 2020 a cooperation agreement between the
Federal Air Transport Agency and the IPEE RAS was
signed (Website of the Federal Agency…, 2022).
Within the framework of this agreement, the employ-

ees of the Institute should conduct noncontractual
identification studies based on feather material; in this
case, the material and data of a collision that did not
cause damage are analyzed.

As a result of many years of cooperation between
IPEE RAS and PJSC Aeroflot Russian Airlines, the
number of registered incidents with species identifica-
tion has significantly increased, at least on the routes
of this company. Comprehensive examinations are
carried out in the case of biodamage to aircraft. The
same studies are carried out for other Russian airlines
and airports, but contracts with them are of a limited
nature. Comprehensive studies of contract work
include molecular genetic analysis and feather struc-
ture study to determine the species, the location of the
incident, information on the biology of the species,
and recommendations for managing the behavior of
the species participating in the collision.

The purpose of this study is to analyze data on col-
lisions with aircraft by birds from the orders Falconi-
formes and Accipitriformes.

MATERIALS AND METHODS
The source of information on the basis of which

this study was carried out was the IPEE RAS data
obtained as a result of contractual examinations, as
well as performed in the framework of cooperation
with the Federal Air Transport Agency on a noncon-
tractual basis for the period from 2011 to 2022, inclu-
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sive. To determine the species of birds of prey involved
in collisions with aircraft, methods of molecular
genetic analysis were used (Silaeva et al., 2020), as well
as methods for determining the structure of the feather
(macro- and ecological analysis, as well as methods of
scanning electron and light-optical microscopy
(Silaeva, 2019, Silaeva et al., 2020; Silaeva and Cher-
nova, 2021). In cases of noncontractual work, the spe-
cies is determined solely by the structure of the
feather/feathers (Silaeva, 2019). The species in these
cases can only be determined if there are indicative
feathers; as a rule, these are wing or tail feathers or
their fragments. By the down of the downy barbs, it is
possible to determine an order or family.

RESULTS AND DISCUSSION

General statistics of bird collisions from the orders
Falconiformes and Accipitriformes. The bird strike data
for civil aviation f lights of the Russian Federation are
given in Table 1.

Birds of prey are involved in many biodamaging sit-
uations; in particular, they actively encounter AC.
According to statistics from the International Bird
Strike Committee (Thorpe, 2012) from 1912 to 2002
47% of all incidents occurred with Accipitriformes. In
the 1960s and 1970s, 112 collisions with birds of prey
were recorded in the world out of the total number of
incidents, 729 (Jacobi, 1974). Birds of prey have been
known to attack aircraft. This occurs when the aircraft
approaches the displaying pair, being at the same
height or slightly lower (Bruderer, 1978).

The territory of the airfield is very attractive for this
group of birds in particular. From the heated runway,
warm air currents rise, which birds of prey use to glide,
conserving their energy. It is convenient to hunt in
open uninhabited areas. Planes during take-off and
landing knock down many large insects, which are
eaten by small falcons. The foraging behavior of birds
of prey is based on looking out for prey from a soaring
flight, as well as gliding in place; the latter is especially
characteristic of the kestrel Common Kestrel, the
Red-footed Falcon, and the Common Buzzard.
Looping or hovering raptors that stay in the air near a
runway for long periods of time pose a significant
threat to aircraft during taking off and landing. Small
falcons also use the opportunity to catch lizards or
shrews on the runway, which are clearly visible on a
smooth surface.

Black Kites, forming f locks on migration, some-
times numbering hundreds of birds, can soar for a long
time in a common “carousel.” Usually such accumu-
lations occur near landfills and slaughterhouses,
where birds linger. In India, aircraft collisions with the
Black Kite Milvus migrans govinda make up 25%, and
with the White-rumped Vulture Gyps bengalensis, 23%
of the total number of incidents (Grubh and Sathee-
san, 1992). Migratory birds and, in particular, birds of
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prey use the territory of the airport and its immediate
surroundings for feeding or rest. At the same time,
birds of prey like hawks and falcons are used at air-
fields as a repellent away small birds from the runway.

An important component of this work, along with
the identification of the species, is the establishment
of the geographic location of the collision with the
bird. This is necessary not only to determine the
responsibility of the airport, but also for full account-
ing of data in the geo-information base and in the Uni-
fied database for registration and analysis of bird strike
evidence. The geographic location of the collision is
directly related to the biology of the species. By ana-
lyzing data on the biology of the species, as well as the
circumstances of the collision, it is possible to deter-
mine the location of the incident. On the basis of bio-
logical data, we conduct ecological and geographical
analysis, including data on the phenological zoning of
the species, and combine these data with technical
information obtained from the reports of the aircraft
command (changes in technical parameters in engine
operation, impact sound from a collision, smell, etc.)
and messages from airport staff. On this basis, we draw
a conclusion about the geographical location of the
collision. When there is a lack of data on the circum-
stances of a collision, one has to resort to a ratio that
indicates, in percentage terms, the probability of a col-
lision at the airport of take-off, landing, or on the
route.

Below are a few examples from the Unified data-
base for recording and analyzing data on bird strikes
(Table 1).

In case no. 2, after determining the species and
subspecies, the Black-eared Kite Milvus migrans linea-
tus, it was concluded that the collision occurred pre-
sumably in the vicinity of the Irkutsk airport with two
migratory specimens of the indicated subspecies. It
was taken into account that in mid-September the spe-
cies in the Moscow region occurs irregularly or in very
small quantities. At the same time, the reports of the
pilot and employees of airport services confirmed our
conclusion.

In case no. 6, the incident was found to have taken
place at the airport in Alicante. In March, in the Mos-
cow region, the occurrence of the Marsh Harrier is
extremely low. In Spain, the Marsh Harrier popula-
tion is a native resident. In addition, during seasonal
migrations and in winter, individuals from more
northerly regions of Europe are found here. During
wintering and during migrations Marsh Harriers can
be found in any open biotope, but they prefer to stick
to wetlands with reed beds. The airport of Alicante is
located just three kilometers from the Mediterranean
coast. It is possible that the Marsh Harrier inhabited
coastal wetlands. The conclusion was partially con-
firmed by the reports of the airport services of the city
of Alicante.
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In case no. 14, the encounter was with a migrant or
nomadic subspecies of the Common Buzzard. The
subspecies belongs to the eastern race of the Common
Buzzard Buteo buteo japonicus, which breeds in Russia
from the basin of the right tributaries of the Yenisei,
Eastern Sayan, and Khangai east to the Pacific coast,
so it was concluded that the incident could only have
occurred at the airport of departure, that is, in Vladi-
vostok.

In case no. 17, the Peregrine Falcon was a partici-
pant in the biodamaging situation. The Peregrine Fal-
con is a very rare nesting migratory species both in the
Moscow region and Germany. But in Germany, pro-
grams have now been developed for breeding Pere-
grine Falcons in enclosures with the subsequent
release of young animals into the wild, often the
released birds gradually moving to cities. In the snow-
less and low-snow areas of Western Europe, which
include Düsseldorf, the Peregrine Falcon also often
winters. It winters very rarely in Moscow and Moscow
region. The last migrating birds are recorded in Octo-
ber. In addition, the Peregrine Falcon is a daytime
predator, and the landing at Sheremetyevo airport was at
night. We took into account all these data and concluded
that the incident took place at the airport of Düsseldorf,
which German colleagues had to admit as well.

A similar incident (case no. 20) took place at Han-
nover airport. The Red-footed Falcon is quite com-
mon in Western and Eastern Europe; in the Moscow
region, it is very rare, endangered, and listed in the
Red Book of the Moscow region. Rarity and sporadic
distribution was characteristic of the species in the
past, but in the last quarter of the 20th century, the
numbers of the population near Moscow have
decreased even more; now the species is found singly
in the region. Thus, according to the results of an eco-
logical and ornithological survey of the territory of the
airport and the 15 km zone adjacent to it, three years
earlier, the Red-footed Falcon was not noted.

In case no. 23, the collision occurred on the airfield
of Sheremetyevo airport with a migrating Common
Kestrel. This conclusion was made based on of the
report of the aircrew and biological data on the distri-
bution of this species. During take-off at Sheremet-
yevo airport, the aircrew observed birds f lying near the
aircraft, and two seconds after take-off noted an
increase in the vibration parameters. The Common
Kestrel is a relatively rare nesting and migratory spe-
cies of the Moscow region, most often found in open
agricultural landscapes, where there are edges of tree
plantations, as well as in the suburbs and outlying areas
of various settlements, including Moscow. Birds often
use the runway to look for prey, rest, and roost.

An incident with the Common Buzzard ended in
serious consequences (case no. 13). During take-
off/separation from the runway on January 11, 2019, at
Sheremetyevo airport, a bird attacked the plane. As a
result, the buzzard was sucked into the left engine, two
BIOLOGY BULLETIN  Vol. 50  No. 4  2023
blades of the retaining stage of the internal contour of
the engine guide vane were damaged. There was a
smell of burning in the cabin; it was decided to return
to the airport of departure (forced landing). At the
same time, the species occurs sporadically in the Mos-
cow region in winter, and its ecological niche is occu-
pied by the Rough-legged Buzzard.

Collision analysis by type. Of the 29 collisions, the
Common Kestrel accounted for ten; followed by buz-
zards with Common Buzzard in six and the Rough-
legged Buzzard in one case. The Marsh Harrier was
involved in four cases; there were three cases with a
Eurasian Hobby, and three collisions with kites: two
with Black Kites and one with a Brahminy Kite; and
one each with a Goshawk, Peregrine Falcon, and
Red-footed Falcon.

Collision analysis by stages of flight, the part of the
aircraft affected by the impact, and the time of the year.
The frequency of collisions is the greatest during
ascent, which is fraught with the greatest conse-
quences; the plane during take-off is heavy, and in this
case, it is more vulnerable (Fig. 1a).

The engine is the most vulnerable place, and the
severity of biodamaging consequences depends on the
mass of the bird. Representatives of all the orders stud-
ied belong to the second weight category. Almost half
of the collisions occur on the engine, as it actively
sucks in the birds (Fig. 1c). The engine can grind a
small bird without loss of performance capabilities.

An impact on the radar in the bow can threaten the
loss of some radar functions.

The largest number of collisions occurs in summer,
and the number of events is approximately equal in
autumn and spring; the time most free from incidents
is winter.

Analysis of Table 1 also showed that the ornitho-
logical safety of f lights abroad is also not entirely in
order. Out of ten foreign f lights (cases 1, 6, 7, 10, 13,
17, 20, 25–27), eight had a collision abroad. Only in one
case (no. 26) did it occur at Sheremetyevo, and the loca-
tion of one incident has still not been identified.

Basic measures to avoid collisions with Falconi-
formes and Accipitriformes in the aerodrome environ-
ment. For the species of this group of birds, there are
no special means of controlling behavior. Mainly envi-
ronmental and sanitary measures are applied to elimi-
nate the breeding factors of small mammals, which in
turn attract birds of prey. But there are general mea-
sures to minimize collisions, more or less drastic, but
without harming the birds.

Geomonitoring and Geo-Information Safety Systems
for Flights in Aerodrome Ecology

To create geographic information systems for f light
safety (GIS FS), employees of the IPEE RAS divided
the airports of the Russian Federation into zones of
the same type using physical-geographical and cli-
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Fig. 1. Collision analysis by (a) stages of f light, (b) time of year, and (c) on the part of the aircraft affected by the impact.
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Summer
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(b)

(c)
matic zoning. In this case, the data of the Federal Air
Transport Agency on the degree of the absolute and/or
relative number of collisions at airports and their envi-
rons are used (Fig. 2, according to Bukreev and
Veprintseva, 2009).

For each airport, it is planned to assess the land-
scape and biotope features of the area and the ornitho-
logical load and its seasonal component and identify
dangerous species. Not all most common species (spe-
cies present in the zone at a given time, whether
migratory, nomadic, or native resident) of the given
study area are equally dangerous, as evidenced by the
identification data obtained as a result of the above-
mentioned examinations. Information about the indi-
vidual features of the airport is available in the reports
of ecological and ornithological surveys, in field dia-
ries, and in diagrams and maps of feeding and migra-
tory movements of birds. In order to predict the danger
of a collision with a particular bird species, an analysis
and comparison of all available data on the airport and
the 15-km zone around it is undertaken. In this way,
databases on collisions and behavior of biodamaging
bird species are created for each airport. These bases
should be included in the GIS FS for Russia.

Abroad, they also collect data on the presence and
abundance of different animal species with geographic
reference to the place, that is, GIS FS are created. In
addition, the data from these databases have turned
out to be extremely valuable for spatiotemporal analy-
sis, for example, to identify phenological changes that
show the response of birds to climate change (Parme-
san and Yohe, 2003; Jonzenet al., 2007; Menzel et al.,
2006). GIS FS analysis also helps to identify popula-
tion shift trends under the influence of changing envi-
ronmental conditions (Krebs et al., 1999; Benton
et al., 2002; Stuart et al., 2004).

Based on field observations, maps of the spatio-
temporal distribution of bird density was developed
(Fig. 3), as were two web models for collision avoid-
ance in the Netherlands and the continental United
States and Alaska (Shamoun-Baranes et al., 2007).
The development of such models requires a transdisci-
BIOLOGY BULLETIN  Vol. 50  No. 4  2023
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Fig. 2. Distribution of airports by physical-geographical regions and the number of collisions per 10000 take-offs and landings.
Red circles, more than 10; yellow, from 1 to 9.9; green, less than 1 (Bukreev and Veprintseva, 2009, with changes).
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plinary approach, in particular, of experience in field
and radar ornithology, geostatistics, computer model-
ing, information management, remote sensing, and
computer science. In addition, this work requires col-
laboration between academic, commercial, and con-
servation institutions, as well as birdwatching societies
and airport aviation ornithologists.

In the future, based on an in-depth study of long-
term monitoring data, it is proposed to predict the spe-
cies-specific behavior of birds in airport areas (Metz
et al., 2021). The predictive life of bird strike avoid-
ance models is on the order of 5–10 years (Shamoun-
Baranes et al., 2007).

Bird Detection Systems for Flights in Real Time
Such systems are being created both here and

abroad. In this case, radar or stereo systems are used
(Gradolewski et al., 2021). At foreign airports, these
systems calculate the strike risk for birds that are
expected to cross the runway center line and cause
damage to the aircraft. The rest birds, those on the
ground, are subject to the attention of terrestrial
ornithological services. As a result, birds are detected
BIOLOGY BULLETIN  Vol. 50  No. 4  2023
on the path of the aircraft, their speeds and trajectories
of movement are predicted, and if there is a danger of
collision, the ground services, having received infor-
mation about the presence of birds on the path of the
aircraft, give a command to the aircraft crew, and the
flight is delayed or, in rare cases in case of large and
long-term migrations, cancelled. Mainly the take-off
is delayed, usually by no more than ten minutes. Such
collision avoidance methods are proposed by interna-
tional teams of authors from Germany, Holland,
Israel, Denmark, and the United States (Metz et al.,
2016, 2017, 2019, 2020, 2021a, 2021b; Van Gasteren
et al., 2018).

At Pulkovo airport in St. Petersburg, the Volacom
system developed in Bulgaria (Website Volacom,
2022) is used. At Sheremetyevo airport, a Merlin bird
detection radar system developed in the United States
was installed (AeroExpo website, 2022).

At the World Birdstrike Association Europe Con-
ference March 7–8, 2022, a bird behavior monitoring
radar system developed in Poland was presented
(Advanced Protection Systems, 2022).
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Fig. 3. (a) Number of Common Buzzards recorded at one survey site in December 2000. (b) Modeled buzzards’s distribution map
(Shamoun-Baraneset al., 2007).
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Fig. 4. Approximate scheme for control of zones danger-
ous for collisions with birds.
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In the Russian Federation, at the moment there are
developments of JSC Research Institute Vector, the
Orniornithological f light safety system for airports
(Rostec website, 2022) and the radar-optical complex
ROSK-1 of the Concern VPO Almaz-Antey (Official
website of PJSC NPO Almaz-Antey, 2022). Both sys-
tems are in the testing phase.

There is also a working system for detecting and
tracking air objects by reflected radio signals from
third-party sources in the passive-active radar systems
“Enot” (“Raccoon”) (Batchev et al., 2016) with its
own radiation pattern of an acoustic source of repel-
lent signals, which is positioned in space depending on
the position of the bird or birds the behavior of which
is expected to be affected.

A review of all the listed means for detecting and
controlling the behavior of birds shows, firstly, their
presence in the world and, secondly, the possibility of
optical-electronic and radio-electronic means to
detect birds at a distance of up to two kilometers. At
the same time, a dense f lock of birds comparable in
size to an airplane can be detected even at a distance of
20 km. The main common drawbacks are the inability
to determine the species from radar data; tracking
exclusively single targets, that is, single birds, but not
groups or f locks; and the absence of a directional pat-
tern of acoustic signals, which automatically adjusts to
the object being repelled. Such a diagram exists only in
the “Enot” (“Raccoon”) system. The main disadvan-
tage is the lack of cognitive, fully automated systems
for detecting and controlling animal behavior (Hoek-
stra and Ellerbroek, 2016).

An automated and very effective means of detect-
ing and controlling the behavior of birds without their
elimination could be a complex cognitive system that
would allow monitoring the airspace of the airfield
zone using radar and optoelectronic means (Fig. 4).

In this case, the following tasks are solved:
● automatic detection of a bird in a controlled area;
● automatic virtual bird capture with assigning an

identity number, escorting a bird, and determining the
direction of f light and speed of movement of a bird;
BIOLOGY BULLETIN  Vol. 50  No. 4  2023
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● identification of the type of accompanied bird by
wing beats, size, and nature of f light.

All available information that is stored in the data-
base is linked to the identity number, including the
time the bird was found and the time the bird was
observed after it left the zone.

The data from the database are fed into the cogni-
tive model, which predicts the f light paths of all
escorted birds and the aircraft trajectories, and
assesses the level of threats of collision with the air-
craft. Each flight approaching and taking off is quan-
tified based on the level of ornithological threats. The
assessment of the level of threats is transformed into
control actions, which are reduced to

● the application of the behavioral controls of the
airport;

● f light delay or cancellation.
There is no such automated system at foreign air-

ports either, as evidenced by the analysis of the litera-
ture and indirectly by the fact mentioned above about
the vast majority of bird strikes occurring on the terri-
tories of foreign airports (Table 1).

Removal of Part of the Bird Population 
and Removal from the Airport

Activities to capture birds of prey are held both at
domestic airports and abroad. At O’Hare Interna-
tional Airport in Chicago (United States), experi-
ments were carried out to capture and move the Red-
tailed Hawk Buteo jamaicensis outside the airport. At
the same time, when catching and removing buzzards
without their elimination, the relative number of colli-
sions decreased by 47%, and movement with partial
elimination reduced the number of cases by 67%
(Washburn et al., 2021).

When using this method, care must be taken to
ensure that only part of the bird population is taken
and that the interests of the birds are also taken into
account. Some “problem” species for aviation are rare
or vulnerable, and most of the species, as links in the
chain, constitute the biological diversity of our avi-
fauna and represent valuable resources. Species that
cause damage on the territory of the aerodrome, in a
different ecological and economic situations, are
indispensable. Birds of prey are consumers of the
highest order, located at the top of the ecological pyr-
amids, which is why they are especially sensitive to
environmental changes. The main factors in the
reduction of raptor populations are direct human per-
secution, deterioration of living conditions due to
anthropogenic expansion, depletion of the food supply,
the harmful effects of pesticides, death on man-made
structures, and the impact of disturbances (Ilyukh and
Khokhlov, 2010; Cleary and Dolbeer, 2005).

We do not suggest saving birds at the cost of the
safety of aircraft and passengers, but other things being
equal, we call on airfield services to avoid lethal mea-
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sures for animals. Killing birds is not only inhumane,
but also inappropriate. In this case, the ecological
niche of the withdrawn population will be refilled by
the another population, the less experienced members
of which are unaware of the danger posed by an air-
craft taking off or landing. As a result, the number of
collisions with aircraft may increase.

With proper management of ornithological
resources in the aerodrome ecology, bird populations
are formed that are adapted to local living conditions.
Such individuals rarely encounter aircraft. At the same
time, populations that include experienced individuals
occupy part of the ecological capacity of the land and
prevent the introduction of unadapted newcomers.
But if such do appear, then the natives serve as a good
example for newcomers, facilitating their adaptation.
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