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It is known that the increased population density
results in physiological stress that leads to a reduced
reproductive ability of males, delayed sexual develop�
ment of animals, inefficient mating, and increased
mortality of young animals (Christian, 1974; Cer�
gueira et al., 2006). Delayed sexual development in
males can be due to delay and disorder in spermatoge�
nesis. The testicle performs two major functions: the
germinal function related to the development of sex
cells and the endocrine function related to the produc�
tion of steroid hormones. The development of sper�
matogenesis requires the active secretory activity of
the endocrine testicular section represented by inter�
stitial endocrinocytes (Leydig cells) that produce test�
osterone and nurse cells (Sertoli cells) that synthesize
androgen�binding protein (ABP), inhibin, and other
proteins. The normal course of spermatogenesis
requires a high intratesticular concentration of test�
osterone, which is created thanks to ABP (Gaber et al.,
1983; Russel, 1989; Parvinen, 1993). The major func�
tion of Leydig cells is to produce androgens for the
paracrine regulation of spermatogenesis within the
testicle as well as androgen and anabolic effects out�
side the testicle (Saez, 1994; Huleihel and Lunenfeld,
2004). Sertoli cells also have a paracrine effect on sper�
matogenesis (Sharpe et al., 2003; Mruk and Cheng,
2004), synthesizing a whole series of peptides that
affect Leydig cells. Thus, inhibin strengthens the
expression of receptors of luteinizing hormone (LH)
on Leydig cells, thus activating steroid genesis. The
hormonal control of spermatogenesis in mammals is
implemented within the self�regulating system with
the hypothalamic–pituitary–gonadal negative feed�
back (Steinberger, 1971; Holdcraft and Braun, 2004).

The normal individual blood testosterone content
in mouselike rodents varies from 2.5 to 7.6 ng/mL;
therefore, the correlation between the frequency of
fertile couplings and blood testosterone content is not
clearly fixed within the physiological fluctuations in
testosterone levels (Osadchuk and Naumenko, 1983).
A high variability is also noted for the content of LH
that controls the production of testosterone by Leydig
cells. Testosterone that performs the germinal func�
tion ensures competition between males, promoting
their aggressive behavior (Salvator et al., 1997;
McClothlin et al., 2007, 2008); it strengthens territo�
riality (Moore and Marler, 1987) and the attractive�
ness of a male for a female (Enstrom et al., 1997). That
is why testosterone is used as an indicator of sexual
behavior in small mammals from a natural population
under various impacts, particularly, under stress
(Hardy et al., 2005; Gerlinskaya, 2008; Novikov and
Moshkin, 2009). The auto�regulation mechanisms
that support the spatial and demographic population
structure, which corresponds to living conditions,
manifest themselves based on zoo�social behavior.
The action of intrapopulation mechanisms is medi�
ated mainly through the endocrine function of the
gonads (Christian, 1971; Shilov, 1977; Naumenko,
1979). It is necessary to point out that there are almost
no data on the interaction between the germinal and
endocrine testicular sections at different population
sizes. Apparently, this is due to fact that the problem of
how spermatogenesis is affected by the paracrine fac�
tors produced by cells of the endocrine testicular sec�
tion is still understudied and often debatable.

The goal of this study is to assess the germinal tes�
ticular function as well as the morphological and func�
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tional state of Sertoli cells and interstitial endo�
crinocytes in red�backed mice from a natural popula�
tion in order to reveal the regulation mechanisms of
spermatogenesis at different population sizes.

The examination involved sexually mature red�
backed mice Clethrionomys glareolus Schreber (1970)
caught (June–August) in the Middle Urals (57°21′ N,
59°48′ E) using live traps (Karaseva et al., 2008) in the
years of population peak (1992, 2001, 2004), growth
(1991, 2003, 2006). Population cycle phases were
determined with consideration for the demographic
population structure and relative population size (Zhi�
gal’skii and Kshnyasev, 2000). In the year of popula�
tion growth, the relative abundance of red�backed
mice was 3 individuals per 100 trap�days, and in the
year of peak it was 12.5. Testicles of animals were fixed
in 10% formalin; paraffin sections of testicles with a
thickness of 5–7 μm were colored with hematoxylin�
eosin. Histological preparations were subjected to
morphological and morphometric analysis. The diam�
eter of seminiferous tubules and the cell sizes in the
endocrine testicular section were determined using the
SIAMS Photolab software. The data were statistically
processed by one�way variance analysis (Statistica 6
software package). The level of significance for statis�
tical tests was taken to be 5%.

The performed morphometric analysis of seminif�
erous tubules showed that the germinal function of
animals depended on the population size (table). If the
population grows, the diameter of the seminiferous
tubules corresponds to active spermatogenesis in
almost all animals; at the population peak, most ani�
mals are noted to have a decreased diameter of semin�

iferous tubules, which indicates that the germinal tes�
ticular activity is reduced (Fig. 1a). The morphometric
analysis of Leydig and Sertoli cells showed their func�
tional dependence on the population density (table).
The area of Leydig cell nuclei varies from 20 to 41 μm2

(Fig. 1b). Normally, the sizes of perivascular Leydig cells
are smaller than those of peritubular cells; moreover, the
former have a less pronounced steroidogenesis (Fig. 2)
The size of the nuclei varies from 27 to 41 during popu�
lation growth and from 20 to 35 at its peak (moreover,
the size corresponds to 41 μm2 in 8% of animals); if
the population is low, the size is from 20 to 37 μm2 (it
is 41 μm2 in 10% of animals). At the population peak,
the sizes of Sertoli cell nuclei are observed to decrease
(table), which indicates the reduction of their func�
tional activity. Seasonally breeding rodents are shown
to have a decreased cytoplasm volume and cell size in
Leydig and Sertoli cells in the period of testicle regres�
sion; if spermatogenesis is activated, the functional
activity of the endocrine testicular section grows
(Raitsina, 1985; Shevlyuk et al., 1999; Shevlyuk and
Elina, 2008). The observed reduction of the germinal
testicular function against the background of popula�
tion peak is due to the disorder in the hormonal regu�
lation of spermatogenesis (Fig. 3).

There are two loops regulating testosterone secre�
tion (Connell, C.J. and Connell, G.M., 1977). Within
a large loop, LH stimulates the production of test�
osterone by Leydig cells; if the feedback is negative,
testicular testosterone inhibits the secretion of LH. A
short loop (intratesticular) for regulation of the test�
osterone secretion is the inhibition of androgen pro�
duction in Leydig cells by estradiol β�17 produced by

Morphometric parameters of testicles at different population phases (М ± m; p < 0.05)

Phase Diameter of seminiferous
tubules, µm

Area of nuclei, µm2

Leydig cells Sertoli cells

“Low” 169.8 ± 20.1*
n = 28

31.8 ± 3.8**
n = 19

49.7 ± 4.7**
n = 28

“Growth” 176.4 ± 25.6
n = 34

35 ± 4
n = 35

57.8 ± 5.9
n = 25

“Peak” 151 ± 23.4***
n = 24

30.1 ± 2.1***
n = 38

51.4 ± 6.7***
n = 24

n is the number of animals.
* Significant distinctions between the “low” and “peak” phases. 

** Significant distinctions between the “low” and “growth” phases. 
*** Significant distinctions between the “peak” and “growth” phases. 
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Sertoli cells under the impact of the follicle�stimulat�
ing hormone (FSH). In addition, testosterone stimu�
lates the secretion of ABP produced by Sertoli cells
(Steele and Leung, 1992). The suppression of the
androgen function of Leydig cells is due to the
decreased content of LH. It was earlier noted that the
population peak led to the increased functional activ�
ity of the adrenal gland and intensified synthesis of
corticosteroids (Rogovin and Moshkin, 2007; Ermak�
ova, 2008; Baitmirova et al., 2010) that inhibit the pro�
duction of gonadotropic hormones. The role of the
adrenal system in forming the structure of relations
between animals was determined in a number of mam�
malian species (Sapolovsky et al., 2000; Creel et al.,

2001; Goymann et al., 2001; Wielebnowski et al.,
2002).

The reduced functional activity of Sertoli cells was
ascertained to lead to decreased synthesis of ABP and
inhibin. The shortage of ABP causes a decreased con�
centration of testosterone in the convoluted seminifer�
ous tubules. The decrease in inhibin synthesis strength�
ens the production and release of FSH (Fig. 3). The
reduced activity of the endocrine testicular section
strengthens the degenerative processes in the seminif�
erous epithelium (Fig. 4). The degeneration of semin�
iferous cells is known to be accompanied by an
increased concentration of FSH caused by the sup�
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Fig. 1. Frequency of the occurrence of animals (N) according to the diameter of convoluted seminiferous tubules (a) and accord�
ing to the diameter of Leydig cells (b) at the population phases “low” (1), “growth” (2), and “peak” (3).
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Fig. 2. Histological sections of the testicle of a red�backed mice. (a) Perivascular Leydig cells (PVL) and peritubular Leydig cells
(PTL); (b) Sertoli cells (S).
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pression of inhibin secretion (Rich and de Krestser,
1977).

Consequently, the reduced functional activity of
Sertoli cells leads to an increased concentration of
FSH. If the population is small, there is also a reliably
significant decrease in the functional activity of cells of
the endocrine testicular section; however, the reduc�
tion of its germinal function is not so pronounced as at
the population peak (table). Apparently, this is due to
the effect of prenatal stress, when at the population
peak pregnant females experience physiological stress
from excessive compaction that affects the endocrine
status of descendants (Weinstock, 1992; Von Holst,
1998; Kaiser et al., 2000; Kofman, 2002). It should be
noted that at the “peak” population phase sexually
immature animals are prevalent (up to 70%), and the
remaining share is made up by overwintered animals,
which have a high level of metabolism and rapidly
grow old (Olenev and Grigorkina, 1998). It is known
that hormonal unbalance occurs in rapidly aging ani�
mals, which leads to the suppression of spermatogen�
esis (Zakhidov, 2007). In our studies, the suppression
of germinal testicular activity is observed at the popu�
lation peak in most of animals (up to 70%), which is
due to the reduced functional activity of endocrine
section cells. Therefore, at the population peak ani�

mals finish breeding earlier (in July) under the condi�
tions of physiological stress and against the back�
ground of accelerated aging, whereas at a lower popu�
lation size, breeding can continue up to autumn
(Zhigal’skii and Bernshtein, 1989).

Consequently, the germinal and endocrine testicu�
lar functions depend on the population phase. If the
population grows, almost all animals (up to 95%) are
noted to have active spermatogenesis. At the “peak”
population phase, the suppression of spermatogenesis
in most of the animals is due to the reduced functional
activity of Leydig and Sertoli cells, i.e., the decreased
content of testosterone, ABP, and inhibin. The
observed degeneration of seminiferous cells is due to
the reduced secretion of inhibin that leads to the
increased synthesis of FSH. The high level of FSH
serves as a marker of degenerative changes in sex cells.
If the population is small, animals have a persistent
trend towards the suppression of the germinal testicu�
lar function due to the endocrine situation in animals,
which are at the “peak” population phase. The pres�
ence of androgens in blood is regulated by the activity
of the hypothalamic–pituitary–gonadal system. The
androgens, which are accumulated in the testicles
themselves, have local effects on Sertoli cells. Thanks
to testosterone being bound with ABP, which is pro�
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Fig. 3. Scheme that reflects the hormonal regulation of spermatogenesis. 1, large loop; 2, short intertesticular loop for hormonal
regulation of spermatogenesis; T is testosterone; LH is luteinizing hormone; FSH is follicle�stimulating hormone; ABP is andro�
gen�binding protein; E is estradiol. Point arrows show the functional activity of Leydig cells at the peak and at a low population
size.
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duced by Sertoli cells, a high level of testosterone is
constantly supported in testicles. The intragonade
level of androgens is an important factor in paracrine
regulation of spermatogenesis.
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