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Abstract—The main techniques, approaches, methods, and information products used in recent years for the
identification of chemical compounds are summarized. The methodology used in target analysis has largely
remained unchanged; only the identification criteria have undergone some adjustments. The scope of
research in non-target analysis has been significantly expanded. In this case, the main problems lie in reveal-
ing candidates for identification. These versions are tested against typical criteria of target analysis. Effective
search for suitable candidate compounds has become possible with the apearance of modern high-resolution
chromatography–mass spectrometers and progress in informatics. The latter includes the development of
algorithms and programs for processing chromatographic and mass spectrometric data; comparing them with
reference values; and predicting mass spectra, retention parameters, and other quantities. Chemical databases
enable the assessment of the prevalence of chemical compounds and, correspondingly, their potential as can-
didates for identification.
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The procedure of the identification of specific
compounds is an integral part of chemical analysis.
The fundamental principles, rules, and criteria for
chemical identification were formulated in the first
decade of the 21st century ([1–3] and references in these
publications). Meanwhile, the methodology for target
analysis (TA, determination of specified analytes accord-
ing to respective analysis methods) has changed a little to
the present day, with only, for instance, some adjust-
ments made to the identification criteria [4].

A significantly more complex task is the identifica-
tion of previously unknown chemical compounds
within the framework of non-target analysis (NTA)
[5]. The ability to address this challenge, associated
with increased needs in in-depth substance analysis,
has significantly expanded over the last 10−15 years.
Firstly, this is due to the widespread adoption of new
analytical instruments (high and ultra-high resolution
chromatographs and mass spectrometers) and, sec-
ondly, the rapid advancements in informatics, demon-
strated by the emergence of new algorithms, programs,
databases (DB), and networks. In many cases, these cir-
cumstances contribute to a relatively rapid and reliable
search for candidates for identification and gathering of
evidence regarding the specific identity of analytes.

The methodology of non-target analysis is rapidly
evolving, which, in turn, necessitates the regular
review and preparation of new overviews in this field.
In this article, we briefly summarized the results of the

most significant recent works related to methods and
approaches of chemical identification, primarily
focusing on low-molecular-weight compounds and
predominantly using mass spectrometry (MS), chro-
matography, and chromatography–mass spectrome-
try (CMS). Other relevant information, particularly
related to the analysis of biological samples, environ-
mental samples, food products, and natural com-
pounds, can be found in the reviews concerning mod-
ern identification procedures [6–12].

GENERAL ISSUES
The primary methods of identification based on

the application of (a) mass spectrometry, including
tandem mass spectrometry (MS2) and high-resolution
mass spectrometry (HRMS, HRMS2), (b) gas chro-
matography (GC) and liquid chromatography (LC),
including high-performance liquid chromatography
(HPLC) and ultra-high performance liquid chroma-
tography (UPLC), and (c) ion mobility spectrometry
(IMS) are listed in Table 1. Unambiguous and true
identification is achieved using the first method of
identification (the simultaneous determination of the
analyte and the standard) [1–3]. Common reagents
and chemicals are often used as analytical standards,
though their purity is not always regulated. The vast
market of commercially available chemical com-
pounds supports the substantial potential of this iden-
119



120 MILMAN, ZHURKOVICH

Table 1. Identification methods

* Mixed sample, which is more conclusive, or sequential injection of the analyte and standard into the device.

No. Method Principle New opportunities

1 Co-analysis of samples 
and analytical standards 
(substances/reference 
materials)

Matching analytical signals of the analyte 
and the reference substance* when using 
two or more independent techniques of 
analysis, primarily MS and chromatogra-
phy, and varying analysis conditions

Fully exploiting the capabilities of on-
demand synthesis of chemical com-
pounds [13] expands the scope of applica-
tion of this most reliable identification 
method

2 Comparison of analyti-
cal results with reference 
data of experimental 
origin

Data represent mass spectra and retention 
parameters recorded under similar but not 
identical experimental conditions (different 
times, different conditions for recording 
spectra and chromatograms, different labo-
ratory, different instrument models)

Identification is enabled by the expan-
sion of mass spectral libraries, summaries 
of chromatographic retention parameters 
and collision cross-section
(CCS) values in IMS, and the emergence 
of molecular networks

3 Comparison with nat-
ural physical constants

HRMS: Relative molecular masses and iso-
tope pattern

The widespread use of HRMS ensures 
the implementation of this identification 
method by clarifying the molecular for-
mulas of candidates for identification

4 Comparison of analy-
sis results with pre-
dicted reference data

Mass spectra, retention parameters, and 
other characteristics are calculated primar-
ily using machine learning methods and 
used as reference data

Prediction methods are being improved, 
prediction accuracy is increasing

5 Interpretation of mass 
spectra

Conclusions about the structure (substruc-
tures) of analytes are made based on the 
rules and patterns of fragmentation and/or 
using appropriate computer programs

Methods for computer interpretation of 
mass spectra are being widely developed, 
in parallel with the development of meth-
ods for their prediction based on the 
expected structure of the analyte (no. 4)
tification method (see below). The use of authentic
analytical standards (certified reference materials)
would be the most reliable identification option, but
the nomenclature of the standards [14] is several
orders of magnitude smaller.

In metabolomics [15] and environmental analysis
[16], positive results from using identification method
no. 1 (Table 1) are associated with its first/highest
level. Other methods only lead to candidates for iden-
tification (second level and below). However, more
reliable results, termed “putatively annotated com-
pounds” [15] or “probable structure” [16], are
obtained using the second method of identification
(Table 1). At the close recording conditions of the
experimental and reference data, a possibility of cor-
rect identification is presumed. Therefore, this
approach is frequently used and practically justified,
but its rigorous substantiation requires validation for
many analytes and matrices.

In recent scientific literature, particularly in the
field of metabolomics, the term “annotation” [9, 15] is
frequently used along with the term “identification”.
Annotation refers to the process of assigning a putative
formula/structure or other characteristics of a chemi-
JOURNAL O
cal compound to an analyte (analytical signal) and
implies a notion of “putative identification.”

Quantitative measures of trueness (reliability) of
identification can be established. In the case of reliable
identification (method no. 1) of a particular analyte, it
is logical to consider the corresponding trueness as
100%. Other identification methods typically yield
lower values, which can be assessed using various
probabilistic models of the discussed procedure [1–3].
The trueness of a specific method or an identification
procedure for a series of analyses or a group of analytes
is measured by the fraction of truely identified positive
(TP) results (a conventional indicator of qualitative
analysis [2]).

Earlier, the concept of an identification point (IP)
was proposed—a single characteristic (a single value of
a measured quantity, a single property) of an analyte
used for identification by comparing it with the prop-
erties of a known reference compound [2, 3]. For reli-
able target identification, several IPs are required
(matching chromatographic retention parameters, ion
masses, and intensities of mass peaks), some of which
(exact masses) are more significant. The IP concept
has recently been extended to non-target analysis car-
ried out by various HPLC–HRMS methods [6, 17].
F ANALYTICAL CHEMISTRY  Vol. 79  No. 2  2024
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The identification points are aggregated as integer
scores [6]. A fractional scale for estimating the match
of mass spectra and chromatograms has also been
introduced, including a comparison of the experimen-
tal data with the corresponding calculated values of
ion masses and retention times (RTs) [17].

TARGET ANALYSIS: REGULATORY 
IDENTIFICATION CRITERIA

The identification of predefined analytes is per-
formed using analytical methods, many of which were
developed under guidelines from international or
national regulatory bodies. Updated summaries of
normative chromatographic and mass spectrometric
identification criteria have been published recently
[4]. Subsequently, new guidelines have emerged from
the U.S. Food and Drug Administration (FDA, 2020
[18]), the European Commission (EC, pesticides,
2021 [19]), and the World Anti-Doping Agency (2023
[20]). The latter two documents do not contain sub-
stantial changes in criteria compared to their previous
editions [4].

In the updated FDA recommendations [18], simi-
lar to the previous EC document [4], universal maxi-
mum deviations in relative peak intensities (±30%)
from the corresponding values for reference mass
spectra have been introduced. This deviation is irre-
spective of the type of the mass spectrum (single mass
analysis, MS1, with a minimum of three ions; MS2,
with two or more fragment ions) and scan type (record-
ing individual ions/transitions or full scans). For
HRMS, the criteria include a mass window (±5 ppm)
for two ions. Similarity in intensities is not required, as
matching exact masses holds much greater importance
in identification than peak intensity similarity [21], as
in previous criteria. Interestingly, the explicit inclu-
sion of a commonly used chromatographic criterion,
such as the maximum deviation from the known reten-
tion times, seems to have disappeared from the dis-
cussed guideline. However, there is a requirement for
the analyte peaks to match across all mass chromato-
grams within a given chromatographic run [18].

The mentioned regulatory/standardized criteria,
tested in specialized studies, have generally proven
effective but may still be improved [22]. For instance, 169
veterinary drugs were detected in egg products using
UPLC–MS/MS with a triple quadrupole mass analyzer
(QqQ) and the influence of the number of recorded frag-
ment ion peaks on the rates of false positive (FP) and
false negative (FN) identification results was revealed.
The account of two recommended fragments resulted
in a low level of FP (observed in <10% of analyses) for
95% of the analytes, while recording three fragments,
feasible in modern instruments, ensured this low FP
level for 99% of the analytes. Similarly, a relatively high
FN rate (more than 10% of analyses) was significantly
reduced (from 25–45 to 10–12% of analytes) when three
transitions were recorded instead of two ones [22].
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N
NON-TARGET ANALYSIS
A pronounced current trend is the shift of chemical

analytical studies towards non-target (NTA) [5]. Iden-
tifying unknown components of a substance in the
context of NTA, even when these components are
detected, poses a much more challenging task than
confirming or disproving the identity of the pre-
defined analytes in target analysis (as discussed
above). Unlike target analysis, which usually involves the
first, and more rarely the second method of identifica-
tion (Table 1), all the discussed methods are applica-
ble within NTA. However, their implementation is
rather complex and often leads to ambiguous results.

Co-analysis with analytical standards (method
no. 1, Table 1) is feasible but unproductive if little is
known about the nature of the analyte, making it chal-
lenging to select reference substances. Reference data
(method no. 2) might be absent or might pertain to
dissimilar experimental conditions. Wide application
of HRMS (method no. 3) contributes to addressing
challenges in NTA. However, as the molecular mass of
the analyte increases, the determination of its sole
molecular formula, moreover its structure, becomes
more complex. Another area of progress in NTA
involves the rapid development of algorithms predict-
ing mass spectra and other characteristics (method
no. 4) and also predicting structures based on this data
(method no. 5). The results produced by these soft-
ware programs compensate for the lack of reference
data from experimental sources and eliminate the
need for the “manual” interpretation of spectra.

The identification methods in NTA are illustrated
in Fig. 1 and are considered in detail below, starting
with the concept of chemical space, which represents
the set (subset) of chemical compounds as potential
results of NTA. The details and interpretations not
covered in the article can be found in publications [6,
9, 11, 24–27].

Chemical space. In general, within the test samples,
an unknown component can potentially be practically
any known (“unknown known”) or even unknown
(“unknown unknown”) compound with varying prob-
ability. The existence of an enormous number (1011

and much more, Table 2) of individual compounds,
the synthesis pathways for which are theoretically
known, is conceivable. More defined information is
available for compounds that could be synthesized on
demand. When combined with reagents and chemicals
supplied from storage, the total number of the avail-
able compounds seems to approach around 1 billion
(Table 2), although this is challenging to verify.

The actual chemical space appears to be limited to
approximately ~200 million individual compounds
and their simple mixtures (substances) (Table 2).
Within this, there exist numerous rare compounds,
likely not present in common analytical samples, such
as human and animal biosamples, food products,
plant materials, and environmental samples. Various
o. 2  2024
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Fig. 1. Identification of compound A in the context of non-target analysis. Satisfactory matching of the tandem mass spectrum
(bottom left corner) corresponding to peak 15 in the chromatogram with the reference spectra of compound A (top row), includ-
ing the in silico spectrum, is observed. The distinction from the second candidate compound (B, top right corner) is much more
significant. The retention time t is also much closer to the reference value for compound A (tA). Using high-resolution mass spec-
trometry, the empirical formula of the unknown analyte CxHyNzOt was determined, and significantly more information was dis-
covered for analyte A than for compound B; the Annotation Record Count is the size of the information dossier in the PubChem
database [23] (see below).
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subsets/subspaces of the most prevalent compounds
(up to ~1–2 million) are included in specialized data-
bases and also listed in Table 2. Under otherwise equal
conditions, focus is typically directed toward the pres-
ence of prevalent/popular and adequately studied
compounds in the analyzed samples, such as primary
components of biological samples (metabolites),
chemical products, frequently used reagents, and
products derived from their transformations in the
environment, among others. Thus, among the ana-
lytes, compounds that have previously been detected
in the analyzed samples are predominant or may pre-
dominate. The mathematical equivalent of this asser-
tion is Bayesian statistics, which is good for simple
tests [2, 3] but is also applicable to modern identifica-
tion methods [38].

The measures of prevalence/popularity essentially
represent the relative volume of prior information
(metadata) about a given compound and the fre-
quency of references to it. Consequently, they are
effectively estimated using the available chemical
databases (Table 3). Thus, if two versions of an ana-
lyte, exhibiting similar mass spectra and other charac-
teristics, significantly differ in their information indi-
cators, the more popular compound should be consid-
JOURNAL O
ered the primary candidate for identification, and the
corresponding hypothesis should be tested first. It is
logical to consider any non-zero value of such an indi-
cator as a threshold when considering a possibility of
the compound presence in an analyzed sample. Similar
conclusions can be drawn based on the simple presence
or absence of a compound in a specialized database.

The measures of prevalence/popularity of chemi-
cal compounds are considered in addition to the
results of chemical analysis. The fact of the prevalence
of a particular suitable analyte by itself cannot be
regarded a strict evidence of its presence in the sample.
However, it is highly crucial in supporting or rejecting
an identification hypothesis and in the primary selec-
tion of analytical standards in obtaining comprehen-
sive evidence for a specific identity.

Table 3 shows that, among the considered indica-
tors of popularity, larger databases like ChemSpider
and PubChem are more frequently used than the other
ones, and they are freely accessible, which is particu-
larly important in practice. However, it is challenging
to categorize them as curated databases, because they
are compiled by computational means from other
electronic data sets, which might make them incom-
plete and prone to inaccuracies. It is regrettable that
F ANALYTICAL CHEMISTRY  Vol. 79  No. 2  2024
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Table 2. Chemical space and subspaces*

* For information on other chemical/biochemical databases, see [27, 36, 37].
** Our opinion.

Compounds Comments, sources of information/databases Number of compounds

Virtual space

Potential, molecular weight ≤500 Da Synthesis possible, evaluation see [28] 1011−10200

Virtual space and known compounds

Sold and synthesized on demand Catalogs and advertising collected in the ZINC 20 [13]:

– compound ready for sale; 230000000

– synthesis on demand 750000000

Known compounds

Described in the scientific literature Registered in the Chemical Abstracts Service (CAS) [29] ≤204000000

Important, included in other databases** ChemSpider [30] 115000000

Biologically important PubChem [23] 114000000

Most common compounds

Regulated, environmental pollutants, 

toxicants

CompTox Chemistry Dashboard [31] 1200059

CHEMLIST [29] > 417000

NORMAN-SLE [32] 115248

Metabolites METLIN (data as of 2017 [28])

HMDB [33]
961829

220945

Natural compounds Various databases [34] > 320000

In food FooDB [35] 70926

Table 3. Indicators of popularity/prevalence of chemical compounds and their possible presence in test samples

* A significant number of co-references (co-citations) in the Chemical Abstracts journal and database relating to (a) a pair of com-
pounds or (b) a compound and a matrix (substance) may indicate, respectively, the likely co-occurrence of two or more compounds in a
given sample or the presence of a compound in a given matrix (substance) [40–42].

Year Indicator, comments Reference

2000 Number of abstracts (records, references) in the Chemical Abstracts journal* [39, 40]

2011 Number of abstracts (records, references) in the Chemical Abstracts database [43]

2012 Number of references to compound in the ChemSpider database [44]

2014 PubChem DB, threshold value of the refscore indicator (>5), i.e., the minimum number of 

substances that contain this chemical compound

[45]

2016 Presence in test samples according to previous reports [46]

2016 Number of references, including patents, and sources of information in the ChemSpider 

and PubChem databases

[47]

2017  Presence of a compound in the database on metabolomics and environmental pollutants [48]

2020 Number of data sources in the CompTox Chemistry Dashboard database (Table 2) [49]

2020−21 Number of data sources and chemical manufacturers in the ChemSpider and PubChem 

databases; size of compound records, and number of patents in the PubChem database

[50–52]

2021 Various indicators of the PubChemLite database, a version of PubChem designed to solve 

exposomics problems [54] and combine with the MetFrag mass spectral predictor

[53]

2023 Number of specific lexical units in the description of a compound in the PubChem database [55]
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Table 4. Main libraries of tandem mass spectra of low-molecular-weight compounds [5]

* Including high-resolution mass spectra of 27840 compounds.

Name
Quantity

Comments Ref.
spectra compounds

NIST 20, MS2* 1320389 31000

METLIN ~600000 Metabolites [65]

MassBank of North America 

(MONA)

691548 226303 Biologically active compounds predominate, 

present in silico mass spectra

mzCloud 10326515 20820 MSn, medicinal compounds, metabolites [66]

The Global Natural Product Social 

Molecular Networking (GNPS)

586647 

[58]

>20000 

(estimate)

Natural compounds

MassBank 90471 16881 MS1 , MSn [67]

Human Metabolome Database 

(HMDB):

Metabolites [33]

— experiment 64923 4064

— prediction (in silico) 1787163 206809
the most comprehensive curated database, Chemical
Abstracts, which holds verified chemical information
and had no competitors in the era of paper-based
informatics, is currently only accessible through com-
mercial online channels.

The presence of a specific compound in a special-
ized database (lower part of Table 2) implies the
potential for its detection in samples or matrices of a
corresponding type. When there is information about
the potential composition of the matrix, NTA takes
the status of the determination of “anticipated/sus-
pected compounds” (ASC) [5]. Therefore, compiling
summaries of the suspected analytes [32, 56], which
have certain chances of being detected and identified,
significantly simplifies the work of analysts.

Mass spectral libraries. The use of computerized
mass spectral libraries is one of the earliest and still the
most prevalent methods for the automated identifica-
tion [2, 3, 57, 58]. Identification is especially effective
for volatile analytes and electron ionization mass spec-

tra (EI-MS1), achieving a trueness of approximately
80%. The two largest libraries are NIST 20 (with
350643 spectra and 306869 compounds) and Wiley
Registry 12th (with 817290 spectra and 668435 com-
pounds) [5]. These data sets also include retention
index (RI) guides for gas chromatography (GC-RI).
Many issues regarding the creation and use of such
libraries have been resolved, but certain problems still
remain open [59–61].

The history of tandem mass spectral libraries
(MS/MS spectra) is considerably shorter, and they are
far from being comprehensive [57, 58]. It is believed
that their use allows the identification of only a few
percent of metabolites and other low-molecular-
JOURNAL O
weight compounds [62, 63]. The type of MS/MS
spectra varies widely and depends on the instrument
type (QqQ; triple quadrupole mass analyzer, Q-TOF;
quadrupole-time-of-flight, Orbitrap), collision ener-
gies, and some other factors [3, 62, 64]. This signifi-
cantly affects the true positive rate (TP) when search-
ing these libraries. Therefore, alongside expanding
these libraries, standardization of conditions for their
creation and enhancement of spectral data quality are
necessary [58, 62]. This is particularly crucial because
spectral libraries serve as a basis for selecting training
sets of spectra in in silico prediction procedures (in sil-
ico spectra, see below).

The largest MS2 spectral libraries are listed in
Table 4; information about other collections can be
found in [57, 58]. These libraries can be conveniently
divided into commercial and freely accessible ones,
where the latter may be open for users to contribute
and annotate their spectra (repositories, such as
GNPS, see Table 4). When laboratories specialize in
particular analytes, it is convenient to use libraries (in-
house or inter-laboratory) focused on specific classes
and groups of compounds [58, 68–70]. Some libraries
of tandem mass spectra contain reference information
about retention times and collision cross sections (see
below) [58, 71].

Several ways to enhancing libraries and leading to
improved identification have been noted in the litera-
ture. For example, it has been proposed to expand
libraries by including spectra corresponding to new colli-
sion energies; these data are obtained by interpolating the
existing spectra assigned to other collision energy values
[72]. Another perspective involves using fragments from
all precursor ions of a given analyte [71].
F ANALYTICAL CHEMISTRY  Vol. 79  No. 2  2024
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Fig. 2. Fragment of the molecular network (adapted from
[80]). The numbers indicate the masses (Da) of the pre-
cursor ions of each compound. The mass difference of
611.161 and 595.166 corresponds to an oxygen atom,
which, in consideration of the similarity of the mass spec-
tra, allows the unknown analyte (“Unknown”) to be
regarded as an oxidation product of the known compound
(“Known”).

Unknown

Known

625.177

595.165
611.161

625.176 595.166

627.191
Modernization of library searches. A comparison of
experimental mass spectra with reference spectra
results in ranking the latters based on their similarity
values. The most similar reference spectra (first-
ranked computer responses) correspond to the pri-
mary candidates for identification. Candidates in the first
rank are more often considered in statistics for correct
results (as a percentage of true positive matches).

Conventionally, the cosine function (dot product
function) is used as a measure of similarity [2, 3],
although it does not exclude the appearance of false
identification candidates. One way to increase the
efficiency of library searches and expand their use is to
introduce improved measures of similarity between
the experimental and reference mass spectra. This is
important for tandem mass spectra because of their
insufficient reproducibility, the presence of back-
ground peaks, the multiple nature of precursor ions,
the absence of some fragment ions, and their limited
quantity. Several similarity measures, which comple-
ment or substitute the cosine function, have been dis-
cussed in publications [12, 73].

In recent studies, attention has been directed
towards not only ion mass similarities but also towards
matching mass differences (neutral losses), enabling
searches for structurally similar compounds, for
example in [12]. The corresponding similarity metric
is a modified cosine function that additionally takes
into account precursor and fragment mass differences
in the compared spectra [74]. Another new promising
approach involves using spectral entropy in measures
of tandem mass spectra similarity [75]. There was also
a proposal to consider variability in high-resolution
mass spectra when comparing them [76].

Enumerating various innovations, we mention that
the use of deep neural networks helps to improve the
results of conventional searches in electron ionization

mass spectra EI-MS1 libraries [77]. This approach is also
beneficial for comparing tandem mass spectra [78].

Molecular networks [79, 80] refer to graphs repre-

senting subsets of chemical compounds linked

together, usually based on the similarity of their MS2

spectra (Fig. 2). In the nodes of the graph, there are

masses of ions (precursor ions) from different com-

pounds, and each of these nodes may correspond to

one or several similar spectra. The edges of the graph

eventually connect pairs of structurally similar com-

pounds whose mass spectra are very close. The molec-

ular network coexists with a mass spectral library,

allowing for the identification of “unknown knowns.”

If a node embedded in the network relates to a new

compound for the information system, it can be iden-

tified based on the mass differences between the ions

of that analyte and a linked known compound, con-

sidering the structure of the latter.

The most well-known molecular network in the

field of natural compounds is the Global Natural
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N
Products Social Molecular Networking (GNPS, see

Table 4), which represents a part of a comprehensive

information system. This system comprises mass spec-

tral libraries, a repository for these spectra, and vari-

ous software tools for data processing and user–system

interaction, among other components. The method-

ology of networks is combined with the potentialities

of group identification and the use of predicted mass

spectra [81, 82]. It is applicable to electron ionization

mass spectrometry as well [83]. The methods of con-

structing networks and their variations are continually

being improved [12, 84–87].

Prediction of mass spectra [10, 12, 63, 88]. Com-

puter methods for predicting mass spectra (in silico
spectra) enable obtaining data that substitutes experi-

mental reference mass spectra, which is particularly

crucial for MS2. Various prediction algorithms are

typically based on machine learning using a training

set of known mass spectra and/or fragmentation rules

(heuristic information). Well-known programs include

CFM-ID, MetFrag, and MS-FINDER. Predicting tan-

dem mass spectra of compounds with regular structures,

such as lipids, whose ions undergo fragmentation

according to the same rules, is easier. New prediction

methods and corresponding computer programs are
o. 2  2024
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continuously emerging (see, for instance, [36, 89–

91]), some of which enable the assessment of the cor-

rectness level of a conditional identification (annota-

tion) [92].

In silico mass spectra, serving as reference compar-
ison spectra alone, are far from being a panacea, and
the results of corresponding library searches depend
on various factors [93]. The proportion of true first-
rank answers obtained in most significant instances
can reach ~50–70% and sometimes be higher than
this level [48, 63, 94, 95]. Higher success rates are
observed in combination with other identification
methods and with incorporating prior information,
such as compound prevalence indicators (as men-
tioned above).

A possibility of predicting mass spectra, including
tandem spectra, using quantum chemical calcula-
tions, is being investigated [96, 97].

Structural interpretation of mass spectra [10, 12, 63,
88]. Corresponding programs based on machine
learning solve the task opposite to predicting mass
spectra: they derive structural fragment variants and
overall candidate structures based on the mass spec-
trum of an unknown analyte. Consider, for example,
the widely known program CSI:FingerID, which has
been integrated into the SIRIUS software. The latter,
based on precursor ion masses, isotopic patterns, and

MC2 spectra, selects the most probable candidate
compounds from those included in chemical data-
bases [98]. Subsequently, the MAD HATTER soft-
ware was created for the same purposes, enabling over
70% accurate identifications in a test dataset of tan-
dem spectra [55]. Other new programs for the auto-
matic extraction of structural data from mass spectra
are developed [36, 99, 100]. Overall, there is high sig-
nificance attributed to deep learning algorithms
applied to solving this task [11, 101]. However, the
potentialities of the manual interpretation of tandem
mass spectra are far from being exhausted [102, 103].

Retention parameters in chromatography. The com-
bined use of mass spectrometry and chromatography
is a requirement of regulatory documents in TA and a
condition for reliable identification in NTA.

Experimental retention indices (RIs) have been
long and successfully used in gas chromatography
(GC). They are now substantially represented in data-
bases such as NIST (139693 compounds [5]) and
other data summaries [2, 3, 104]. Most practically sig-
nificant volatile compounds are covered by this data.
Nevertheless, new compounds are emerging suitable
for determination by GC, such as volatile derivatives of
low-volatile compounds, which necessitates informa-
tion about their reference RIs. Corresponding predic-
tions are performed by various machine-learning
approaches and some other methods [104–106].

The concept of retention indices (RIs) is less
important for liquid chromatography
(HPLC/UPLC); in this context, retention is more
JOURNAL O
often characterized by retention times (RTs). There
are increasingly large collections of experimental
retention times available, for instance, for 80000 com-
pounds in the METLIN information system [107].
These characteristics are determined under reversed-
phase liquid chromatography conditions.

The experimental data sets serve as training sam-
ples for predicting retention times using machine-
learning methods (as reviewed in [6, 10, 108]). Molec-
ular descriptors are used as structural variables cor-
related with retention times (“quantitative structure-
retention relationship”). Reversed-phase and hydro-
philic interaction liquid chromatography (HILIC)
columns are considered separately [108, 109]. Various
errors in modern retention time prediction mostly fall
within the range of ~10 s–1 min [10, 108–112]. Such
accuracy of predictions might not be sufficient to cap-
ture subtle differences in the analyte structure, but it is
suitable for eliminating many identification candi-
dates. For example, 68% of candidate compounds
predicted from the mass spectra of blood plasma com-
ponents did not match the predicted retention time
estimations: they were outside the range (retention
time ±1 min) [109]. Due to the relatively low repro-
ducibility of retention times and their strong depen-
dence on the experimental conditions, recalculating
the reference sets of retention times is crucial in adapt-
ing them to the current experiment [10, 113].

Ion mobility spectrometry (IMS) [114] is a method
that involves the separation of ions based on their
mobility in the gas phase and can be combined with
MS and LC–MS. IMS–MS and LC–IMS–MS
instruments with various technical (physical) imple-
mentations of ion mobility are manufactured by major
mass spectrometer manufacturers.

The ion mobility stage enhances the separation of
analytes, which is particularly evident for mixtures of
isomers or isobaric compounds. Separation depends
on the collision cross-section (CCS), which is an indi-
vidual characteristic of chemical compounds and is
suitable for their identification. Values of this parame-
ter, both experimentally determined and calculated, are
tabulated in several databases [12, 112, 114, 115], and can
be used as reference data in combination with mass spec-
trometric and chromatographic information [6, 12].

A combination of identification techniques is neces-
sary to enhance its reliability. The simultaneous appli-

cation of MS1, MS2, U/HPLC, and ion mobility is
referred to as a “four-dimensional” approach to iden-
tification [12]. In an ideal situation, with high-quality
(accurate) experimental and reference data, the recog-
nition criteria for an analyte—slight differences in pre-
cursor ion masses, retention values (RTs), collision
cross-sections (CCSs), and high similarity scores of

MS2 spectra—should be met by only one candidate
compound. In reality, different reference data can lead
to conflicting and ambiguous results. To select the best
version and further verify it, one can assess the degree
F ANALYTICAL CHEMISTRY  Vol. 79  No. 2  2024
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of data matching by counting the identification points
in their numerical representation [6, 17].

Program packages (fusion tools). It is convenient
for analysts if different software required for the iden-
tification of nontarget analytes is integrated into a sin-
gle software package (either on the instrument’s com-
puter or an accessible website). This integration allows
combine searches in mass spectral libraries, electronic
collections of retention indices (RIs) and collision
cross-sections (CCSs), and chemical databases with
efficient evaluations of these characteristics. In a
review [10], eight such packages were mentioned, the
components of which have been partially discussed
earlier. In the analysis of complex samples, data pro-
cessing software for chromatography and mass spec-
trometry and the extraction of corresponding analyti-
cal signals are critically important [116]. Overall, there
are hundreds of software products described in the lit-
erature aimed at transforming experimental data and
identifying analytes based on mass spectra and chro-
matographic parameters. Specialized programs were
developed to navigate this field [117].

Comparisons. Conventional practices in analytical
chemistry, including chemical identification [2, 3],
involve comparative experiments assessing the profes-
sional level and quality of laboratory work, the effi-
ciency of different methods and analytical approaches,
the suitability of analytical standards, and more. The
key inter- and intra-laboratory comparisons in recent
years related to the identification of components in
provided samples as unknown samples or the analysis
of the data are summarized in Table 5. The main con-
clusion drawn from these works indicates the far from
complete reproducibility of the results across different
laboratories (nos. 1 and 8) and inferences made using
different LC–MS configurations and data acquisition
modes within a single laboratory (no. 7, as well as
[123]), the results of applying different computer pro-
grams (nos. 2 and 4), and different measures of simi-
larity between the mass spectra (no. 10). However, the
identification outputs proved to be quite satisfactory
(nos. 6 and 9), and they improve with additional infor-
mation about the expected sample composition and
the prevalence of analytes (nos. 1, 3, 5).

CONCLUSIONS: PARADIGM SHIFT AND 
GENERATIONAL CHANGE

Summarizing the above, we can argue that the
main trend in research in recent years involves the
development of methodologies for searching candi-
date compounds (conditionally identified or anno-
tated compounds as a result) within the realm of NTA.
If a definitive identification according to typical regu-
latory criteria is required, having a list of candidate
compounds, it is advisable to (a) use analytical stan-
dards or, less reliably and requiring validation, (b)
record mass spectra and chromatograms (as well as ion
mobility spectra) under the conditions as close as pos-
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N
sible to those in which the most high-quality/accurate

reference data were determined. The thematic transi-

tion from the development of principles, rules, and

criteria for identification to the methodology of

searching for candidate compounds represents, in our

view, a paradigm shift in the objectives and content of

chemical-analytical research.

Changes of this kind are manifested, firstly, in the

emergence and widespread use of new analytical

instruments (such as high-resolution chromatogra-

phy-mass spectrometers, among others) and, sec-

ondly, in the substantial amplification of the role of

informatics. The latter encompasses the development

of numerous machine learning-based automated

search programs for candidate identification, expan-

sion of mass spectral libraries, electronic collections of

other reference data, and chemical databases. This

trend reflects the integration of a new generation of

information technology experts into this field. Thus,

the transition of generations of instruments and

experts and the paradigm shift are interdependent and

respond to the broad requirements for detailed sub-

stance analysis.

The changing era is not without its challenges. Spe-

cifically, certain publications, notably Chemical
Abstracts, which previously contained verified infor-

mation about most known chemical compounds, did

not gain open access upon transition into an electronic

form. This can be regarded as a loss in the field of

informatics. Moreover, many experienced chemists

from recent generations have directly worked with

substances and can provide significant insights about a

sample composition by its color, odor, crystal form,

solubility, transparency, basic tests, etc. The results are

crucial in the analysis of complex unknown sub-

stances. The identification of individual compounds

by chromatography–mass spectrometry (CMS) tech-

niques is another component of such work. As demon-

strated earlier, experts well-versed in informatics play

an important role in these endeavors. In our opinion,

the best results are achieved when their activities are

combined with the work of traditional chemists.
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Table 5. Examples of comparative studies in identification

No. Year
Test samples or 

data, method
Project content

Number 

of laboratories
Results, comments Reference

1 2015 River water extracts Comparison of differ-

ent CMS methods and 

different analysis 

approaches

19 Emphasis on NTA, ASC, and 

HRMS. The need for integrated 

software packages, complete 

libraries of mass spectra, many 

analytical standards, and the 

relevance of data exchange have 

been identified

 [118]

2 2012–2017, 

CASMI*

Mass spectra of a 

set of compounds 

as unknown ana-

lytes

Use of various pro-

grams for predicting 

mass spectra, their 

interpretation, librar-

ies of mass spectra, and 

other data

≤8 

(our rating)

36−88% TP—results of annual 

winners [49]

 [119]

3 2017 Mass spectra pre-

sented in CASMI*

Prediction of mass 

spectra and signifi-

cance of other data

1 22−25% TP for the best-pre-

dicted compounds, 73−78% 

when they are present in the 

chemical database, 87−93% 

when adding searches in mass 

spectral libraries

 [48]

4 2019 CMS data Comparison of speci-

fied signals (m/z val-

ues at certain RTs) in 

four data processing 

programs

≤5 

(our rating)

Only 10% of signals are defined 

for all programs. Identification 

of 22 test compounds revealed 

64−88% TP

[116]

5 2020 Mass spectra pre-

sented in CASMI*

Using the CFM-ID 

spectral prediction 

software with addi-

tional information

1 The true result among the five 

best predictions: 36−81% of 

compounds (CFM-ID) and 

53−96% (CFM-ID + estimat-

ing the number of information 

sources, see Table 3)

[49]

6 2020 Multiple HRMS2 

spectra of 15 com-

pounds

Comparison of each 

laboratory’s spectra 

with reference data and 

other comparisons

7 78−96% TP [62]

7 2020 Human blood 

plasma samples, 

UPLC–IMS–

HRMS2

Comparison of metab-

olite identification in 

different analysis and 

data acquision meth-

ods

1 Best results: all precursor ion 

fragmentation mode (all ion 

fragmentation) with an increase 

in collision energy (ramped 

one) during the fragmentation 

of ions instead of its fixed values

[120]

8 2021 Tea extracts, 

UPLC–HRMS2

Reproducibility of 

CMS signals (MS1) in 

the intervals m/z ± 

5 ppm and RT ± 3 or ± 

6 s; comparison of 

Orbitrap and Q–TOF

2 Coincidence <30% of signals, 

reasons: differences in precur-

sor ions, degree of fragmenta-

tion, etc.

[121]
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