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Abstract—Two thirds of the giant panda population in the Sichuan Province of China is at risk of extinction
due to habitat fragmentation. Connectivity constraints prevent spontaneous re-population of remaining frag-
ments of their historical habitat. On the other hand, the increasing number of captive-bred giant panda makes
release into the wild feasible. A comprehensive approach for the identification of potential release habitat and
the number of giant panda required for rewilding is demonstrated. The extent of the uninhabited giant panda
habitat in 2013 and in 2060 was established by using the MaxEnt species distribution algorithm, published
occurrence points (n = 1014) and a broad range of landscape variables namely, climatic, terrain, soil, vegeta-
tion and human impact, including mines and roads. We used AUC, SD, kappa, CCI, NMI, the odds ratio,
TSS, bootstrap replicates and an alternative preprocessing of predictor variables to validate our model. A least
cost path (LCP) between habitat fragments was calculated to identify dispersal corridors required for avoid-
ance of inbreeding. Well-connected, uninhabited habitat patches and their number of home ranges were
identified. Considering the net reproduction rate of giant panda, we calculated the number of giant panda to
be released annually over a 25 or 50 year period, to fully occupy the available home ranges. We identified
6.900 km2 well-connected, uninhabited habitat allowing for the annual release of 45–89 or 10–20 captive-
bred giant panda for a 25 or 50 year release project. We suggest that our approach may be used for the rein-
troduction of other large solitary terrestrial mammals.
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1. INTRODUCTION
At present, many populations of large mammals,

including giant panda, Amur tiger, Amur leopard and
brown bear are supported by release and rewilding
projects (Goodrich and Miquelle, 2005; Miquelle et
al., 2015; Tosi et al., 2015). Such projects need scien-
tific support in setting release targets. In Sichuan,
giant panda (Ailuropoda melanoleuca)—panda hereaf-
ter—feeds on 32 species of bamboo belonging to 7 gen-
era, including staple food such as Bashania fangiana,
Yushania brevipaniculata and Chimonobambusa szech-
uanensis (Yi and Jiang, 2010). The conservation his-
tory of the panda in China can be traced back to the
1970s. Then, the large-scale f lowering and subsequent
die-off of arrow bamboo (Fargesia nitida), the main
food of panda, resulted in a large number of deaths
(Hu, 2004). As a response, trials on breeding captive
panda were undertaken dealing with, among others,

the onset of estrus, mating, domestication, artificial
insemination and cub nursing (Ding et al., 2019;
Hama et al., 2009; Martin-Wintle et al., 2019). Lately,
the number of captive-bred panda has been growing at
a rate of about 9.3% per year (Xinhuanet, 2019).
Moreover, the Giant Panda National Park established
in 2017 (Zhao et al., 2019) is available for release.
Despite the great effort, panda is still listed as vulner-
able in the current Red List of Threatened Species
(IUCN, 2019). The vulnerability is partly brought
about by habitat fragmentation that hinders gene
exchange and accelerates the decrease the genetic
diversity within wild populations (Xiong, 2018). Cur-
rently, two thirds of the panda in Sichuan province live
in small, unconnected habitat patches at a high risk of
extinction (Information Office of the State Council,
2015). The level of inbreeding in wild panda is greater
than expected for a solitary mammal (Hu et al., 2017).
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In order to optimize the number and genetic diversity
of panda, two complementary strategies maybe imple-
mented, namely release and rewilding of captive-bred
panda into isolated habitat patches (Zhang and Wei,
2006) and establishment of dispersal corridors
between such patches (Yin et al., 2010). Rewilding is
an accepted rescue strategy for panda. Rewilding
panda can preserve genetic diversity and improve the
probability of survival in small isolated panda popula-
tion (Dai et al., 2020). Previous studies have shown
that trained and rewilded pandas gradually approxi-
mate that of wild pandas on habitat selection (Zhang
et al., 2013) and gut microorganism (Jin et al., 2019),
which can be taken as an indicator of guarantee of wel-
fare in rewilding of panda. By effective planning and
guidance of local government, the conflicts between pan-
das and locals are rare and endurable. Rewilding is also
highly and socially accepted by the local due to it social,
economic and ecological benefits (Ma et al., 2016).
Recently, pilot cases of successful rewilding of panda have
been reported (An, 2017; Wang, 2017; Yu, 2017), suggest-
ing large-scale rewilding has become feasible. The estab-
lishment of corridors between two otherwise isolated hab-
itat patches is a common conservation strategy as well and
may mitigate inbreeding depression over long time scales
(Buglione et al., 2020; Wang et al., 2014).

The panda is mainly found in the Sichuan, Shanxi
and Gansu Provinces. In Sichuan, the occupied habi-
tat covers about 25.800 km2. The additional potential
or uninhabited habitat is estimated at about 9.100 km2.
Both increased in extent at 11.8 and 6.3% respectively over
the past decades (Sichuan Forestry Department, 2015).
The number of panda in the wild reached 1864 animals,
mostly (n = 1387; 74.4%) in Sichuan (Geng, 2015). The
annual growth rate was 1.5% (Geng, 2015). The panda
density is low (0.07 animals/km2), suggesting potential for
population growth (Sichuan Forestry Department, 2015).

The “Captive Giant Panda Release Project”
(Swaisgood et al., 2011) is expected to start shortly in
Sichuan. However, a target density or target number of
panda to be released has not been established. Our
study aims at contributing to the Release Project by
establishing the extent of the uninhabited, well con-
nected panda habitat and the number of captive-bred
panda that should be released annually to populate these
habitats. The location and extent of potential habitat
patches was estimate by a spatial maximum entropy
model (MaxEnt), the uninhabited habitat by subtraction
of the known occupied habitat. Then, we calculated
Least Cost Paths (LCPs) between the habitat patches.
The LCPs may function as dispersal corridors to avoid
inbreeding. The number of panda to be released annually
was assessed by the known home range (Hu et al., 1985)
and net reproduction rate (Hou, 2000).

2. MATERIALS AND METHODS

2.1. Research Area

Our research area is the Sichuan Province (4.86 ×
105 km2) in southwest China located between 26°03′–
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34°19′ N and 92°21′–108°12′ E (Fig. 1). The main
landforms (Fig. 1) are the high plateau in the west
(4000–4500 m), the central and a southern mountains
(>4000 m) and the basin and hills (1000–3000 m) in
the east (Shao et al., 2012).

Needle leaved forests dominate on the high plateau
and broadleaved deciduous forests in the basin and on
the hills. At forested mid-elevations (1500-3000 m) in
the central and southern mountains, bamboo is com-
mon as understory in forest and forest openings. At the
high plateau with its cold-temperate climate fewer
bamboo species occur. The basin and hills as well as
the lower elevations of the mountains are situated in a
humid, subtropical monsoon climate. Above alpine
elevations (>3200–3500 m) in the mountains, grass
and shrub dominate. The highest elevations are sea-
sonally snow-capped or even glaciated. Bashania fang-
iana, Yushania brevipaniculata and Chimonobambusa
szechuanensis, as the staple food of pandas, are widely
and mixed distributed in various habitats of pandas
(Gao et al., 2014; Yi and Jiang, 2010).

Sichuan has nearly 87 million inhabitants. The
eastern basin and hills have the highest population
density. The mountains show a medium density, con-
centrated in urban settlements at valley bottoms. The
western plateau is sparsely populated. The road net-
work in Sichuan include 7500 km expressways with a
large impact on giant panda (Zhou, 2002). Sichuan is
covered by forest (40% ), grassland (25%), cultivated
land (14%), residential land (4%), industry (2%),
orchards (2%), water bodies (2%) and unused land
(9%) (Wang and Deng, 2006). Opencast mines (2%)
are widely distributed in the central mountains coin-
ciding with panda habitat (Yang, 2009).

2.2. Research Data
The panda presence points (n = 1014) cover the

period from 2011 to 2014 (Sichuan Forestry Depart-
ment, 2015). We used the four fundamental environ-
mental predictor categories (Table 1) relevant for hab-
itat modeling of terrestrial macro-fauna, namely cli-
mate, terrain, vegetation and human impact (van Gils
et al., 2014). We used the climate data from the
CHELSA database (Karger et al., 2017) of 1979–2013.
The Incoming Solar Radiation (ISR) values were cal-
culated per 30 minutes and summed up per growing
season. In Sichuan, spring lasts from Feb. 6 to Mar. 31,
summer from Apr. 1 to Sep. 5, autumn from Sep. 6 to
Oct. 10, and winter from Oct. 11 to Feb. 5 (Li et al.,
2007). All spatial data preprocessing and calculations
were done with standard operations in ArcGIS 10.2
and projected in UTM-WGS-1984. Where necessary
we resampled to 30 arc-seconds.

2.3. Panda Habitat Modeling
A maximum entropy method (MaxEnt) (Phillips et

al., 2017) was selected from among Species Distribu-
tion Models (SDMs). Potential pitfalls that may affect
the accuracy of the model are spatial autocorrelation
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Fig. 1. Location map of Sichuan Province, the occupied habitat of the panda and the main landforms depicted by the digital ele-
vation model (DEM). 
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of presence points and multicollinearity of predictor
variables (Merckx et al., 2011). We minimized spatial
autocorrelation by filtering all panda presence points
with the SDM Toolbox v1.1c in ArcGIS 10.2. For the
first step of the filtering, we used the natural break
with a maximum distance of 25 km and a minimum of
5 km (Fekede et al., 2019). In the subsequent spatial
rarefying, we set a minimum distance of 13 km
between each pair of points. At 13 km, the probability
that two points represent the same panda is close to
zero (Luo et al., 2017).

Three main methods are used and validated to
reduce multicollinearity of predictor variables in spa-
tial modeling, namely, the Principal Component
Analysis (PCA) (Farrell et al., 2019; Fekede et al.,
2019), the Stepwise Backward Elimination (SBE) (van
Gils et al., 2014) and the correlation coefficient elimi-
nation (D’Elia et al., 2015). The latter method has
been found less optimal (Drake et al., 2006) and has
not been considered. The other two have been used in
parallel in this paper. Since the number of climate
variables is much higher than other variables, we used
PCA (SPSS 22.0) to select major climatic predictors
(Fekede et al., 2019). We used eigenvalues larger than
1.0 and the scree plot criterion or ‘broken stick’ stop-
ping rule for PCA in item level factoring (Bernstein,
1988). The climate predictors with factor loading
≥0.95 were used for subsequent analysis (Landau and
Everitt, 2004). Then, we used PCA for the second
time to obtain orthogonal principal component (PC)
predictors to reduce multicollinearity (Huang et al.,
2018). We used the component score as the coefficient
of each standardized predictors to combine the
selected climatic predictors and the remaining contin-
uous predictors (human impact, elevation, slope
angle, ISR, distance to river). This process uses a
series of orthogonal transformations to re-orient a set
of new, uncorrelated variables. The formula for deriv-
ing principal components (PCi) is as follows:

(1)

Vij is the coefficient corresponding to the standardized
original variable Xij.

The coefficients’ matrix V consists of the eigenvec-
tors from the covariance matrix of the standardized
original variables and is obtained by the principal
component analysis in SPSS 22.0. The eigenvalue of
covariance matrix shows the ability of principal com-
ponents to synthetically reflect variable X1, X2, …, Xm.
The larger the eigenvalue, the higher the ability of
reflecting the original variables. The standardization
of variables is achieved by z-score normalization,
which is subtraction from the average value and divide
the result by the standard deviation (Levi and Rasmus-
sen, 2014).

Finally, we performed Variance Inflation Factor
(VIF) analysis on the PCs. A VIF larger than 10 indi-
cates high multicollinearity (Duque-Lazo et al.,
2016). The uncorrelated predictor variables and the
filtered points served as the data input in MaxEnt. A
limitation of PCA is that it is optimized for quantita-
tive data (Vaughan and Ormerod, 2005). Therefore,
the categorical variables, soil type and land cover, were
fed directly into MaxEnt. The PCs, soil type, land
cover and the presence points were used to build and
validate the spatial models based on 10 bootstrap rep-
licates. We tested the regularization multiplier (β)
between 1 to 5 to determine the optimal value. For the
remaining parameters, we kept the default settings.
For visualization, the Jenks natural break was used to
classify the model output (Liu et al., 2019). Smoothing

1 1 2 2 ,
j j m mi i i i i i i iPC V X V X V X V X= + + … + + … +
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Table 1. The environmental predictor variables used in modelling the panda release habitat (Column 1). The source of the
variables is provided in column 2. The third column contains the value range of the contiguous variables or for categorical
variables the types as found in the research area 

a T = temperature; P = precipitation. Source: http://chelsa-climate.org/
b ISR = Incoming Solar Radiation at ground level. Source: http://gdem.ersdac.jspacesystems.or.jp/
c Source: http://www.gscloud.cn/
d Source: https://www.worldpop.org/
e Source: https://soilgrids.org/
f Soil type: Spodosols, Andisols, Oxisol, Vertisols, Aridisols, Ultisols, Mollisols, Alfisols, Inceptisols and Entisols
g Source: https://maps.elie.ucl.ac.be/CCI/viewer/
h Land cover: Cropland, Herbaceous, Tree, Shrubland, Grassland, Urban areas, Bare areas, Water bodies and Permanent snow and ice.

Variable Source Variable value range or categories (type)

Climatea CHELSA

Monthly P Ibid. 0 to 545/0 to 581 mm/month

Monthly mean T Ibid. –17.5 to 29/–15.5 to 31.3°C

Monthly min T Ibid. –25.3 to 25.2/–23.4 to 27.7°C

Monthly max T Ibid. –11.9 to 32.6°C(current)/–9.3 to 34.9°C

Bioclimatic (bio1-19) Ibid. Supplementary Information Table S.1

Terrain ASTER-GDEMb

Elevation Ibid. –553 to 7845 m a.s.l

Slope angle Ibid. 0 to 89.5°
ISR-spring Ibid. 1.2 to 245.0 wh/m2

ISR-summer Ibid. 81.4 to 813.9 wh/m2

ISR-autumn Ibid. 0.9 to 245.3 wh/m2

ISR-winter Ibid. 6.5 to 116.2 wh/m2

Distance to river Geospatial data cloud, Chinac 0 to 107.7 km

Human impact
Population WorldPopd 0.3 to 3940.9 persons/km2

Distance to road Geospatial data cloud, China 0 to 63.8 km

Distance to scenic spot Ibid. 0 to 273.7 km

Distance to settlement Ibid. 0 to 75.3 km

Categorial
Soil SoilGridse Categoricalf

Land cover/Vegetation ESAg Categoricalh
for map visualization followed (van Gils et al., 2014).
The output was labeled SDM-1.

The process of evaluating or assessing a model is
often referred to as “validation” (Minasny et al., 2017).
The key component of model training and validation
procedures is the criterion which evaluates the model
performance. We use threshold dependent and thresh-
old independent criteria. The area under the ROC
curve (AUC) is a threshold independent criterion
based on plotting the true positives against the false
positive fractions for a range of thresholds in predic-
tion probability (Rushton et al. 2004). Currently, the
AUC is considered the best criterion for assessing
model success for presence/absence data (Austin
2017). AUC is often used as the single criterion for
assessment of model performance (Manel and
Ormerod 2010; McPherson et al. 2004; Thuiller et al.
2003). As threshold dependent validation measure, we
used confusion matrix-based measures including the
Kappa test (Liu et al., 2010), correctly classified
instances (CCI) (Fielding and Bell, 1997), the nor-
BIOLOGY BULLETIN  Vol. 48  No. 6  2021
malised mutual information statistic (NMI) (Forbes,
1995), the odds ratio (Fielding and Bell, 1997) and the
true skill statistic (TSS) (Allouche et al., 2010). The
Kappa statistic and TSS normalise the overall accu-
racy by the accuracy that might have occurred by
chance alone. The percentage of CCI is the rate of cor-
rectly classified cells. NMI quantifies the information
included in the model predictions compared to that
included in the observations. The odds ratio is the
ratio of correctly assigned cased to the incorrectly
assigned cases. An optimal odds ratio may reach posi-
tive infinity, whereas all other criteria are optimal at
their maximum, one. Our model has been assessed by
all criteria mentioned. Further we compared the aver-
age, min, max, median output of the 10 bootstrap rep-
licates with each other. After applying the same visual-
ization process as for the SDM-1, we visually assessed
the similarity of the high probability areas of the four
outputs. To further validate our model, the coincident
area of SDM-1 and the occupied habitat (Sichuan
Forestry Department, 2015) was calculated. As addi-
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Fig. 2. Flow chart of the procedure used for prediction and assessing the release habitat and the required annual number of
released captive-bred panda SBE = Stepwise Backward Elimination.
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tional assessment/validation, we built an alternative
model (SDM-2) with the same input data using a pos-
teriori stepwise backward elimination of predictor
variables (van Gils et al., 2014) instead of a priori vari-
able selection by PCA (Fig. 2).

Finally, the uninhabited habitat patches were
obtained by subtraction of the occupied habitat from
the predicted habitat minus the buffered (0.5 km)
opencast mines (Sichuan Forestry Department,
2015).

2.4. Dispersal Corridor Analysis

The connectivity of the habitat patches by dispersal
corridors was calculated by the LCP approach (Fig. 2).
LCP analysis estimates efficient movement routes and
costs between pairs of habitat patches based on the
suitability of the intervening matrix. LCP analysis is
used for many terrestrial mammals, including brown
bear (Peters et al., 2015) and cougar (LaRue and Niel-
sen, 2008). First, we built the cost surface. The cost
value of each cell in the grid is based on the mobility of
panda in different environments. Vegetation type, ele-
vation and slope-angle raster maps (Table 1: Fig. 2)
were used to create the cost surface (Ziółkowska et al.,
2012). Elevations between 2000–3000 m, slope-angles
from 18–27° and evergreen needle-leaved forest were
assigned the lowest cost value (1—lowest resistance,
easy to traverse). Raster cells with elevations below
1000 m or above 4000 m, a slope-angle larger than 50°,
urban cover and bare cover were assigned the highest
cost value (9—highest resistance, hard to traverse).

The intermediate cost values are shown in supplemen-

tary information Table S.2. The rating of the three cost

factors was added to create a cost surface (LaRue and

Nielsen, 2008). LCPs were constructed between each

pair of neighbouring habitat patches based on the cost

surface (Rayfield et al., 2010). The LCPs were calcu-

lated with the Linkage Mapper V 2.0.0 in ArcGIS. The

calculated paths were ranked into three classes (high,

medium, and low) according to their accumulated

costs by means of a K-means algorithm (Hashmi

et al., 2017). The uninhabited habitat was divided into

potential release regions by size (small/large), location

(peripheral to/contiguous with occupied habitat),

clustering (scattered/clustered) and connectivity

(high/low quality LCP) of habitat patches. Finally, we

summated the occupied habitat and the well-con-

nected, uninhabited habitat as maximum available

habitat (Fig. 2).

The panda is a solitary animal with a home range of

3.9–6.2 km2 showing a negligible overlap (Hu et al.,

1985). The number of panda that maybe released was

calculated by dividing the extent of the uninhabited,

well-connected habitat by the home range. We

adopted the average generation period of 12.16 years

and the net reproduction rate of 1.0573 (Hou, 2000).

The number of panda that could be released annually

in the second or fourth generations was calculated with

the following formula:
BIOLOGY BULLETIN  Vol. 48  No. 6  2021
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Table 2. The four Principal Components (PC) of the cli-
matic variables, Eigenvalues of each PC and their variance
and the cumulative variance of all climatic variables (n = 67) 

PC
Initial Eigenvalues

total variance % cumulative %

1 46.1 68.9 68.9

2 14.0 20.8 89.7

3 3.6 5.4 95.1

4 1.4 2.1 97.2

Table 3. The validation criteria of the SDM-1 and the
SDM-2 

Validation criteria SDM-1 SDM-2

AUC (area under the ROC curve) 0.96 0.96

SD (standard deviation) 0.003 0.004

Kappa 0.93 0.91

CCI (correctly classified instances) 0.93 0.91

NMI (normalised mutual 

information statistic)
0.63 0.64

Odds ratio 101.59 112.04

TSS (true skill statistic) 0.82 0.83
(2)

Where: a = net reproduction rate and n = target period
(year).

3. RESULTS

Hundred fifty-two (152) panda presence points
remained after filtering. The PCA for climatic vari-
ables delivered four PCs together accounting for
97.2% of the total variance (Table 2). After PCA, the
minimum temperature in April (hereinafter called
tmin4, 44.1% contribution), the maximum tempera-
ture in June (hereinafter called tmax6, 36.2% contri-
bution) and the temperature seasonality (hereinafter
called bio4, 19.7% contribution) were kept for spatial
modeling.

Using the component score coefficient (Supple-
mentary Information Table S.3) as a combination of
weights, we obtained eight PCs for the three selected
climate variables and the other continuous variables.
These eight PCs explained more than 90% of the vari-
ance and were uncorrelated (VIF 1.0-1.9). The eight
PCs plus the categorical variables (soil and land cover)
were entered in MaxEnt as environmental layers. With
the increase of β, the predicted habitat area is also
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increasing. The optimal regularization multiplier for
our habitat model is β = 1. The validation criteria of
the SDM-1 and the SDM-2 were nearly identical
demonstrating a robust panda habitat model (Table 3).

The overlay pattern of average, min, max, median
output of the 10 bootstrap replicates was sufficiently
similar (Fig. 3). The standard deviation of the ROC
curve (Fig. 4) is small and even. The habitat predicted
by the SDM-1 and the SDM-2 is largely the same,
further validating our panda habitat model. In addi-
tion, our predicted habitat covered 90.5% of the sur-
veyed occupied habitat which may be considered as an
independent validation of our model accuracy.

Soil and vegetation (land cover) types contribute
together 78.5% to the SDM-1 habitat model and the
PCs 21.5%. PC1, PC3 and PC7 are the top contribu-
tors among the PCs. The PC1 (8.4%) is related to the
ambient temperature and elevation, the PC3 (3.3%)
and PC7 (4.2%) represented temperature seasonality
and human impact respectively (Supplementary
Information Table S.4). The remaining PCs are not
considered because of their small contribution. SDM-
2 using the SBE method showed that the minimum
temperature in June (hereinafter called tmin6, 27%
contribution), mean diurnal temperature range (here-
inafter called bio2, 25.8% contribution), soil (23.7%
contribution) and vegetation (23.5% contribution)
were the main predictor variables. Moreover, the
probability of panda occurrence is high when the
mean diurnal temperature range is small (5.5–6.5°C);
the larger the temperature range, the lower the occur-
rence probability. Further, moderate minimum June
temperatures (13–18°C) seem suitable for panda. Spo-
dosols, entisols, broadleaved evergreen forest and,
needle-leaved evergreen forests are predictors for
panda presence.

The predicted habitat covers a belt from south to
north in the middle of the central mountain range in
Sichuan (Fig. 5). Habitat patches with medium con-
nectivity occur mainly in the north (Aba), central
(Aba), northeast (Bazhong and Dazhou) and the
south (Liangshan) of Sichuan, and a small patch in the
southeast (Luzhou). The predicted habitat of SDM-1

covers 18.342 km2.

The 18.342 km2 predicted habitat leaves 18.155 km2

after removing the unusable open cast mining areas.
The habitat in the Minshan mountains consist of two
patches 15 km apart. The predicted habitat the Qion-
glai and Daxiangling mountains are connected. The
predicted habitat patches in the Xiaoxiangling and
Liangshan mountains are situated more than 15 km
from other patches. The LCP analysis delivered 231
dispersal corridors (Fig. 6). The uninhabited habitat
was subdivided into 7 potential release regions (A–G)
(Table 4). The well-connected, uninhabited habitat is

approximately 6.900 km2. Finally, the occupied and
well-connected, uninhabited habitat together is about

25.000 km2. The occupied and well-connected habitat
in Sichuan may ultimately accommodate 4040–
6423 individuals. To achieve such numbers, annually
45–89 captive-bred individuals should be released
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Fig. 3. The average, minimum, maximum and median
output of the 10 bootstrap replicates of the SDM-1. In the
upper left corner, the box shows the location of the habitat
in Sichuan, and the black box shows the enlarged area,
which is the main content of this figure.
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4. DISCUSSION

Our finding on the β parameter of MaxEnt is con-
sistent with the characteristics of overfitting (Merckx
et al., 2011). This implies that the default setting (β = 1)
of MaxEnt is also correct in our research setting.

The two methods used in this study to reduce mul-
ticollinearity have their own advantages and disadvan-
tages. The contribution of the environmental predictor
variables were traceable with the stepwise backward
elimination (SBE) method. However, the SBE may
ignore a unique contribution of an omitted variable
that could result in a substantial loss of explanatory
power (Carnes and Slade, 1988; James and McCull-
och, 1990). However, more recent research did not
find such loss, neither within a contiguous research
area (Gils et al. 2014) nor in testing the transferability
of the model to a disjunctive area (Duque-Lazo et al.
2016). As for the PCA method, the first PC (PC1)
contained the most of the data variability of the origi-
nal variable. The succeeding component (PC2) had
the highest variance possible under the constraint that
it is orthogonal to the preceding component (Huang
et al., 2018). The 8 PCs used in this study can explain
more than 90% of the original variables, but it cannot
determine the response of the original variables in the
model. In this study, SDM-1 and SDM-2 are mutu-
ally verified, and the similarity of the results shows
that both methods are effective. How these two meth-
ods should be selected in a different context requires
further research.

The dominant contribution of the two categorical
predictor variables vegetation and soil (78.5%) in the
SDM-1 over and above climate and elevation comes
not as a surprise. A similar finding was reported and
explained in a bear distribution study in a mountain-
ous environment (Gils et al. 2014). Therefore, spatial
distribution models exclusively based on extrapolated
BIOLOGY BULLETIN  Vol. 48  No. 6  2021
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Fig. 5. Predicted panda habitat by the SDM-1 in the Sich-
uan Province. In the upper left corner, the box shows the
location of the habitat in Sichuan, and the black box shows
the enlarged area, which is the main content of this figure.
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climatic variables (WorldClim) should be interpreted
carefully. More so as the current panda study used cli-
matic data (CHELSA) extrapolated explicitly for the
particulars of mountainous environments.

The human impact variables (roads, population
density, scenic spot, opencast mines) used in this
study contributed very little to the predicted habitat.
This may be due to the fact that the remaining wild
panda live in extensive forested areas without human
settlement or isolated farms. Therefore, we did not
include three human impact variables in the LCP cal-
culation. However, opencast mines are known to have
a substantial, negative local impact (Qi, 2009), as also
suggested by the absence of panda records within a
radius of 0.5 km of the mines (Sichuan Forestry
Department, 2015).

The low contribution of the human population
density variable on the model output may result from
using global databases on population density and
urban land cover in the absence of accessible, compre-
hensive provincial data. Such global databases imply
out of necessity broad generalization. We suggest car-
rying out a provincial remote sensing study, including
rural settlements, rural roads and agrarian land
cover/use changes and rerun the habitat model with
the more detailed data.

Our release target for pandas is based on the
assumption that there is no significant change in hab-
itat over the next 25–50 year. As the future climate
change in Sichuan is predicted mainly concentrated at
n the Sichuan Province with their medium and high-connectivity
, small release habitat patches. Green box (C, E and G))) = central

D

A

CB
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Table 4. The predicted uninhabited habitat patches grouped into A-G regions from north to south (Fig. 6) with their perti-
nent release features and size in km2 

Region
Uninhabited habitat patches

Release

habitat Recommendation

Description km2 km2

A
• Relatively concentrated; 3–13 km apart

• High quality LCPs
26 26 Restore continuous habitat

B Contiguous with occupied habitat 602 602 Restore continuous habitat

C Low/medium quality LCPs 243 0 Ignore

D

• large; >2000 km2

• clustered

• contiguous with occupied habitat

• high quality LCPs

• fragmented by roads/towns

2103 2103 Restore isolated habitat

E Isolated by high (>3500) mountains 510 0 Ignore

F

• mostly large; >4000 km2

• contiguous with occupied habitat

• natural dispersal feasible

4167 4167 Natural dispersal expected

G
• scattered; 6–70 km apart

• high quality LCPs
179 0 Ignore

A–G – 7830 6898 –
the highest elevations region (3800–4500 m) which is

above the panda habitat (Lu et al., 2015), we exclude

the influence of climate change on the habitat over the

next 25–50 year.

Bamboo is the staple food of panda, and it’s suffi-

cient supply is the premise that the giant pandas can

fully occupy the maximum available habitat in the

future. Some studies presented a pessimistic view on

the impact of climate change on the extent and species

of bamboo (Li et al., 2015). However, but the study

used bamboo data from 2003 and only considered cli-

mate variables. The most recent data showed an

increase of 61.49% of the bamboo covered area in

Sichuan Province since 2003 (Information Office of

the State Council, 2015). This substantial increase in

bamboo over the past decade or so may be due to

efforts to restore the panda habitat, including planting

bamboo. Therefore, we speculate that bamboo

resources can support the expansion and reintroduc-

tion of panda habitat.

The potential release targets as provide by our study

will neither be limited by birth rate and high mortality

of the captive-bred panda population (Li et al., 2017),

nor by the number of young captive-bred pandas

(Zhao, Zhang et al. 2017). Most female panda will

reach the reproductive age (5–25 years) over the next

ten years. Moreover, most captive-bred panda give

birth to twins every second year (Hou, 2000). The lim-

itation to reach the release target is likely to be the

capability of pre-release training of panda.
5. CONCLUSIONS

Our study simulated the habitat of panda in Sich-

uan Province, and found that there were 6898 km2 of
habitat patches with good connectivity in addition to
the occupied habitat. To fully exploit the available
well-connected habitat, 45–89/10–20 captive-bred
individuals should be released every year for 25/50
years. Through this example, we construct a two-step
PCA method to restrict multicollinearity among a
large number of predictor variables. Overall, we have
constructed a refined method to predict mammal hab-
itats and release targets, and demonstrated its feasibil-
ity with multiple validation. The methods (MaxEnt;
LCP), variables (vegetation/land cover, soil, climate,
human impact) and parameters (home range; repro-
ductive rate) used in our approach are applicable to
many solitary terrestrial mammals and may provide
insights helpful in setting feasible release targets.
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