= **ARTICLES** =

# Features of the Identification of Trialkyl Phosphites in Reaction Mixtures and Their Characterization by Gas Chromatography–Mass Spectrometry

I. G. Zenkevich<sup>*a*, \*</sup> and V. E. Nosova<sup>*a*</sup>

<sup>a</sup>Institute for Chemistry, St. Petersburg State University, St. Petersburg, 198504 Russia \*e-mail: izenkevich@yandex.ru Received April 4, 2018; revised April 22, 2018; accepted April 22, 2018

Abstract—The interaction of aliphatic alcohols ROH with phosphorus trichloride in the absence of bases leads to the formation of exclusively dialkyl phosphonates (RO)<sub>2</sub>PHO. To obtain trialkyl phosphites (RO)<sub>3</sub>P, insufficiently described to date, the pH of the reaction mixtures was adjusted by adding N, N-dimethylaniline ( $pK_a$  5.1 ± 0.1). The identification of trialkyl phosphites directly in reaction mixtures without preparative isolation implies a joint consideration of their mass spectra and gas chromatographic retention indices, provided that all other components of such mixtures are identified. The need to comply with this condition has led to the identification of several homologues of a previously uncharacterized series of 2-alkoxy-1,3,2-dioxaphospholanes, formed from a random admixture of ethylene glycol. The use of such combined mass spectrometric parameters as homologous increments of retention indices helps to distinguish trialkyl phosphites from isobaric dialkyl phosphonates; the compounds of both series belong to the homologous group of y = 12,  $y \equiv$ M(mod14). Despite the absence of molecular ion signals in the electron ionization (EI) mass spectra, the molecular weights of trialkyl phosphites can be estimated. In addition, a comparison of the homologous increments of retention indices shows that, compared with dialkyl phosphonates, trialkyl phosphites are significantly less polar.

*Keywords*: trialkyl phosphites, 2-alkoxy-1,3,2-dioxaphospholanes, gas chromatographic retention indices, homologous increments of retention indices, EI mass spectra, detection in the composition of reaction mixtures

DOI: 10.1134/S1061934819130124

#### INTRODUCTION

In contemporary organic mass spectrometry, compounds of some even relatively simple classes remain insufficiently characterized. This is most often due to the limited preparative and analytical "demands" for such compounds or to some difficulties of their synthesis. As was recently shown, one example of such compounds is provided by monosubstituted esters of polybasic acids, including monoalkyl phthalates [1]. The mass spectrometric identification of such monosubstituted esters is complicated by the considerable similarity of their electron ionization (EI) mass spectra with the spectra of the full esters of the corresponding acids; it is possible, for example, with the application of gas chromatographic retention parameters (retention indices, RIs). Similar problems are typical for the partial esters of polybasic inorganic acids.

The identification of insufficiently characterized classes of compounds is possible by viewing the content of complete databases of mass spectra, for example, the database of the National Institute of Standards and Technology (NIST, United States) [2]. For example, it can be found that, among the trialkyl phosphates  $(C_m H_{2m+1}O)_3 PO$  (with a total number of carbon atoms of  $3 \le n_C \le 15$ ) represented in it, 27 homologues are characterized by EI mass spectra, but only six of them (with the same simplest alkyl substituents) have the values of retention indices on standard nonpolar polydimethylsiloxane stationary phases. However, given that they are the simplest homologues that are most often found in analytical practice, this level of knowledge can be considered acceptable. As for the characterization of phosphoric acid dialkyl esters [dialkyl phosphates  $(C_m H_{2m+1}O)_2 P(O)OH$ ], none of these compounds  $(2 \le n_C \le 15)$  are presented in the database [2]. A particular discussion of their mass spectrometric characteristics [3] showed that the gas chromatographic separation of such esters is impossible. The most likely reason for this is in their acidic properties: the  $pK_a$  values of dialkyl phosphates are lower than those of the phosphoric acid itself, that is,  $pK_{a(1)} = 2.1 \pm 0.1.$ 

Both normal and acidic esters of phosphorous acid  $H_3PO_3$  have not been described in sufficient detail. In

the case of dialkyl phosphonates  $(C_m H_{2m+1} O)_2 PHO$ (often called dialkyl phosphites) with  $2 \le n_{\rm C} \le 15$ , the mass spectra of only eight homologues are presented in the database [2], and the retention index is known only for one of them (diethyl phosphite). Improving of this situation was the subject of a special publication [4]. A similarity of the EI mass spectra of normal and monosubstituted esters, typical of various polybasic acids, which leads to identification errors, compels us consider in detail trialkyl phosphites to  $(C_m H_{2m+1}O)_3 P$ , for homologues of which with  $3 \leq$  $n_{\rm C} \leq 15$ , eight mass spectra and three retention indices are presented in the database [2]. In the current publications in the field of mass spectrometry, phosphorous acid derivatives are mentioned only in [5].

Of various phosphorus-containing substances, the most detailed data were obtained for toxic compounds and products of their transformations, mainly, derivatives of alkyl phosphonic acids [6-8]. The level of knowledge of gas-chromatographic retention indices of such compounds makes it possible to predict with sufficiently high accuracy their values for representatives of these series, which are not yet known, using additive approaches [9-12].

A particular interest to trialkyl phosphites is associated with the features of their synthesis: the interaction of phosphorus trichloride (PCl<sub>3</sub>) with the corresponding alcohols without controlling the pH of the reaction mixtures leads exclusively to dialkyl phosphonates [4], which is caused by the Michaelis–Arbuzov rearrangement in an acidic medium [13, 14], that is,

PCl<sub>3</sub> + 3ROH → 
$$[(RO)_3P]$$
 + 3HCl  
→  $(RO)_2PH=O + RCl + 2HCl.$ 

In order to stop the reaction at the stage of the formation of trialkyl phosphites  $(RO)_3P$ , it is necessary to fix the pH of the reaction mixtures by adding bases. It is undesirable to use aliphatic amines (for example, triethylamine with  $pK_a$  of 10.7 ± 0.1), since this can lead to the hydrolysis of the esters formed. It is acceptable to use weaker bases, for example, dialkylaryl amines C<sub>6</sub>H<sub>5</sub>NR<sub>2</sub>, including *N*,*N*-dimethylaniline ( $pK_a$  5.1 ± 0.1), *N*,*N*-diethylaniline ( $pK_a$  6.4 ± 0.2), and others [15, 16]. In this case, the reaction can be written as follows:

This paper is devoted to the determination and consideration of the mass spectrometric characteristics of the simplest trialkyl phosphites as an essential addition to the similar characteristic of more complex phosphorus-containing acids.

### **EXPERIMENTAL**

Interaction of alcohols with phosphorus trichloride in the presence of N.N-dimethylaniline. Trialkylphosphites were synthesized by mixing 100 uL of aliphatic alcohols ROH (cp grade or for chromatography grade) with 100  $\mu$ L of phosphorus trichloride (99%) in 1.5– 2.0 mL of chloroform (cp grade) in the presence of  $450 \,\mu\text{L}\,\text{of}\,N$ , N-dimethylaniline used without purification. The reagents were mixed in a 5-mL vessel in the following order: N,N-dimethylaniline was added to a solution of alcohol in chloroform, and phosphorus trichloride was added dropwise under constant stirring; this was accompanied by heating of the reaction mixture and changing the color to yellow-brown. After cooling, the reaction mixture was stratified; the upper (colored) layer contained a significant portion of dimethylaniline hydrochloride and PCl<sub>3</sub> hydrolysis products. The lower (transparent) layer of the reaction mixture was used for analysis by gas chromatographymass spectrometry; it was diluted 25-50 times with chloroform.

To characterize 2-ethoxy- and 2-propoxy-1,3,2dioxaphospholanes, 100  $\mu$ L of ethylene glycol was added to the reaction mixture. The amounts of all other reagents remained the same.

Gas chromatography-mass spectrometry. The reaction mixtures were analyzed using a Shimadzu QP 2010 SE chromatograph-mass spectrometer with electron ionization. The temperature of the interface and of the ion source was 200°C; for the reaction mixtures containing  $C_7 - C_9$  alcohols, the temperature was increased to 250°C. We used an RTX-5 M column 30 m in length and 0.32 mm in internal diameter; the thickness of the stationary phase film was 0.25 µm. The following analysis mode was used: temperature programming from 50 to 200°C (for reaction mixtures containing  $C_7-C_9$  alcohols, the upper limit was increased to 250°C) at a rate of 5 K/min; injector temperature 180°C; detector temperature 200°C (250°C); carrier gas helium at a volumetric rate of 1.84 mL min<sup>-1</sup> (linear velocity  $49 \text{ cm s}^{-1}$ ); flow splitting at 1 : 10; sample volume 0.5 µL. To determine retention indices, mixtures of reference *n*-alkanes  $C_8 - C_{12}$ ,  $C_{14}$ ,  $C_{15}$ , and  $C_{18}$ - $C_{24}$  in hexane were added to the samples.

**Processing of results.** To calculate the linear-logarithmic retention indices, we used the Microsoft Office Excel 2016 software and the QBasic program. In this system, the indices are calculated by the retention times of three reference components rather than two of them. Such an approach allows one to calculate the retention indices using different triads of reference components with the subsequent averaging of the results. Dialkyl phosphonates were identified in the reaction mixtures according to their previously recorded mass spectra and retention indices [4]; phosphorus-free components were identified using the database [2].

#### **RESULTS AND DISCUSSION**

General characteristics of the composition of reaction mixtures. For the mass spectrometric characterization of trialkyl phosphites, they were obtained by a known reaction (from phosphorus trichloride and the corresponding alcohols) and identified directly in the composition of the reaction mixtures without preparative isolation. Such an approach is convenient for practical purposes, but it implies that, in order to eliminate possible uncertainties, not only the reaction must be sufficiently specific, but also all components of such mixtures must be uniquely identified. We used a similar approach earlier, in particular, to characterize dialkyl phosphonates [4].

As was noted in the introduction, the interaction of aliphatic alcohols ROH with PCl<sub>3</sub> in inert nonpolar solvents (chloroform) in the absence of bases leads to the formation of only the corresponding dialkyl phosphonates (RO)<sub>2</sub>PHO; trialkyl phosphites (RO)<sub>3</sub>P are entirely absent in the reaction mixtures [4]. Their occurrence becomes possible in carrying out the reaction in the presence of weak bases; we used stoichiometric (calculated for the resulting HCl) amounts of N,N-dimethylaniline (p $K_a$  5.1  $\pm$  0.1). Despite this, some amounts of dialkyl phosphonates are detected in the reaction mixtures, for the identification of which prerecorded EI mass spectra and retention indices were used [4]. Dialkyl phosphonates and trialkyl phosphites are most often the main components of such mixtures.

The analytical parameters and the results of identification of the components of 13 reaction mixtures of PCl<sub>3</sub> with  $C_2-C_9$  alcohols are summarized in Table 1, including their retention indices on a column with a nonpolar stationary phase RTX-5 MS (according to the classification adopted in [2], this phase is referred to as semi-standard type because of the presence of 5% of the phenyl groups) and EI mass spectra.

The number of the detected components of the reaction mixtures of alcohols ROH with PCl<sub>3</sub>, as in the case of dialkyl phosphonates [4], exceeds the number of expected products. The reason for this was the presence of ethanol in the chloroform used as a solvent, which led to the formation of mixed dialkyl phosphonates  $(C_2H_5O)_2PHO$ ,  $(RO)(C_2H_5O)PHO$ , and  $(RO)_2PHO$  and trialkyl phosphites  $(C_2H_5O)_3P$ ,  $(RO)(C_2H_5O)_2P$ ,  $(RO)_2(C_2H_5O)$ , and  $(RO)_3P$ . Ethanol additives are necessary to prevent the formation of phosgene during the storage of chloroform [17]. As in [4], in order to characterize the series with a larger number of homologues more fully, we did not exclude such products from consideration.

Among the other (expected) components of the reaction mixtures of  $C_nH_{2n+1}OH$  with PCl<sub>3</sub>, we note the initial (unreacted) alcohols, traces of *N*-meth-ylaniline (impurity in *N*,*N*-dimethylaniline), chloro-alkanes RCl, acetals  $C_{n-1}H_{2n-1}CH(OC_nH_{2n+1})_2$ ,

alkyl alkanoates  $C_{n-1}H_{2n-1}CO_2C_nH_{2n+1}$ , and, in some cases, traces of trialkyl phosphates  $(C_nH_{2n+1}O)_3PO$ . In addition, a number of unexpected heterocyclic 2-alkoxy-1,3,2-dioxaphospholanes deserve special comment.

The patterns of fragmentation of trialkyl phosphites (RO)<sub>3</sub>P under EI mass spectrometry, as well as dialkyl phosphonates [4] and other aliphatic esters of various phosphorus acids, are similar. The peaks of molecular ions in the EI mass spectra are not recorded except for the simplest homologues ( $R = CH_3$  and  $C_2H_5$ ). The first stage of their fragmentation is the cleavage of the alkenyl radical  $C_nH_{2n-1}$  with the largest number of carbon atoms (n > m) as a result of the so-called double hydrogen rearrangement [18], followed by a double loss of olefin fragments ( $C_mH_{2m}$ ):

$$[(C_nH_{2n+1}O)(C_mH_{2m+1}O)_2 P]^+$$
  

$$\rightarrow [(C_mH_{2m+1}O)_2 PH(OH)]^+$$
  

$$\rightarrow [(C_mH_{2m+1}O) PH(OH)_2]^+ \rightarrow [HP(OH)_3]^+ (m/z 83)$$
  

$$\rightarrow [HPO(OH)]^+ (m/z 65).$$

This results in the formation of  $[HP(OH)_3]^+$  ions, characteristic of trialkyl phosphates, with m/z 83, which with the further elimination of H<sub>2</sub>O yield  $[HPO(OH)]^+$  ions with m/z 65. The composition of such ions (absence of carbon) explains the anomalously low intensity of their isotopic peaks (less than 1%). Such ions are characteristic of dialkyl phosphonates, but there they formed in two rather than three stages. Similar sequences of fragmentation, leading to similar ions, determine the mass spectrometric features of the esters of other phosphorus acids, including phosphates ( $[P(OH)_4]^+$  ions, m/z 99), thiophosphates  $([P(SH)(OH)_3]^+$  ions, m/z 115), dithiophosphates  $([P(SH)_2(OH)_2]^+$  ions, m/z 131), chlorophosphates  $([PCl(OH)_3]^+$  ions, m/z 117), dichlorophosphates  $([PCl_2(OH)_2]^+$  ions, m/z 135), methyl phosphonates  $([P(CH_3)(OH)_3]^+$  ions, m/z 97), methyl fluorophosphonates ( $[PF(CH_3)(OH)_2]^+$  ions, m/z 99), and others. The assignment of the main signals of the mass spectra is indicated in Table 1.

The predominant formation of  $[HP(OH)_3]$  ions with m/z 83 determines a significant similarity of the mass spectra of dialkyl phosphonates and trialkyl phosphites. The mass spectra of dipropyl phosphonate  $(C_3H_7O)_2PHO$  and tripropyl phosphite  $(C_3H_7O)_3P$ , differing in positions and intensities of only weak signals, are compared (Fig. 1). In such cases, to eliminate possible identification errors, it is necessary to use gas chromatographic retention indices in addition to mass spectra.

Chromatographic and gas chromatography-mass spectrometry parameters of trialkyl phosphites. According to the definition of the main systems of

### ZENKEVICH, NOSOVA

| R<br>in ROH                   | RI                   | Mass spectrum: $m/z \ge 39$ ( $I_{rel} \ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Identification (RI <sub>ref</sub> )                 |
|-------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| CH <sub>3</sub>               | _                    | Mass spectrum is known [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trimethyl phosphite<br>(688 ± 1) [2]                |
|                               | 896 ± 2              | 137(2), 136(21) <b>M</b> , 121(3), 117(2), 109(52) $[M-C_2H_3]$ , 108(100) $[M-C_2H_4]$ , 107(2), 106(8), 96(2), 91(53) $[M-C_2H_5O]$ , 83(2), 81(12), 80(2), 79(6), 76(11), 65(17), 61(4), 57(2), 49(3), 48(9), 47(31), 45(9), 44(4), 43(27), 42(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Ethoxy-1,3,2-dioxa-<br>phospholane<br>(896 ± 1)   |
|                               | 925 ± 2              | 166(40) <b>M</b> , 140(3), 139(57) $[M-C_2H_3]$ , 138(5), 122(22), 121(39) $[M-C_2H_5O]$ , 112(2), 111(80) $[M-C_2H_3-C_2H_4]$ , 110(11), 109(20), 106(2), 94(8), 93(38) $[M-C_2H_5O-C_2H_4]$ , 92(5), 91(19), 83(68) $[M-C_2H_3-2C_2H_4] \equiv [HP(OH)_3]$ , 82(97) $[HPO(OH)_2]$ , 81(46) $[PO(OH)_2]$ , 77(2), 76(4), 66(6), 65(100) $[HPO(OH)]$ , 48(15), 45(12), 44(2), 43(11)                                                                                                                                                                                                                                                                                                                                                                                                                                  | Triethyl phosphite<br>(922) [2, 6]                  |
| C <sub>2</sub> H <sub>5</sub> | 944 ± 2              | $138(0.1) \text{ M}, 123(4), 112(2), 111(88) [M-C_2H_3], 110(8), 109(12), 95(10), 94(11), 93(20) [M-C_2H_5O], 92(9), 91(2), 83(100) [M-C_2H_3-C_2H_4] = [HP(OH)_3], 82(14), 81(8), 67(3), 66(27), 65(82) [HPO(OH)], 63(2), 47(11), 45(31), 44(2), 43(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diethyl phosphonate<br>(953) [2], 943 ± 1 [4]       |
|                               | 1056 ± 2<br>(traces) | 107(92) <b>M</b> , 106(100) [M–H], 104(4), 92(3), 80(2), 79(22), 78(10), 77(24), 75(2), 74(2), 66(2), 65(9), 64(5), 63(4), 53(7), 52(3), 51(11), 50(5), 42(2), 39(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N-methylaniline $(1066 \pm 4)$ [2]                  |
|                               | $1080 \pm 2$         | 122(7), 121(84) <b>M</b> , 120(100) [M–H], 119(2), 118(6), 106(3), 106(13), 105(14), 103(5), 94(2), 93(3), 92(3), 91(7), 79(6), 78(6), 77(25), 65(3), 64(2), 63(3), 61(7), 52(4), 51(13), 50(4), 44(3), 42(9), 39(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $N,N$ -dimethylaniline (1101 $\pm$ 3) [2]           |
|                               | 990 ± 2              | 150(0.1) <b>M</b> , 135(4), 122(2), 121(5), 110(2), 109(61), 108(100), 107(2), 92(2),<br>91(56), 90(2), 83(5), 81(3), 79(4), 78(24), 77(2), 65(11), 61(2), 56(2), 48(2),<br>47(18), 45(10), 44(4), 43(48), 42(7), 41(24), 40(2), 30(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Propoxy-1,3,2-dioxa-<br>phospholane (990 $\pm$ 1) |
|                               | 1012 ± 2             | $\begin{array}{l} 180(-) \ \mathbf{M}, 140(4), 139(69) \ [\mathrm{M}-\mathrm{C}_{3}\mathrm{H}_{5}], 138(6), 135(8), 127(2), 125(3), 123(3), \\ 122(2), 121(24) \ [\mathrm{M}-\mathrm{C}_{3}\mathrm{H}_{7}\mathrm{O}], 120(2), 112(2), 111(98) \ [\mathrm{M}-\mathrm{C}_{3}\mathrm{H}_{5}-\mathrm{C}_{2}\mathrm{H}_{4}], \\ 110(14), 109(8), 105(3), 99(3), 95(2), 94(5), 93(43) \ [\mathrm{M}-\mathrm{C}_{3}\mathrm{H}_{7}\mathrm{O}-\mathrm{C}_{2}\mathrm{H}_{4}], \\ 92(3), 91(9), 83(100) \ [\mathrm{M}-\mathrm{C}_{3}\mathrm{H}_{5}-2\mathrm{C}_{2}\mathrm{H}_{4}] \equiv \ [\mathrm{HP(OH)}_{3}], 82(95) \ [\mathrm{HPO(OH)}_{2}], \\ 81(20) \ [\mathrm{PO(OH)}_{2}], 79(2), 77(3), 70(2), 66(3), 65(86) \ [\mathrm{HPO(OH)}], 58(2), \\ 48(6), 47(12), 45(4), 43(32), 42(10), 41(25), 40(7), 39(5) \end{array}$ |                                                     |
|                               | 1038 ± 2             | 152(-) <b>M</b> , 125(2), 123(4), 111(17) $[M-C_3H_5]$ , 110(8), 109(6), 95(9), 94(2),<br>93(11) $[M-C_3H_7O]$ , 92(4), 83(100) $[M-C_3H_5-C_2H_4]$ , 82(9), 81(2), 66(8),<br>65(36) $[HPO(OH)]$ , 59(3), 47(5), 45(8), 43(18), 42(5), 41(13), 39(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Propyl ethyl phosphonate $(1036 \pm 2)$ [4]         |
| Η <sub>7</sub>                | $1080\pm2$           | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N,N-dimethylaniline                                 |
| C <sub>3</sub> H              |                      | 194(0.3) <b>M</b> , 154(2), 153(29) $[M-C_3H_5]$ , 149(2), 135(17) $[M-C_3H_7O]$ ,<br>125(3), 123(4), 112(2), 111(93) $[M-C_3H_5-C_3H_6]$ , 110(21), 109(4), 107(5),<br>105(2), 97(2), 94(2), 93(35) $[M-C_3H_7O-C_3H_6]$ , 92(2), 91(2), 83(100) $[M-C_3H_5-C_3H_6-C_2H_4]$ =[HP(OH) <sub>3</sub> ], 82(64) [HPO(OH) <sub>2</sub> ], 81(7), 78(2), 77(2),<br>76(2), 65(53) [HPO(OH)], 48(2), 47(5), 45(2), 44(2), 43(33), 42(5), 41(25),<br>39(7)                                                                                                                                                                                                                                                                                                                                                                    | Dipropyl ethyl phosphite                            |
|                               | $1132 \pm 2$         | 166(-) <b>M</b> , 137(2), 125(3), 124(2), 123(2), 109(6), 107(3), 106(2), 97(2),<br>96(2), 95(7), 83(100) [M-C <sub>3</sub> H <sub>5</sub> -C <sub>3</sub> H <sub>6</sub> ] $\equiv$ [HP(OH) <sub>3</sub> ], 82(9), 66(4), 65(16),<br>59(6), 47(4), 45(2), 44(2), 43(37), 42(7), 41(23), 40(2), 39(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dipropyl phosphonate $(1132 \pm 2)$ [4]             |
|                               | 1181 ± 3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tripropyl phosphite                                 |

**Table 1.** Mass spectra and gas chromatographic retention indices (stationary phase RTX-5) of the components of reaction mixtures of aliphatic alcohols  $C_2-C_9$  with phosphorus trichloride in the presence of *N*,*N*-dimethylaniline

| R<br>in ROH                        | RI                              | Mass spectrum: $m/z \ge 39$ ( $I_{rel} \ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                          | Identification (RI <sub>ref</sub> )                                          |
|------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                    | 956 ± 2                         | 180(4) <b>M</b> , 152(2), 139(12) $[M-C_3H_5]$ , 138(53) $[M-C_3H_6]$ , 135(6), 123(2),<br>122(2), 121(17) $[M-C_3H_7O]$ , 112(4), 111(96) $[M-C_3H_5-C_2H_4]$ , 110(14),<br>109(5), 105(3), 94(6), 93(43) $[M-C_3H_7O-C_2H_4]$ , 92(5), 91(7), 83(57) $[M-C_3H_5-2C_2H_4] \equiv [HP(OH)_3]$ , 82(100) $[HPO(OH)_2]$ , 81(14), 77(2), 76(3),<br>66(3), 65(70), 57(2), 51(2), 48(2), 47(12), 45(9), 44(5), 43(23), 42(6), 41(20),<br>39(7) | Isopropyl diethyl phosphite                                                  |
| H                                  | 982 ± 2                         | $\begin{array}{l} 152(<0.1) \text{ M}, 137(20) [\text{M}-\text{CH}_3], 111(27) [\text{M}-\text{C}_3\text{H}_5], 110(14), 109(53) [\text{M}-\text{CH}_3-\text{C}_2\text{H}_4], 95(5), 94(2), 93(7), 92(5), 83(100) [\text{M}-\text{C}_3\text{H}_5-\text{C}_2\text{H}_4] \equiv \\ [\text{HP}(\text{OH})_3], 82(6), 81(3), 66(7), 65(44), 59(7), 55(2), 47(5), 45(30), 44(2), \\ 43(25), 42(6), 41(13), 39(7) \end{array}$                   | Isopropyl ethyl phospho-<br>nate (982 ± 3) [4]                               |
| (CH <sub>3</sub> ) <sub>2</sub> CH | 988 ± 2                         | 194(4) <b>M</b> , 153(9), 152(13) $[M-C_3H_6]$ , 137(9) $[M-C_3H_5O]$ , 135(10) $[M-C_3H_7O]$ , 125(10), 124(13), 123(4), 111(10), 110(82) $[M-2C_3H_6]$ , 109(6), 108(3), 107(12), 105(3), 94(2), 93(49) $[M-C_3H_7O-C_3H_6]$ , 92(3), 91(4), 83(49) $[HP(OH)_3]$ , 82(100), $[HPO(OH)_2]$ 81(5), 65(46), 59(5), 47(5), 45(8), 44(2), 43(38), 42(5), 41(20), 40(3), 39(6)                                                                 | Diisopropyl ethyl phos-<br>phite                                             |
|                                    | 1019 ± 2                        | 166(-) <b>M</b> , 151(2), 125(3), 124(3), 123(4), 110(2), 109(92) [M-C <sub>3</sub> H <sub>5</sub> O],<br>83(100) [HP(OH) <sub>3</sub> ], 82(2), 65(9), 59(12), 47(2), 45(26), 44(2), 43(29), 42(6),<br>41(15), 40(2), 39(7)                                                                                                                                                                                                               | Diisopropyl phosphonate $(1020 \pm 3)$ [4]                                   |
|                                    | 1021 ± 2                        | 208(3) <b>M</b> , 167(5) $[M-C_3H_5]$ , 166(4) $[M-C_3H_6]$ , 149(8) $[M-C_3H_7O]$ ,<br>125(12) $[M-C_3H_5-C_3H_6]$ , 124(69) $[M-2C_3H_6]$ , 123(5), 108(2), 107(50)<br>$[M-C_3H_7O-C_3H_6]$ , 105(3), 92(2), 82(100) $[HPO(OH)]$ , 65(27), 59(2),<br>44(2), 43(41), 42(3), 41(16), 40(2), 39(3)                                                                                                                                          | Triisopropyl phosphite<br>(1015) [2, 7]                                      |
|                                    | $1080 \pm 1$                    | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                | <i>N</i> , <i>N</i> -dimethylaniline                                         |
|                                    | $\frac{1080 \pm 1}{1087 \pm 2}$ | Identified by retention index. Mass spectrum is given above<br>$164(0.1)$ M, $149(16)$ , $135(3)$ , $110(3)$ , $109(100)$ [M $-C_4H_7$ ], $108(67)$ [M $-C_4H_8$ ], $105(4)$ , $96(2)$ , $91(57)$ [M $-C_4H_9O$ ], $83(9)$ , $81(4)$ , $78(14)$ , $65(12)$ ,<br>61(2), $57(13)$ , $56(18)$ , $55(6)$ , $53(2)$ , $48(2)$ , $47(14)$ , $44(2)$ , $43(14)$ , $42(3)$ ,<br>41(32), $39(11)$                                                   | <i>N</i> , <i>N</i> -dimethylaniline<br>2-Butoxy-1,3,2-dioxaphos-<br>pholane |
|                                    | 1103 ± 2                        | 194(0.6) <b>M</b> , 149(5), 140(3), 139(78) $[M-C_4H_7]$ , 138(23) $[M-C_4H_8]$ , 137(2),<br>122(2), 121(16) $[M-C_4H_9O]$ , 112(2), 111(100) $[M-C_4H_8-C_2H_4]$ , 110(10),<br>109(4), 94(5), 93(37) $[M-C_4H_9O-C_2H_4]$ , 92(3), 91(4), 83(97) $[HP(OH)_3]$ ,<br>82(60) $[HPO(OH)_2]$ , 81(11), 76(2), 66(2), 65(57), 57(4), 56(8), 55(6), 48(2),<br>47(5), 45(4), 41(21), 39(4)                                                        | Butyl diethyl phosphite                                                      |
| $C_4H_9$                           | 1134 ± 2                        | 166(-) <b>M</b> , 137(2), 123(2), 111(29) $[M-C_4H_7]$ , 110(5), 109(7), 97(4), 95(4), 93(5), 92(3), 83(100) $[HP(OH)_3]$ , 82(4), 66(6), 65(20), 57(10), 56(7), 55(5), 47(3), 45(5), 43(3), 41(15), 39(4)                                                                                                                                                                                                                                 | Butyl ethyl phosphonate<br>(1134 ± 2) [4]                                    |
| )                                  | 1255 ± 4                        | 202(0.8) <b>M</b> , 160(2), 159(13) [M–C <sub>3</sub> H <sub>7</sub> ], 130(2), 129(36) [M–C <sub>4</sub> H <sub>9</sub> O],<br>103(17) [M–C <sub>3</sub> H <sub>7</sub> –C <sub>4</sub> H <sub>8</sub> ], 90(4), 89(2), 74(2), 73(53) [C <sub>4</sub> H <sub>9</sub> O], 72(6),<br>71(3), 59(2), 58(5), 57(100), 56(8), 55(25), 53(2), 45(2), 44(8), 43(8), 42(2),<br>41(24), 39(3)                                                       | Butanal dibutylacetal<br>(1229) [2]                                          |
|                                    | 1276 ± 4                        | 222(0.3) <b>M</b> , 167(14) [M–C <sub>4</sub> H <sub>7</sub> ], 151(3), 149(7), 139(2), 138(2), 137(2), 121(2), 112(2), 111(100) [M–C <sub>4</sub> H <sub>7</sub> –C <sub>4</sub> H <sub>8</sub> ], 110(9), 109(2), 93(18), 83(69) [HP(OH) <sub>3</sub> ], 82(19), 81(2), 65(22), 57(21), 56(9), 55(5), 47(2), 43(2), 41(22), 39(4)                                                                                                        | Dibutyl ethyl phosphite                                                      |
|                                    | $1325 \pm 3$                    | 66(2), 65(4), 57(15), 56(7), 55(6), 43(2), 41(15), 39(3)                                                                                                                                                                                                                                                                                                                                                                                   | Dibutyl phosphonate $(1317 \pm 4)$ [4]                                       |
|                                    | 1444 ± 2                        | 250(0.2) <b>M</b> , 195(7) $[M-C_4H_7]$ , 177(4), 139(25) $[M-C_4H_7-C_4H_8]$ , 138(2), 123(4), 121(4), 109(2), 83(100) $[HP(OH)_3]$ , 82(4), 65(5), 57(33), 56(9), 55(4), 41(18), 39(3)                                                                                                                                                                                                                                                   | Tributyl phosphite                                                           |

| R<br>in ROH                                       | RI           | Mass spectrum: $m/z \ge 39$ ( $I_{rel} \ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identification $(RI_{ref})$                 |
|---------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                   | 1061 ± 2     | 194(-) <b>M</b> , 149(4), 140(3), 139(72) [M-C <sub>4</sub> H <sub>7</sub> ], 138(20) [M-C <sub>4</sub> H <sub>8</sub> ], 122(2),<br>121(31), 112(2), 111(100) [M-C <sub>4</sub> H <sub>7</sub> -C <sub>4</sub> H <sub>8</sub> ], 110(15), 109(3), 107(4), 106(6),<br>94(4), 93(36), 92(2), 91(4), 83(70) [HP(OH) <sub>3</sub> ], 82(66) [HPO(OH) <sub>2</sub> ], 81(6),<br>77(3), 76(3), 66(3), 65(61), 58(2), 57(30), 56(7), 55(4), 53(2), 47(4), 45(2),<br>44(3), 43(9), 42(4), 41(29), 40(3), 39(9)                                                                                                                                                                                                      | Isobutyl diethyl phosphite                  |
|                                                   | $1080\pm2$   | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N,N-dimethylaniline                         |
| (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> | 1094 ± 2     | 166(-) <b>M</b> , 151(2), 124(4), 123(6), 111(38) [M-C <sub>4</sub> H <sub>7</sub> ], 110(9), 109(3), 97(26),<br>96(21), 95(4), 94(3), 93(5), 92(4), 83(100) [M-C <sub>4</sub> H <sub>7</sub> -C <sub>2</sub> H <sub>4</sub> ] $\equiv$ [HP(OH) <sub>3</sub> ],<br>82(4), 81(2), 80(9), 78(3), 66(21), 65(23), 57(17), 56(9), 55(7), 47(3), 45(5),<br>43(8), 42(3), 41(23), 39(8)                                                                                                                                                                                                                                                                                                                            | Isobutyl ethyl phosphonate<br>(1097± 2) [4] |
| (CH <sub>3</sub>                                  | 1191 ± 4     | 222(-) <b>M</b> , 167(11) [M-C <sub>4</sub> H <sub>7</sub> ], 151(3), 149(11), 137(3), 123(2), 112(3),<br>111(100) [M-C <sub>4</sub> H <sub>7</sub> -C <sub>4</sub> H <sub>8</sub> ], 110(29), 93(24), 83(60) [HP(OH) <sub>3</sub> ], 82(33),<br>65(26), 58(3), 57(62), 56(8), 55(5), 47(2), 43(5), 42(2), 41(30), 39(7)                                                                                                                                                                                                                                                                                                                                                                                     | Diisobutyl ethyl phosphite                  |
|                                                   | $1243 \pm 4$ | 194(-) <b>M</b> , 138(3), 123(8), 97(7), 96(37), 83(100) [HP(OH) <sub>3</sub> ], 73(2), 66(7), 65(3), 58(2), 57(36), 56(8), 55(7), 43(5), 42(2), 41(23), 39(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Diisobutyl phosphonate $(1241 \pm 6)$ [4]   |
|                                                   | 1316 ± 3     | 250(-) <b>M</b> , 195(6) [M-C <sub>4</sub> H <sub>7</sub> ], 177(6), 139(15) [M-C <sub>4</sub> H <sub>7</sub> -C <sub>4</sub> H <sub>8</sub> ], 138(5),<br>123(9), 121(6), 109(2), 83(100) [HP(OH) <sub>3</sub> ], 82(7), 65(4), 58(4), 57(92),<br>56(9), 55(4), 43(3), 42(2), 41(23), 39(4)                                                                                                                                                                                                                                                                                                                                                                                                                 | Triisobutyl phosphite                       |
|                                                   | _            | Identified by known mass spectrum and elution order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-Chloropentane<br>(742 ± 12) [2]           |
|                                                   | —            | Identified by known mass spectrum and elution order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-Pentanol (765 $\pm$ 4) [2]                |
|                                                   | 942 ± 1      | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Diethyl phosphonate                         |
|                                                   | $1080 \pm 2$ | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N,N-dimethylaniline                         |
|                                                   | 1187 ± 4     | 178(0.1) <b>M</b> , 163(3), 150(2), 149(10), 121(2), 110(3), 109(100) $[M-C_5H_9]$ ,<br>108(30) $[M-C_5H_{10}]$ , 91(36) $[M-C_5H_{11}O]$ , 85(3), 83(6), 78(6), 71(2), 70(6),<br>69(2), 67(2), 65(10), 57(2), 55(16), 47(8), 44(4), 43(30), 42(11), 41(20), 39(7))                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Pentyloxy-1,3,2-dioxa-<br>phospholane     |
| C <sub>5</sub> H <sub>11</sub>                    | 1196 ± 3     | $\begin{array}{l} 208(0.3) \ \mathbf{M}, 179(2), 166(3), 163(2), 140(5), 139(100) \ [\mathbf{M}-\mathbf{C}_5\mathbf{H}_9], 138(16), \\ 122(4), 121(13) \ [\mathbf{M}-\mathbf{C}_5\mathbf{H}_{11}\mathbf{O}], 111(98) \ [\mathbf{M}-\mathbf{C}_5\mathbf{H}_9-\mathbf{C}_2\mathbf{H}_4], 110(9), 109(3), \\ 94(4), 93(32) \ [\mathbf{M}-\mathbf{C}_5\mathbf{H}_{11}\mathbf{O}-\mathbf{C}_2\mathbf{H}_4], 92(2), 91(4), 83(83) \ [\mathbf{M}-\mathbf{C}_5\mathbf{H}_9-2\mathbf{C}_2\mathbf{H}_4] \equiv \\ \ [\mathbf{HP}(\mathbf{OH})_3], 82(43) \ [\mathbf{HPO}(\mathbf{OH})_2], 81(8), 76(2), 71(3), 70(3), 69(3), 65(50), \\ 55(11), 53(2), 47(4), 45(3), 44(2), 43(30), 42(13), 41(20), 39(5) \end{array}$ | Pentyl diethyl phosphite                    |
|                                                   | 1234 ± 4     | $180(<0.1) \mathbf{M}, 123(2), 111(47) [\mathbf{M} - \mathbf{C}_5\mathbf{H}_9], 110(4), 109(5), 97(4), 95(2), 93(3), 92(2), 83(100) [\mathbf{M} - \mathbf{C}_5\mathbf{H}_9 - \mathbf{C}_2\mathbf{H}_4], 82(3), 71(3), 70(3), 69(2), 66(4), 65(15), 55(10), 47(2), 45(4), 43(13), 42(11), 41(14), 39(5)$                                                                                                                                                                                                                                                                                                                                                                                                      | Pentyl ethyl phosphonate $(1231 \pm 3)$ [4] |
|                                                   | 1460 ± 2     | 250(0.2) <b>M</b> , 181(11) [M–C <sub>5</sub> H <sub>9</sub> ], 163(3), 151(2), 139(4), 138(2), 112(2),<br>111(100) [M–C <sub>5</sub> H <sub>9</sub> –C <sub>5</sub> H <sub>10</sub> ], 110(4), 93(13), 83(45) [M–C <sub>5</sub> H <sub>9</sub> –C <sub>5</sub> H <sub>10</sub> –<br>C <sub>2</sub> H <sub>4</sub> ], 82(9), 71(6), 70(3), 69(2), 65(13), 55(7), 44(2), 43(26), 42(8), 41(12),<br>39(3)                                                                                                                                                                                                                                                                                                      | Diphenyl ethyl phosphite                    |
|                                                   | $1523 \pm 3$ | 222(-) <b>M</b> , 153(4) $[M-C_5H_9]$ , 123(2), 109(2), 97(2), 96(2), 83(100) $[M-C_5H_9-C_5H_{10}]$ , 71(4), 70(3), 69(3), 65(2), 55(7), 43(15), 42(7), 41(11), 39(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diphenyl phosphonate $(1527 \pm 3)$ [4]     |
|                                                   | 1717 ± 3     | 292(0.1) <b>M</b> , 223(7) [M–C <sub>5</sub> H <sub>9</sub> ], 205(2), 153(20) [M–C <sub>5</sub> H <sub>9</sub> –C <sub>5</sub> H <sub>10</sub> ], 135(2), 123(3), 111(5), 83(100) [M–C <sub>5</sub> H <sub>9</sub> –2C <sub>5</sub> H <sub>10</sub> ], 82(2), 71(17), 70(4), 69(2), 65(2), 55(6), 44(2), 43(28), 42(6), 41(10), 39(2)                                                                                                                                                                                                                                                                                                                                                                       | Tripentyl phosphite                         |

JOURNAL OF ANALYTICAL CHEMISTRY Vol. 74 No. 13 2019

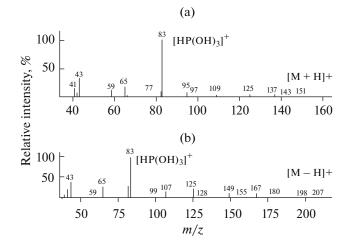
| R<br>in ROH                                                       | RI                                   | Mass spectrum: $m/z \ge 39$ ( $I_{rel} \ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Identification (RI <sub>ref</sub> )                                           |
|-------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                   | 925 ± 1                              | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triethyl phosphite                                                            |
|                                                                   | 944 ± 1                              | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diethyl phosphonate                                                           |
|                                                                   | $1017 \pm 2$                         | 121(63) <b>M</b> , 120(22), 118(2), 107(9), 106(100), 93(2), 91(3), 89(2), 83(2),<br>80(3), 79(21), 78(7), 77(22), 75(2), 67(2), 66(4), 65(8), 64(2), 63(5), 56(2),<br>55(2), 53(4), 52(4), 51(7), 45(2), 41(4), 39(13)                                                                                                                                                                                                                                                                                                        | Isomer of <i>N</i> , <i>N</i> -dimeth-<br>ylaniline                           |
|                                                                   | $\frac{1055 \pm 2}{(\text{traces})}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-methylaniline                                                               |
|                                                                   | $1080 \pm 2$                         | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>N</i> , <i>N</i> -dimethylaniline                                          |
|                                                                   | $1147 \pm 3$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-(2-Pentyloxy)-1,3,2-<br>dioxaphospholane                                    |
|                                                                   | 1156 ± 3                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2-Methylbutyl) diethyl phosphite                                             |
|                                                                   | 1194 ± 4                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2-Methylbutyl) ethyl<br>phosphonate, diastereomer<br>no. 1 (1198 ± 5) [4]    |
| H <sub>3</sub> )CH <sub>2</sub>                                   | 1198 ± 4                             | 180(<0.1) <b>M</b> , 151(2), 124(8), 123(5), 111(64), 110(6), 109(2), 97(32), 96(21),<br>95(2), 93(2), 92(3), 83(100), 82(3), 81(2), 80(11), 78(2), 71(9), 70(18), 69(2),<br>67(2), 66(19), 65(18), 57(5), 56(2), 55(16), 53(2), 47(3), 45(5), 43(19),<br>42(12), 41(27), 39(9)                                                                                                                                                                                                                                                | (2-Methylbutyl) ethyl<br>phosphonate, diastereomer<br>no. 2 (1206 ± 6) [4]    |
| C <sub>2</sub> H <sub>5</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> | 1351 ± 2                             | 182 (<0.1) <b>M</b> , 157(2), 156(4), 155(71) [M–C <sub>2</sub> H <sub>3</sub> ], 154(2), 153(5), 139(2),<br>138(3), 128(3), 127(68) [M–C <sub>2</sub> H <sub>3</sub> –C <sub>2</sub> H <sub>4</sub> ], 126(3), 125(12), 121(2), 113(4),<br>111(7), 110(2), 109(10), 103(2), 99(100) [M–C <sub>2</sub> H <sub>3</sub> –2C <sub>2</sub> H <sub>4</sub> ] $\equiv$ [P(OH) <sub>4</sub> ],<br>98(2), 91(5), 87(2), 83(8), 82(4), 81(15), 77(4), 71(12), 70(3), 69(4), 61(2),<br>57(3), 55(11), 45(8), 43(29), 42(6), 41(8), 39(4) | Triethyl phosphate<br>(1132 ± 8) [2]                                          |
|                                                                   | 1379 ± 2                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Bis</i> (2-methylbutyl) ethyl phosphite                                    |
|                                                                   | 1439 ± 2                             | 222(-) <b>M</b> , 153(4) [M-C <sub>5</sub> H <sub>9</sub> ], 137(3), 111(4), 110(2), 109(11), 97(2), 96(2),<br>83(100) [M-C <sub>5</sub> H <sub>9</sub> -C <sub>5</sub> H <sub>10</sub> ], 72(2), 71(42), 70(13), 69(4), 65(2), 55(14),<br>47(2), 44(2), 43(34), 42(7), 41(17), 39(5)                                                                                                                                                                                                                                          | Bis(2-methylbutyl) phospho-<br>nate, diastereomer no. 1<br>$(1442 \pm 3)$ [4] |
|                                                                   | $1444 \pm 2$                         | Mass spectrum is identical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bis(2-methylbutyl) phospho-<br>nate, diastereomer no. 2<br>$(1446 \pm 3)$ [4] |
|                                                                   | 1448 ± 2                             | Mass spectrum is identical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bis(2-methylbutyl) phospho-<br>nate, diastereomer no. 3<br>$(1450 \pm 3)$ [4] |
|                                                                   | 1575 ± 2                             | 222(-) <b>M</b> , 197(9), 181(3), 155(3), 153(5) [M-C <sub>5</sub> H <sub>9</sub> ], 141(4), 139(2), 128(2),<br>127(100) [M-C <sub>5</sub> H <sub>9</sub> -C <sub>2</sub> H <sub>4</sub> ], 126(2), 125(4), 113(7), 111(2), 99(52) [M-<br>C <sub>5</sub> H <sub>9</sub> -2C <sub>2</sub> H <sub>4</sub> ]=[P(OH) <sub>4</sub> ], 82(3), 71(10), 70(5), 69(3), 55(8), 44(2), 43(22),<br>42(4), 41(13), 39(4)                                                                                                                    | (2-Methylbutyl) diethyl<br>phosphate                                          |
|                                                                   | 1592 ± 3                             | 292(-) <b>M</b> , 223(6) $[M-C_5H_9]$ , 205(3), 153(24) $[M-C_5H_9-C_5H_{10}]$ , 135(2),<br>83(100) $[M-C_5H_9-2C_5H_{10}]$ , 72(4), 71(74), 70(14), 69(3), 55(10), 44(2),<br>43(49), 42(5), 41(14), 39(3)                                                                                                                                                                                                                                                                                                                     | <i>Tris</i> (2-methylbutyl) phos-<br>phite                                    |

| R<br>in ROH                    | RI           | Mass spectrum: $m/z \ge 39$ (I <sub>rel</sub> $\ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Identification $(RI_{ref})$                |
|--------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                | 1791 ± 3     | $308(-) \mathbf{M}, 239(6) [\mathbf{M}-\mathbf{C}_{5}\mathbf{H}_{9}], 169(17) [\mathbf{M}-\mathbf{C}_{5}\mathbf{H}_{9}-\mathbf{C}_{5}\mathbf{H}_{10}], 153(3), 139(2), 127(3), 125(5), 113(5), 112(3), 99(100) [\mathbf{M}-\mathbf{C}_{5}\mathbf{H}_{9}-2\mathbf{C}_{5}\mathbf{H}_{10}] = [\mathbf{P}(\mathbf{OH})_{4}], 71(16), 70(4), 69(3), 55(7), 43(21), 42(3), 41(10), 39(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>Tris</i> (2-methylbutyl) phos-<br>phate |
|                                | 852 ± 1      | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-Chlorohexane (845 ± 12)<br>[2]           |
|                                | 866 ± 2      | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-Hexanol (868 ±4) [2]                     |
|                                | $1056\pm1$   | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-methylaniline                            |
|                                | (traces)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|                                | $1080\pm1$   | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N,N-dimethylaniline                        |
|                                |              | 222(0.3) <b>M</b> , 177(2), 140(4), 139(100) [M–C <sub>6</sub> H <sub>11</sub> ], 138(8), 122(3), 121(10),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hexyl diethyl phosphite                    |
|                                | 1291 ± 2     | 112(3), 111(100) $[M-C_6H_{11}-C_2H_4]$ , 110(7), 94(3), 93(22), 92(2), 85(2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
|                                |              | $83(72) [M-C_6H_{11}-2C_2H_4], 82(31), 81(6), 76(2), 69(3), 67(2), 65(37), 57(4),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
|                                |              | 56(7), 55(9), 47(2), 45(3), 44(3), 43(31), 42(8), 41(23), 40(3), 39(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |
|                                |              | 194(-) <b>M</b> , 112(2), 111(75) $[M-C_6H_{11}]$ , 110(4), 109(5), 97(3), 93(2), 92(2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexyl ethyl phosphonate                    |
|                                | $1335\pm2$   | $85(2), 83(100) [M-C_6H_{11}-C_2H_4], 82(3), 69(4), 67(2), 66(3), 65(12), 57(2),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1336 ± 2) [4]                             |
|                                |              | 56(10), 55(10), 47(2), 45(4), 44(2), 43(18), 42(8), 41(20), 39(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
|                                |              | 200(0.1) <b>M</b> , 129(2), 118(5), 117(79) [M-C <sub>6</sub> H <sub>11</sub> ], 116(4), 101(2), 100(4), 99(55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexyl hexanoate                            |
| $C_6H_{13}$                    | $1382\pm2$   | $[C_5H_{11}CO], 97(2), 89(5), 87(9), 85(8), 84(47) [C_6H_{12}], 83(4), 75(3), 74(2),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1384 ± 2) [2]                             |
| ငှိ                            |              | 73(13), 72(2), 71(26), 70(4), 69(31), 67(2), 61(22), 60(11), 57(9), 56(53),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |
|                                |              | 55(26), 54(2), 53(2), 45(2), 44(3), 43(100), 42(26), 41(40), 40(2), 39(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
|                                |              | 230(-) M, 271(2), 185(3), 160(2), 159(19) [M-C <sub>5</sub> H <sub>11</sub> ], 130(4), 129(42) [M-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexanal hexyl ethyl acetal                 |
|                                | $1453 \pm 3$ | $C_6H_{13}O$ ], 128(3), 113(2), 101(11), 99(2), 89(2), 85(17), 83(33), 82(3), 76(4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1501* [2]                                  |
|                                |              | 75(100) $[M-C_5H_{11}-C_6H_{12}], 72(2), 71(4), 69(2), 67(4), 61(2), 59(2), 58(2), 67(4), 61(2), 59(2), 58(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68(2), 68$ |                                            |
|                                |              | 57(24), 56(6), 55(19), 47(19), 45(3), 44(6), 43(65), 42(9), 41(25), 39(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
|                                |              | 278(<0.1) M, 195(9) [M–C <sub>6</sub> H <sub>11</sub> ], 177(2), 139(2), 112(2), 111(100) [M–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dihexyl ethyl phosphite                    |
|                                | $1646 \pm 2$ | $C_6H_{11}-C_6H_{12}$ ], 110(2), 93(9), 85(3), 83(31) [M- $C_6H_{11}-C_6H_{12}-C_2H_4$ ],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
|                                |              | 82(4), 69(2), 65(8), 57(3), 56(4), 55(5), 43(25), 42(4), 41(12), 39(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |
|                                | 1721 ± 2     | 250(-) M, 167(4) [M-C <sub>6</sub> H <sub>11</sub> ], 85(2), 83(100) [M-C <sub>6</sub> H <sub>11</sub> -C <sub>6</sub> H <sub>12</sub> ], 69(3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dihexyl phosphonate                        |
|                                |              | 57(2), 56(6), 55(8), 43(18), 42(5), 41(13), 39(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(1722 \pm 3)$ [4]                         |
|                                |              | 286(-) <b>M</b> , 216(2), 215(15) [M-C <sub>5</sub> H <sub>11</sub> ], 186(3), 185(27) [M-C <sub>6</sub> H <sub>13</sub> O],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexanal dihexyl acetal                     |
|                                | $1801\pm4$   | 131(15), 117(2), 113(2), 102(2), 101(34), 86(7), 85(100), 84(3), 83(30), 82(5),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1898* [2]                                  |
|                                |              | 71(5), 69(4), 67(3), 58(2), 57(26), 56(11), 55(17), 44(5), 43(95), 42(9),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
|                                |              | 41(24), 40(2), 39(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
|                                | 945 ± 1      | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diethyl phosphonate                        |
|                                | $954 \pm 1$  | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-Chloroheptane                            |
|                                | 0(7 + 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(946 \pm 12) [2]$                         |
|                                |              | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-Heptanol (970 $\pm$ 2) [2]               |
|                                |              | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>N</i> , <i>N</i> -dimethylaniline       |
|                                | $1387 \pm 2$ | 236(-) <b>M</b> , 140(5), 139(97) [M- $C_7H_{13}$ ], 138(6), 122(2), 121(9) [M-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heptyl diethyl phosphite                   |
| 15                             |              | $C_7H_{15}O$ ], 112(2), 111(100) [M- $C_7H_{13}-C_2H_4$ ], 110(6), 94(3), 93(22) [M-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
| C <sub>7</sub> H <sub>15</sub> |              | $C_7H_{15}O-C_2H_4$ ], 83(65) [M- $C_7H_{13}$ -2 $C_2H_4$ ], 82(25), 81(5), 70(3), 69(2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| 0                              | 1200 1 -     | 68(2), 65(32), 57(12), 56(4), 55(7), 44(2), 43(14), 42(9), 41(22), 40(2), 39(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|                                | 1390 ± 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Heptyloxy-1,3,2-dioxa-                   |
|                                |              | 91(19) [M-C <sub>7</sub> H <sub>15</sub> O], 78(2), 70(4), 69(6), 68(2), 57(11), 56(5), 55(6), 51(2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | phospholane                                |
|                                |              | 47(3), 45(4), 44(6), 43(8), 41(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
|                                | $1435 \pm 2$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heptyl ethyl phosphonate                   |
|                                |              | $C_7H_{13}-C_2H_4$ ], 82(3), 70(7), 69(6), 67(2), 66(3), 65(10), 57(8), 56(8), 55(13),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(1436 \pm 2)$ [4]                         |
|                                |              | 45(3), 43(11), 42(9), 41(23), 39(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |

JOURNAL OF ANALYTICAL CHEMISTRY Vol. 74 No. 13 2019

| R<br>in ROH                                         | RI                    | Mass spectrum: $m/z \ge 39$ (I <sub>rel</sub> $\ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Identification (RI <sub>ref</sub> )                       |
|-----------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                     | $1834\pm2$            | 306(-) <b>M</b> , 209(7) [M-C <sub>7</sub> H <sub>13</sub> ], 139(2), 112(3), 111(100) [M-C <sub>7</sub> H <sub>13</sub> -C <sub>7</sub> H <sub>14</sub> ],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diheptyl phosphite                                        |
|                                                     |                       | 110(2), 93(8), 83(27) $[M-C_7H_{13}-C_7H_{14}-C_2H_4] \equiv [HP(OH)_3], 82(3), 70(3),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |
|                                                     |                       | 69(3), 65(7), 57(14), 56(3), 55(6), 43(11), 42(4), 41(13), 39(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |
|                                                     | $1922\pm2$            | 278(-) M, 181(2) $[M-C_7H_{13}]$ , 83(100) $[M-C_7H_{13}-C_7H_{14}]$ , 70(5), 69(4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diheptyl phosphonate                                      |
|                                                     |                       | 57(12), 56(5), 55(9), 43(8), 42(5), 41(14), 39(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1921) [4]                                                |
|                                                     | $2269\pm3$            | 376(-) M, 279(4) [M-C <sub>7</sub> H <sub>13</sub> ], 181(9) [M-C <sub>7</sub> H <sub>13</sub> -C <sub>7</sub> H <sub>14</sub> ], 111(3), 99(5),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triheptyl phosphite                                       |
|                                                     |                       | $83(100) [M-C_7H_{13}-2C_7H_{14}], 70(3), 69(4), 57(28), 56(3), 55(6), 43(12),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |
|                                                     |                       | 42(3), 41(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |
|                                                     | $1056 \pm 1$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-Chlorooctane (1059 ± 7)<br>[2]                          |
|                                                     |                       | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-Octanol (1071 $\pm$ 3) [2]                              |
|                                                     |                       | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N,N-dimethylaniline                                       |
|                                                     | $1484 \pm 2$          | 250(<0.1) <b>M</b> , 140(5), 139(100), 138(6), 122(2), 121(8), 112(3), 111(91), 110(6),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Octyl diethyl phosphite                                   |
|                                                     |                       | 109(2), 94(2), 93(17), 91(2), 83(56), 82(19), 81(4), 71(5), 70(3), 69(6), 67(2),<br>(5(77), 57(9), 5((5), 55(9), 47(2), 45(2), 42(22), 42(9), 41(24), 40(2), 20(4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |
|                                                     | 1402 + 2              | 65(27), 57(8), 56(5), 55(9), 47(2), 45(2), 43(23), 42(8), 41(24), 40(2), 39(4)<br>220(-) M, 149(2), 110(3), 109(100) [M-C <sub>8</sub> H <sub>15</sub> ], 108(10), 91(14) [M-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 Ostalarra 1 2 2 diarra                                  |
|                                                     | 1492 ± 3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Octyloxy-1,3,2-dioxa-<br>phospholane                    |
| $H_{17}$                                            |                       | $C_8H_{17}O$ ], 84(2), 83(5), 81(2), 78(2), 71(4), 70(6), 69(7), 65(4), 57(7), 56(5), 55(6), 47(4), 45(4), 44(2), 42(2), 42(4), 41(4), 20(2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | phospholane                                               |
| $C_8H_{17}$                                         | $1536 \pm 2$          | 55(8), 47(4), 45(4), 44(2), 43(22), 42(6), 41(19), 39(3)<br>222(-) <b>M</b> , 112(2), 111(88), 110(4), 109(3), 97(3), 93(2), 84(2), 83(100), 82(3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ostul sthul nh senh snots                                 |
|                                                     | $1530 \pm 2$          | 71(3), 70(4), 69(7), 67(3), 66(2), 65(10), 57(7), 56(9), 55(17), 54(2), 53(2), 53(2), 54(2), 53(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2), 55(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Octyl ethyl phosphonate<br>(1537) [4]                     |
|                                                     |                       | 47(2), 45(3), 43(15), 42(9), 41(26), 39(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |
|                                                     | $2025 \pm 2$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dioctyl ethyl phosphite                                   |
|                                                     | 2020 - 2              | 70(2), 69(4), 65(5), 57(8), 56(3), 55(5), 43(14), 42(3), 41(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dioetji etnji pilospine                                   |
|                                                     | $2122 \pm 3$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dioctyl phosphonate                                       |
|                                                     |                       | 57(11), 56(11), 55(19), 54(2), 44(2), 43(18), 42(10), 41(23), 39(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(2120 \pm 3)$ [4]                                        |
|                                                     | 2546 ±                | 418(-) M, 307(4), 195(8), 113(3), 111(3), 99(2), 83(100), 71(16), 70(3), 69(6),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trioctyl phosphite                                        |
|                                                     | 6**                   | 57(14), 56(3), 55(5), 43(16), 42(3), 41(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |
|                                                     | $806 \pm 1$           | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( <i>E</i> )-2-octene (804 $\pm$ 1) [2]                   |
|                                                     | 814 ± 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Z)-2-octene (811 $\pm$ 2) [2]                            |
|                                                     |                       | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diethyl phosphonate                                       |
|                                                     |                       | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Octanol (998 $\pm$ 6) [2]                               |
|                                                     |                       | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Chlorooctane (1006) [2]                                 |
|                                                     |                       | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>N</i> , <i>N</i> -dimethylaniline                      |
|                                                     | $1405 \pm 2$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1-Methylheptyl) diethyl phosphite                        |
|                                                     |                       | 123(2), 121(29, 113(2), 112(4), 111(100) $[M-C_8H_{15}-C_2H_4]$ , 110(17), 94(4),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | phospilite                                                |
| <sup>3H3</sup>                                      |                       | 93(23), 83(31) $[M-C_8H_{15}-2C_2H_4]$ , 82(36), 81(6), 71(4), 69(2), 67(2), 65(28),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |
| H(C                                                 | 1450 + 2              | 57(3), 55(3), 44(2), 43(8), 42(3), 41(13), 40(3), 30(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1 ) ( - (1 - 11 ( - 1) - (1 - 1                          |
| C <sub>6</sub> H <sub>13</sub> CH(CH <sub>3</sub> ) | $1430 \pm 2$          | 222(-) <b>M</b> , 138(2), 137(31) [ <b>M</b> - $C_6H_{13}$ ], 112(5), 111(100) [ <b>M</b> - $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 10(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 10(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 10(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 10(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 10(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 110(6), 109(42) <b>D</b> ( $C_8H_{15}$ ], 10(6), 1 | (1-Methylheptyl) ethyl phosphonate no. 1                  |
| $H_{1}$                                             |                       | 109(43) $[M-C_6H_{13}-C_2H_4]$ , 97(3), 93(4), 92(2), 84(3), 83(88) $[M-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H_{15}-C_8H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(1451 \pm 3)$ [4]                                        |
| Ů                                                   |                       | $C_2H_4$ ], 82(3), 71(6), 70(12), 69(9), 67(2), 66(2), 65(17), 57(8), 56(8), 55(18),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1451 \pm 5)[1]$                                         |
|                                                     | 14(1 + 2              | 54(2), 45(15), 44(2), 43(19), 42(10), 41(28), 39(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1 ) ( - (1 - 11 ( - 1) - (1 - 1                          |
|                                                     | $1461 \pm 2$          | 222(-) <b>M</b> , 138(2), 137(32) [ <b>M</b> - $C_6H_{13}$ ], 112(5), 111(100) [ <b>M</b> - $C_8H_{15}$ ], 110(6),<br>109(42) [ <b>M</b> - C <b>H</b> - C <b>H</b> - O7(2), 02(4), 02(2), 84(4), 82(90), 82(2), 71(5))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1-Methylheptyl) ethyl                                    |
|                                                     |                       | 109(43) $[M-C_6H_{13}-C_2H_4]$ , 97(3), 93(4), 92(2), 84(4), 83(89), 82(3), 71(5),<br>70(12) (0(0) (72) ((2) (51(8) 57(7) 57(8) 55(17) 54(2) 45(15) 44(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | phosphonate no. 2 $(1461 \pm 3)$ [4]                      |
|                                                     |                       | 70(12), 69(9), 67(3), 66(2), 65(18), 57(7), 56(8), 55(17), 54(2), 45(15), 44(2), 42(18), 42(10), 41(27), 30(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1+01 ± 3) [+]                                            |
|                                                     | $1850 \pm 2$          | 43(18), 42(10), 41(27), 39(6) $334( ) M 223(3) IM (C H + 205(3) + 165(3) + 151(6) + 123(2) + 113(3) + 112(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pig(1 mathylbantyl) athyl                                 |
|                                                     | $1839 \pm 2$ (traces) | 334(-) M, 223(3) [M-C <sub>8</sub> H <sub>15</sub> ], 205(3), 165(3), 151(6), 123(2), 113(3), 112(4), 111(100) [M - C - H - C - H - 1, 110(15), 03(20), 83(20), 82(7), 71(6), 70(8)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>Bis</i> (1-methylheptyl) ethyl phosphite, diastereomer |
|                                                     | (liaces)              | 111(100) $[M-C_8H_{15}-C_8H_{16}]$ , 110(15), 93(20), 83(20), 82(7), 71(6), 70(8),<br>(9)(6), 65(6), 57(12), 56(4), 55(11), 44(2), 42(10), 42(4), 41(15), 20(2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no. 1                                                     |
|                                                     |                       | 69(6), 65(6), 57(12), 56(4), 55(11), 44(2), 43(19), 42(4), 41(15), 39(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110. 1                                                    |

| R<br>in ROH                    | RI                   | Mass spectrum: $m/z \ge 39$ ( $I_{rel} \ge 2\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                | Identification (RI <sub>ref</sub> )                                            |
|--------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                | 1866 ± 2<br>(traces) | 334(-) <b>M</b> , 223(3) [M-C <sub>8</sub> H <sub>15</sub> ], 205(4), 165(3), 151(5), 137(3), 124(2), 123(3), 113(4), 112(5), 111(100) [M-C <sub>8</sub> H <sub>15</sub> -C <sub>8</sub> H <sub>16</sub> ], 110(13), 93(17), 84(2), 83(21),                                                                                                                                                                                                                      | phosphite, diastereomer                                                        |
|                                |                      | 82(10), 71(10), 70(7), 69(5), 65(8), 57(9), 56(5), 55(8), 43(19), 42(6), 41(15),<br>39(4)                                                                                                                                                                                                                                                                                                                                                                        | no. 2                                                                          |
|                                | 1921 ± 2             | 306(-) <b>M</b> , 179(2), 113(3), 112(4), 111(2), 110(2), 109(45) [M-C <sub>6</sub> H <sub>13</sub> -C <sub>8</sub> H <sub>16</sub> ], 97(5), 84(3), 83(100) [HP(OH) <sub>3</sub> ], 82(2), 71(8), 70(8), 69(10), 67(2), 57(9), 56(6), 55(13), 45(6), 43(14), 42(6), 41(18), 39(3)                                                                                                                                                                               | Bis(1-methylheptyl) phos-<br>phonate, diastereomer no. 1<br>$(1916 \pm 4)$ [4] |
|                                | 1945 ± 2             | 306(-) <b>M</b> , 179(2), 113(3), 112(4), 111(2), 110(2), 109(46), 97(5), 84(3),<br>83(100), 82(2), 71(8), 70(8), 69(9), 57(9), 56(6), 55(12), 45(5), 43(14), 42(6),<br>41(16), 39(3)                                                                                                                                                                                                                                                                            | Bis(1-methylheptyl) phos-<br>phonate, diastereomer no. 2<br>$(1937 \pm 5)$ [4] |
|                                |                      | 306(-) <b>M</b> , 179(2), 113(3), 112(4), 111(2), 110(2), 109(45), 97(5), 84(3),<br>83(100), 82(2), 71(8), 70(8), 69(9), 57(9), 56(6), 55(12), 45(5), 43(14), 42(6),<br>41(16), 39(3)                                                                                                                                                                                                                                                                            | Bis(1-methylheptyl) phos-<br>phonate, diastereomer no.<br>$3 (1958 \pm 6) [4]$ |
|                                | (traces)             | 72(2), 71(23), 70(11), 69(7), 68(2), 58(2), 57(22), 56(6), 55(11), 45(3), 43(22), 42(6), 41(16), 39(3)                                                                                                                                                                                                                                                                                                                                                           | <i>Tris</i> (1-methylheptyl) phos-<br>phite                                    |
|                                |                      | Identified by retention index. Mass spectrum is given above                                                                                                                                                                                                                                                                                                                                                                                                      | <i>N</i> , <i>N</i> -dimethylaniline                                           |
|                                | $1159 \pm 1$         | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                        | 1-Chlorononane<br>(1159 ± 8) [2]                                               |
|                                | 1168 ± 2             | Identified by retention index. The mass spectrum is known                                                                                                                                                                                                                                                                                                                                                                                                        | 1-Nonanol (1173 $\pm$ 2) [2]                                                   |
|                                | $1581\pm2$           | 264(0.1) <b>M</b> , 140(4), 139(100) [M–C <sub>9</sub> H <sub>17</sub> ], 138(5), 121(9), 112(2), 111(78)                                                                                                                                                                                                                                                                                                                                                        | Nonyl diethyl phosphite                                                        |
|                                |                      | $[M-C_9H_{17}-C_2H_4], 110(4), 103(4), 97(2), 93(16), 85(5), 84(2), 83(42) [M-$                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |
|                                |                      | $C_9H_{17}-2C_2H_4$ ]=[HP(OH) <sub>3</sub> ], 82(14), 81(5), 73(2), 71(6), 70(5), 69(8),                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |
|                                |                      | 65(25), 57(8), 56(8), 55(9), 54(2), 45(2), 43(23), 42(8), 41(25), 39(4)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |
|                                | $1595\pm2$           | 234(-) M, 110(3), 109(100) [M- $C_9H_{17}$ ], 108(8), 97(2), 91(14) [M-                                                                                                                                                                                                                                                                                                                                                                                          | 2-Nonyloxy-1,3,2-dioxa-                                                        |
|                                |                      | $C_9H_{19}O$ ], 84(2), 83(3), 71(3), 70(6), 69(6), 65(3), 57(5), 56(6), 55(10), 47(2),                                                                                                                                                                                                                                                                                                                                                                           | phospholane                                                                    |
|                                |                      | 45(3), 43(24), 42(5), 41(18), 39(3)                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |
|                                | $1637 \pm 2$         | 236(-) M, 112(2), 111(100) [M-C <sub>9</sub> H <sub>17</sub> ], 110(4), 109(3), 97(3), 83(81) [M-                                                                                                                                                                                                                                                                                                                                                                | Nonylethyl phosphonate                                                         |
|                                |                      | $C_{9}H_{17}-C_{2}H_{4}] \equiv [HP(OH)_{3}], 82(3), 71(3), 70(6), 69(8), 68(2), 67(2), 66(2), 65(7), 57(4), 56(8), 55(13), 54(2), 45(2), 43(16), 42(7), 41(22), 39(4)$                                                                                                                                                                                                                                                                                          | $(1639 \pm 3)$ [2]                                                             |
|                                | $1873\pm4$           | 270(0.4) <b>M</b> , 171(2), 159(5), 146(8), 145(90) [M–C <sub>9</sub> H <sub>17</sub> ], 144(8), 141(3),                                                                                                                                                                                                                                                                                                                                                         | Nonyl octanoate (1881) [2]                                                     |
| C <sub>9</sub> H <sub>19</sub> | (traces)             | $\begin{array}{l} 111(3), 109(4), 103(5), 101(14), 99(4), 98(30), 97(45), 96(6), 89(11), 87(8), \\ 85(16), 84(37), 83(41), 82(20), 81(4), 75(2), 74(2), 73(17), 72(2), 71(37), \\ 70(58), 69(43), 68(14), 67(10), 61(24), 60(12), 58(5), 57(85), 56(48), 55(52), \\ 54(6), 53(2), 44(4), 43(100), 42(27), 41(71), 40(4), 39(10) \end{array}$                                                                                                                     |                                                                                |
|                                | $1971 \pm 3$         | 284(0.4) <b>M</b> , 171(2), 160(8), 159(77) $[M-C_9H_{17}]$ , 158(9), 142(3), 141(29)                                                                                                                                                                                                                                                                                                                                                                            | Nonil nonanoate (1974) [2]                                                     |
|                                |                      | $ \begin{bmatrix} C_8H_{17}CO], 129(9), 127(4), 126(35) \\ \begin{bmatrix} C_9H_{18} \end{bmatrix}, 117(2), 116(4), 115(11), 112(2), \\ 111(4), 103(5), 101(4), 99(3), 98(33), 97(44), 96(9), 95(2), 89(7), 87(6), \\ 85(15), 84(33), 83(36), 82(18), 81(8), 74(2), 73(19), 72(3), 71(58), 70(52), \\ 69(43), 68(14), 67(9), 61(26), 60(10), 59(2), 58(3), 57(59), 56(42), 55(47), \\ 54(4), 53(2), 44(4), 43(100), 42(23), 41(65), 40(2), 39(8) \end{bmatrix} $ |                                                                                |
|                                | $2216\pm4$           | 362(-) M, 237(5) [M-C <sub>9</sub> H <sub>17</sub> ], 139(2), 127(2), 112(3), 111(100) [M-C <sub>9</sub> H <sub>17</sub> -                                                                                                                                                                                                                                                                                                                                       | Dinonyl ethyl phosphite                                                        |
|                                |                      | $C_9H_{18}$ ], 93(7), 85(2), 83(20), 82(2), 71(6), 70(2), 69(4), 65(4), 57(6), 56(3), 55(5), 43(16), 42(3), 41(10)                                                                                                                                                                                                                                                                                                                                               |                                                                                |
|                                | 2323 ± 4             | $334(<0.1) \mathbf{M}, 209(2) [\mathbf{M}-\mathbf{C}_{9}\mathbf{H}_{17}], 97(2), 85(3), 83(100) [\mathbf{M}-\mathbf{C}_{9}\mathbf{H}_{17}-\mathbf{C}_{9}\mathbf{H}_{18}] = [\mathbf{HP}(\mathbf{OH})_{3}], 71(5), 70(4), 69(7), 68(2), 67(2), 57(5), 56(5), 55(9),$                                                                                                                                                                                              | Dinonyl phosphonate $(2313 \pm 4)$ [4]                                         |
|                                |                      | 43(13), 42(4), 41(12), 39(2)                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |


| R<br>in ROH                          | RI           | Mass spectrum: $m/z \ge 39$ (I <sub>rel</sub> $\ge 2\%$ )                                                                            | Identification (RI <sub>ref</sub> ) |
|--------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                      | 880 ± 1      | Identified by retention index. The mass spectrum is known                                                                            | Cyclohexanol<br>(880 ± 11) [2]      |
|                                      | 883 ± 1      | Identified by retention index. The mass spectrum is known                                                                            | Chlorocyclohexane $(918 \pm 2)$ [2] |
|                                      | $1080\pm1$   | Identified by retention index. Mass spectrum is given above                                                                          | N,N-dimethylaniline                 |
|                                      | $1314\pm2$   | 190(-) M, 161(3), 122(2), 110(3), 109(100) [M-C <sub>6</sub> H <sub>9</sub> ], 108(33), 91(34) [M-                                   | 2-Cyclohexyloxy-1,3,2-              |
|                                      |              | C <sub>6</sub> H <sub>11</sub> O], 83(12), 82(10), 81(7), 80(2), 79(3), 78(4), 77(2), 68(3), 67(40),                                 | dioxaphospholane                    |
|                                      |              | 65(7), 55(25), 54(9), 53(2), 47(6), 45(9), 43(12), 42(3), 41(27), 39(11)                                                             |                                     |
|                                      | $1319\pm2$   | 220(0.8) <b>M</b> , 140(2), 139(33) [M–C <sub>6</sub> H <sub>9</sub> ], 138(40) [M–C <sub>6</sub> H <sub>10</sub> ], 121(8), 112(2), | Cyclohexyl diethyl phos-            |
|                                      |              | 111(100) $[M-C_6H_9-C_2H_4]$ , 110(18), 109(3), 94(4), 93(22), 83(44) $[M-$                                                          | phite                               |
| 11                                   |              | $C_6H_9-2C_2H_4$ ], 82(47) [M- $C_6H_{10}-2C_2H_4$ ], 81(8), 79(3), 67(10), 65(32),                                                  |                                     |
| C <sub>6</sub> H                     |              | 55(22), 54(5), 53(3), 47(2), 45(2), 43(4), 42(2), 41(24), 39(8)                                                                      |                                     |
| cyclo-C <sub>6</sub> H <sub>11</sub> | $1374 \pm 2$ | 192(<0.1) <b>M</b> , 121(4), 111(57) [M–C <sub>6</sub> H <sub>9</sub> ], 110(3), 109(2), 99(5), 95(2),                               | Cyclohexyl ethyl phospho-           |
| iycl                                 |              | $83(100) [M-C_6H_9-C_2H_4], 82(6), 81(6), 79(3), 67(19), 66(2), 65(9), 57(5),$                                                       | nate                                |
| 9                                    |              | 55(11), 54(8), 53(3), 45(3), 44(2), 43(3), 42(3), 41(18), 39(9)                                                                      | (1375 ± 4) [4]                      |
|                                      | $1730 \pm 2$ | 274(0.2) <b>M</b> , 193(7) [M–C <sub>6</sub> H <sub>9</sub> ], 192(4), 165(2), 163(3), 137(2), 124(4),                               | Dicyclohexyl ethyl phos-            |
|                                      |              | 112(3), 111(100) $[M-C_6H_9-C_6H_{10}]$ , 110(47) $[M-2C_6H_{10}]$ , 93(17), 83(54)                                                  | phite                               |
|                                      |              | $[M-C_6H_9-C_6H_{10}-C_2H_4], 82(29), 81(6), 79(3), 67(13), 65(13), 57(2), 56(2),$                                                   |                                     |
|                                      |              | 55(30), 54(5), 53(2), 43(3), 42(3), 41(25), 39(7)                                                                                    |                                     |
|                                      | $1834 \pm 3$ | 246(-) M, 99(3), 83(100) [HP(OH) <sub>3</sub> ], 82(5), 81(4), 79(2), 67(12), 57(2),                                                 | Dicyclohexyl phosphonate            |
|                                      |              | 55(12), 54(5), 53(2), 43(2), 41(12), 39(4)                                                                                           | $(1829 \pm 4)$ [4]                  |
|                                      | $2154\pm3$   |                                                                                                                                      | Tricyclohexyl phosphite             |
|                                      |              | $147(4), 135(2), 99(2), 96(2), 84(2), 83(100) [M-C_6H_9-2C_6H_{10}] = [HP(OH)_3],$                                                   |                                     |
|                                      |              | 82(16), 81(4), 79(2), 67(13), 55(24), 54(4), 43(2), 42(2), 41(16), 39(4)                                                             |                                     |
|                                      | . C.1        |                                                                                                                                      |                                     |

\*Estimates of the retention index values in database [2].

\*\* Retention index is calculated by extrapolation.

retention indices, a change in the composition of molecules by the homologous difference CH<sub>2</sub> should lead to a change in the retention index values of approximately 100 index units. This pattern is satisfactorily observed in the case of dialkyl phosphonates: the differences in the retention indices of the homologues  $(C_{n+1}H_{2n+3}O)_2$ PHO and  $(C_nH_{2n+1}O)_2$ PHO are 185-210 index units. However, for trialkyl phosphites, the corresponding differences are noticeably less than 300 and are 237 (Et – Me), 256 (Pr – Et), 263 (Bu – Pr), 269 ( $C_5H_{11}$  – Bu), 2 × 278 ( $C_7H_{15}$  –  $C_5H_{11}$ ), and 275  $(C_8H_{17} - C_7H_{15})$ , that is, vary in the range of 237–278. The same anomaly is observed for trialkyl phosphates, namely, 201 (Et – Me), 247 (Pr – Et), 276 (Bu – Pr), 240 ( $C_5H_{11} - Bu$ ), etc. [2]; that is, the range is 201– 276. A discussion of the reasons for its occurrence is beyond the scope of this work, and we have limited ourselves to its mention.

Trialkyl phosphites, in contrast to dialkyl phosphonates, do not contain a four-coordinated phosphorus atom, which is a chiral center in asymmetric dialkyl phosphonates. Therefore, diastereomers with identical mass spectra only exist when there are more than two chiral centers in the alkyl substituents, for example, in *bis*(1-methylheptyl)ethyl phosphite. The difference in the retention indices of diastereomers, in this



**Fig. 1.** Comparison of mass spectra of (a) dipropyl phosphonate and (b) tripropyl phosphite.

case, is 7 index units, which is comparable, for example, with its value for (1-methylheptyl)ethyl phosphonate (11 index units), but it is smaller than that for bis(1-methylheptyl) phosphonate (three diastereomers, 22–24 index units) [4].

The special value of using gas chromatographic retention parameters for mass spectrometric identification is the ability to calculate and use the combined gas chromatography—mass spectrometric parameters. For this purpose, the mass spectrometric and chromatographic characteristics should be presented on the same scale, for example, as homologous increments of retention indices [19, 20] as

$$i_{\rm RI} = \rm RI - 100x, \tag{1}$$

where x = int (M/14), it is a function denoting the integer part of a number (equivalent to expression M = 14x + y), y is the number of the homologous group of the compound,  $y \equiv M(\text{mod}14)$  [19].

The values of  $i_{\rm RI}$  for *n*-alkanes are zero; for isoalkanes,  $i_{\rm RI} < 0$ ; and for compounds with significant retention parameters (with the same values of *x*),  $i_{\rm RI} > 0$ . The values of  $i_{\rm RI}$  together with the retention indices for trialkyl phosphites are given in Table 2.

The values of the homologous increments of the retention indices depend both on the chemical origin of the analytes (the homologous series) and on the total number of branches of the carbon skeleton of homologous molecules. Continuing a comparison of trialkyl phosphites and previously characterized dial-kyl phosphonates [4], it should be noted that there are significant differences in their respective  $i_{\rm RI}$  values (Table 3).

The values of the standard deviations of  $i_{\rm RI}$  draw attention to themselves, because they are significantly (on average, six times) higher for trialkyl phosphites than for dialkyl phosphonates, which somewhat affects the information content and uniqueness of the results obtained with their use. In addition, such a comparison confirms the fundamentally different gas chromatographic behavior of trialkyl phosphites: at their molecular weights being equal to those for dialkyl phosphonates (both homologous series belong to the homologous group of y = 12), their retention indices are 250–300 units lower. Such significantly decreased values indicate a low chromatographic polarity [21] of trialkyl phosphites, which is less than, for example, the polarity of trialkyl amines ( $i_{\rm RI} \pm s_{\rm RI} = -137 \pm 65$  index units), which follows from their comparison (Table 4).

According to this criterion, trialkyl phosphites are second only to volatile tetraalkoxysilanes (the estimate of  $i_{\rm RI} \pm s_{\rm RI}$ , according to the data for the four simplest homologues, is  $-558 \pm 164$  index units).

The absence of the peaks of molecular ions in the EI mass spectra of trialkyl phosphites makes it impossible to calculate the values of  $i_{RI}$  directly. This approach does not prevent a comparison of the chro-

matographic polarity of analytes and the solution of such a practically important task as the estimation of their molecular weights from chromatographic data. By substituting expression M = 14x + y, more precisely, x = (M - y)/14, into Eq. (1) and solving the obtained equation for M, we obtain the following equation:

$$M \approx 0.14 \left( \text{RI} - i_{\text{RI}} \right) + y. \tag{2}$$

Since trialkyl phosphites belong to the homologous group with y = 12, the general Eq. (2) for compounds of this series can be converted into

$$M \approx 0.14 (\text{RI} - i_{\text{RI}}) + 12.$$
 (3)

To characterize the possibilities of estimating the molecular weights of three-n-alkyl phosphites, we use the average value of  $i_{\rm RI} \pm s_{\rm RI} = -235 \pm 52$  and some data of Table 2. Based on the standard deviation  $s_{\rm RI}$ , the expected accuracy of molecular weight estimates is  $0.14 \times 52 \approx 7$  Da. The results for the five homologues (Table 3) show that the directly calculated values of Mdiffer from the true ones by 1-17 Da (on average, by the expected  $\pm 7$  Da). However, in obtaining such estimates, it is necessary to take into account the specific additional rounding of the data, not to the nearest integer number, but to the nearest value M, comparable to 12 by modulo 14, or, in the symbolism of the theory of residues,  $M \equiv 12 \pmod{14}$ . If this condition is met, most of the molecular weight estimates of trialkyl phosphites are correct, and only in some cases, the molecular weights of the previous or subsequent homologues are mistakenly recognized (Table 5).

If branched alkyl fragments are present in the molecule, then it is necessary to use other average values of homologous increments instead of  $i_{\rm RI} \pm s_{\rm RI} = -235 \pm$ 52. In interpreting the results of chromatography– mass spectrometry analysis of unknown compounds, identifying possible branching of the carbon skeleton is equivalent to the need to test several alternative hypotheses, which is a conventional approach in mass chromatography and gas chromatography–mass spectrometry.

Identification of 2-alkoxy-1,3,2-dioxaphospholans in the reaction mixtures. As was noted above, the characterization of organic compounds of previously insufficiently studied classes without their isolation from reaction mixtures is possible, if all components of such mixtures (including impurities) are unambiguously identified, which is necessary to eliminate potential uncertainties in the determination of their structures. This condition makes it necessary to identify even the "unexpected" components found in the composition of the reaction mixtures of aliphatic alcohols with PCl<sub>3</sub>. These are compounds with similar mass spectra and retention indices 896 (R = Et), 1087 (Bu), 1187 (C<sub>5</sub>H<sub>11</sub>), 1147 [CH<sub>2</sub>CH(CH<sub>3</sub>)C<sub>2</sub>H<sub>5</sub>], 1390  $(C_7H_{15})$ , 1492  $(C_8H_{17})$ , 1595  $(C_9H_{19})$ , and 1314 (*cyclo*- $C_6H_{13}$ ). The peak of molecular ions (M = 136) is reli-

| ogous increments                                                                                     |     |            |                 |                                                 |  |
|------------------------------------------------------------------------------------------------------|-----|------------|-----------------|-------------------------------------------------|--|
| $(RO)_3$ in trialkyl phosphite                                                                       | М   | RI         | i <sub>RI</sub> | Total number of branches of the carbon skeleton |  |
|                                                                                                      | 121 | (00        | 100             |                                                 |  |
| (CH <sub>3</sub> O) <sub>3</sub>                                                                     | 124 | 688        | -122            | 0                                               |  |
| $(C_2H_5O)_3$                                                                                        | 166 | 925        | -175            | 0                                               |  |
| $(C_{3}H_{7}O)(C_{2}H_{5}O)_{2}$                                                                     | 180 | 1012       | -188            | 0                                               |  |
| $(C_{3}H_{7}O)_{2}(C_{2}H_{5}O)$                                                                     | 194 | 1097       | -203            | 0                                               |  |
| $(C_3H_7O)_3$                                                                                        | 208 | 1181       | -219            | 0                                               |  |
| $[(CH_3)_2 CHO](C_2H_5O)_2$                                                                          | 180 | 956        | -244            | 1                                               |  |
| $[(CH_3)_2CHO]_2(C_2H_5O)$                                                                           | 194 | 988        | -312            | 2                                               |  |
| $[CH_3)_2 CHO]_3$                                                                                    | 208 | 1012       | -388            | 3                                               |  |
| $(C_4H_9O)(C_2H_5O)_2$                                                                               | 194 | 1103       | -197            | 0                                               |  |
| $(C_4H_9O)_2(C_2H_5O)$                                                                               | 222 | 1276       | -224            | 0                                               |  |
| $(C_4H_9O)_3$                                                                                        | 250 | 1444       | -256            | 0                                               |  |
| [(CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> O)(C <sub>2</sub> H <sub>5</sub> O) <sub>2</sub>  | 194 | 1061       | -249            | 1                                               |  |
| [(CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> O) <sub>2</sub> (C <sub>2</sub> H <sub>5</sub> O) | 222 | 1191       | -309            | 2                                               |  |
| [(CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> O) <sub>3</sub>                                   | 250 | 1316       | -384            | 3                                               |  |
| $(C_5H_{11}O)(C_2H_5O)_2$                                                                            | 208 | 1196       | -204            | 0                                               |  |
| $(C_5H_{11}O)_2(C_2H_5O)$                                                                            | 250 | 1460       | -240            | 0                                               |  |
| $(C_5H_{11}O)_3$                                                                                     | 292 | 1717       | -283            | 0                                               |  |
| $[C_2H_5CH(CH_3)CH_2O](C_2H_5O)_2$                                                                   | 208 | 1156       | -244            | 1                                               |  |
| $[C_2H_5CH(CH_3) CH_2O]_2(C_2H_5O)$                                                                  | 250 | 1376       | -324            | 2                                               |  |
| $[C_2H_5CH(CH_3)CH_2O]_3$                                                                            | 292 | 1592       | -408            | 3                                               |  |
| $(C_6H_{13}O)(C_2H_5O)_2$                                                                            | 222 | 1291       | -209            | 0                                               |  |
| $(C_6H_{13}O)_2(C_2H_5O)$                                                                            | 278 | 1646       | -254            | 0                                               |  |
| $(C_{7}H_{15}O)(C_{2}H_{5}O)_{2}$                                                                    | 236 | 1387       | -213            | 0                                               |  |
| $(C_7H_{15}O)_2(C_2H_5O)$                                                                            | 306 | 1834       | -266            | 0                                               |  |
| $(C_7H_{15}O)_3$                                                                                     | 376 | 2269       | -331            | 0                                               |  |
| $(C_8H_{17}O)(C_2H_5O)_2$                                                                            | 250 | 1484       | -216            | 0                                               |  |
| $(C_8H_{17}O)_2(C_2H_5O)$                                                                            | 334 | 2025       | -275            | 0                                               |  |
| $(C_8H_{17}O)_3$                                                                                     | 418 | 2547       | -353            | 0                                               |  |
| $[C_6H_{13}(CH_3)CHO](C_2H_5O)_2$                                                                    | 250 | 1405       | -295            | 1                                               |  |
| $[C_{6}H_{13}(CH_{3}) CHO]_{2}(C_{2}H_{5}O)$                                                         | 334 | 1859 (№ 1) | -441            | 2                                               |  |
|                                                                                                      |     | 1866 (№ 2) | -434            | 2                                               |  |
| [C <sub>6</sub> H <sub>13</sub> (CH <sub>3</sub> )CHO] <sub>3</sub>                                  | 418 | 2290       | -610            | 3                                               |  |
| $(C_9H_{19}O)(C_2H_5O)_2$                                                                            | 264 | 1581       | -219            | 0                                               |  |
| $(C_9H_{19}O)_2(C_2H_5O)$                                                                            | 362 | 2216       | -284            | 0                                               |  |
| $(cyclo-C_6H_{11}O)(C_2H_5O)_2$                                                                      | 220 | 1319       | -181            | 1 cycle                                         |  |
| $(cyclo-C_6H_{11}O)_2(C_2H_5O)$                                                                      | 274 | 1730       | -170            | 2 cycles                                        |  |
| $(cyclo-C_6H_{11}O)_3$                                                                               | 328 | 2154       | -146            | 3 cycles                                        |  |

**Table 2.** Gas chromatographic retention indices of trialkyl phosphites  $(RO)_3P$  (stationary phase RTX-5) and their homologous increments

ably recorded only for R = Et, and the most intense signals in the spectra are characterized by the values of m/z 109, 108, and 91. There are no compounds with such mass spectrometric indicators in the database [2].

With an increase in the alkyl fragments of aliphatic alcohols by the homologous difference of  $CH_2$ , the retention indices of the considered components are 104 (Pr – Et), 97 (Bu – Pr), 100 ( $C_5H_{11}$  – Bu), 2 × 102

 $(C_7H_{15} - C_5H_{11})$ , 102  $(C_8H_{17} - C_7H_{15})$ , and 103  $(C_9H_{19} - C_8H_{17})$ , that is, vary in a narrow range of 96–103 around the mean value of 100 ± 3, which corresponds to the presence of only one alkyl group in the molecule. The structure, which does not contradict all the above characteristics, is provided by the products of the interaction of PCl<sub>3</sub> with one molecule of the aliphatic alcohol and with one molecule of ethylene gly-

| Dialkyl phosphona                         | ates (RO) <sub>2</sub> PHO [4]                      | Trialkyl phosphites (RO) <sub>3</sub> P   |                                                 |  |
|-------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------------|--|
| number of branches of the carbon skeleton | average <i>i</i> <sub>RI</sub> ± standard deviation | number of branches of the carbon skeleton | average i <sub>RI</sub> ± standard<br>deviation |  |
| None                                      | $29 \pm 9$                                          | None                                      | $-235 \pm 52$                                   |  |
| 1                                         | $-4 \pm 10$                                         | 1                                         | $-258 \pm 25$                                   |  |
| 2                                         | $-61 \pm 14$                                        | 2                                         | $-364 \pm 67$                                   |  |
| 1 cycle*                                  | +75                                                 | 3                                         | $-448 \pm 108$                                  |  |
| 2 cycles*                                 | +129                                                | 1–3 cycles**                              | $-166 \pm 18$                                   |  |

**Table 3.** Comparison of homologous increments of the retention indices of trialkyl phosphites (present work) and dialkyl phosphonates [4]

\* Insufficient data for averaging.

\*\* There are no significant differences depending on the number of cycles in the molecule.

col, that is, cyclic 2-alkoxy-1,3,2-dioxaphospholanes (alkyl ethylene phosphites),

$$OH + PCl_3 + ROH \xrightarrow{[PhNMe_2]} OP - OR$$

The appearance of ethylene glycol in the reaction mixtures is evidently due to the presence of its traces in the N,N-dimethylaniline preparation used (accidental impurity). The products of its interaction with PCl<sub>3</sub> could be neglected if it were not for the above-mentioned need to identify all the components found in the reaction mixtures.

The structure of 1,3,2-dioxaphospholanes explains the appearance of the main signals of fragment ions, namely, with m/z 109  $[M-C_nH_{2n-1}]$ , 108  $[M-C_nH_{2n}]$ , and 91  $[M-C_nH_{2n+1}O]$ . The average value of the homologous increment of their retention indices is  $-8 \pm 4$ ; a significant increase compared with acyclic trialkyl phosphites confirms the presence of a cycle in the molecule. It should be noted that database [2] presents the mass spectrum  $[(m/z)^{100} = 91]$  and the retention index (RI = 881) of 2-chloro-1,3,2-dioxa-

**Table 4.** Estimation of homologous increments of the retention indices of trialkyl amines

| Trialkyl amine $R_3N$                          | Mol. weight   | RI [2] | i <sub>RI</sub> |
|------------------------------------------------|---------------|--------|-----------------|
| (C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub>  | 101           | 679    | -21             |
| $(C_{3}H_{7})_{3}$                             | 143           | 917    | -83             |
| $(C_4H_9)_3$                                   | 185           | 1169   | -131            |
| $(C_5H_{11})_3$                                | 227           | 1427   | -173            |
| <sup>(C</sup> 6 <sup>H</sup> 13 <sup>)</sup> 3 | 269           | 1741   | -159            |
| $(C_7H_{15})_3$                                | 311           | 2012   | -188            |
| <sup>(C</sup> 8 <sup>H</sup> 17)3              | 353           | 2297   | -203            |
| Average $i_{\rm RI} \pm s$                     | $-137 \pm 65$ |        |                 |

phospholane (M = 136). The value of  $i_{RI}$  calculated from these data is 19, which is consistent with the range of values of this parameter for 2-alkoxy-1,3,2-dioxaphospholanes.

Note that there is another way to prove the presence of 1,3,2-dioxaphospholanes by gas chromatography-mass spectrometry in combination with the features of the reactions of their formation. If PCl<sub>3</sub> is reacted with ethylene glycol in the absence of a base, the main expected product of the Michaelis-Arbuzov reaction should be the corresponding cyclic ethylene phosphonate, namely, 1,3,2-dioxaphospholane-2oxide (M = 108), which has no substituents in position 2. This component was found in the reaction mixture of PCl<sub>3</sub> and ethylene glycol (Table 6).

In addition, the interaction of two simple alcohols (ethanol and 1-propanol) with  $PCl_3$  was carried out in the presence of ethylene glycol. Components with the mass spectra and retention indices identical to those given in Table 1 and corresponding to 2-ethoxy- and 2-propoxy-1,3,2-dioxaphospholane were found among the products.

#### **CONCLUSIONS**

Thus, a joint consideration of mass spectra and gas chromatographic retention indices enable us to identify homologues of a series of trialkyl phosphites that have not been described in sufficient detail to date, directly (without their preparative isolation) in the reaction mixtures of aliphatic alcohols with phosphorus trichloride and reliably distinguish them from the corresponding dialkyl phosphonates that belong to the same homologous group with y = 12. The use of such combined gas chromatography–mass spectrometry parameters as homologous increments of retention indices is informative in determining the molecular weights of trialkyl phosphites, which do not give molecular ion signals in the EI mass spectra. Based on the same parameters, we concluded that trialkyl phos-

| (RO) <sub>3</sub> P       | RI   | М   | Calculated value of <i>M</i> (Eq. (3)) | Result of rounding to $M \equiv 12 \pmod{14}$ |
|---------------------------|------|-----|----------------------------------------|-----------------------------------------------|
| $(C_{3}H_{7}O)_{3}$       | 1097 | 208 | 198                                    | 194*                                          |
| $(C_4H_9O)(C_2H_5O)_2$    | 1103 | 194 | 199                                    | 194                                           |
| $(C_5H_{11}O)_2(C_2H_5O)$ | 1460 | 250 | 249                                    | 250                                           |
| $(C_7H_{15}O)_2(C_2H_5O)$ | 1834 | 306 | 302                                    | 306                                           |
| $(C_8H_{17}O)_3$          | 2547 | 418 | 401                                    | 404*                                          |

Table 5. Evaluation of the molecular weights (M) of some trialkyl phosphites by the their gas chromatographic retention indices

\*The molecular weights of the previous homologues were mistakenly recognized.

**Table 6.** Mass spectrum and gas chromatographic retention index of the product of the interaction of  $PCl_3$  with ethylene glycol in the absence of bases

| Component                          | RI | Mass spectrum: $m/z \ge 39$ ( $I_{rel} \ge 2\%$ )                                                                                                           |
|------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,3,2-Dioxaphospholane-2-<br>oxide |    | 108(6) <b>M</b> , 107(4),81(10), 79(7), 78(100) [M–CH <sub>2</sub> O], 77(10), 65(8), 61(4), 50(5), 48(17) [PHO], 47(37) [PO], 45(4), 44(13), 43(21), 42(5) |

phites exhibit significantly lower chromatographic polarity compared to dialkyl phosphonates.

### **ACKNOWLEDGMENTS**

The study is carried out using the equipment of the Resource Center in the field of "Chemistry" at the Institute of Chemistry, St. Petersburg State University. The authors are grateful to all colleagues working at the Center for their assistance.

### CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

#### REFERENCES

- 1. Zenkevich, I.G. and Fakhretdinova, L.N., J. Anal. Chem., 2016, vol. 71, no. 12, p. 1204.
- The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH). Software/Data Version (NIST17); NIST Standard Reference Database, Number 69, June 2017. National Institute of Standards and Technology, Gaithersburg, MD, 2017. http://webbook.nist.gov. Accessed March 2018.
- 3. Zenkevich, I.G. and Nosova, V.E., *Analitika Kontrol'*, 2016, vol. 20, no. 4, p. 307.
- 4. Zenkevich, I.G. and Nosova, V.E., J. Anal. Chem., 2018, vol. 73, no. 12, p. 1162.
- 5. Sparkman, O.D., Penton, Z., and Kitson, F.G., *Gas Chromatography and Mass Spectrometry: A Practical Guide*, New York: Academic, 2011.
- Kostiainen, O., Screening of chemicals related to the chemical weapon convention, in *Encyclopedia of Analytical Chemistry*, Meyers, R.A., Ed., Chichester: Wiley, 2000, p. 963.

- Tsunoda, N., J. Mass Spectrom. Soc. Jpn., 2005, vol. 53, no. 3, p. 157.
- Mesilaakso, M., Chemical Weapons Convention, Chemical Analysis: Sample Collection, Preparation and Analytical Methods, Chichester: Wiley, 2005.
- 9. Terentyev, A.G., Morozik, Yu.N., Rybal'chenko, I.V., et al., *J. Anal. Chem.*, 2016, vol. 71, no. 13, p. 1266.
- 10. Morozik, Yu.V., Dudkin, A.V., Rybal'chenko, I.V., et al., *J. Anal. Chem.*, 2018, vol. 73, no. 13, p. 1253.
- 11. Dudkin, A.V., Morozik, Yu.I., Rybal'chenko, I.V., et al., *J. Anal. Chem.*, 2018, vol. 73, no. 13, p. 1275.
- 12. Zhokhov, A.K., Belousov, E.B., Fomenko, P.V., et al., *Zh. Anal. Khim.*, 2017, vol. 72, no. 6, p. 530.
- 13. Bhattacharya, A.K. and Thyagarahan, G., *Chem. Rev.*, 1981, vol. 81, no. 4, p. 415.
- 14. Rajeshwaran, G.G., Nandakumar, M., Sureshbabu, R., et al., *Org. Lett.*, 2011, vol. 13, no. 6, p. 1270.
- Ford-Moore, A.H. and Perry, B.H., Org. Synth., 1951, vol. 31, p. 111; Collect. 1963, vol. 4, p. 4.
- 16. Huyser, E.S. and Dieter, J.A., Org. Chem., 1968, vol. 33, no. 11, p. 4205.
- 17. Turk, E., Chem. Eng. News, 1998, vol. 76, no. 9, p. 6.
- Hamming, M.C. and Foster, N.G., *Interpretation of Mass Spectra of Organic Compounds*, New York: Academic, 1979.
- 19. Zenkevich, I.G. and Ioffe, B.V., *Interpretatsiya mass-spektrov organicheskikh soedinenii* (Interpretation of the Mass Spectra of Organic Compounds), Leningrad: Kh-imia, 1986.
- 20. Zenkevich, I.G., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 795.
- 21. Héberger, K. and Zenkevich, I.G., J. Chromatogr. A, 2010, vol. 1217, p. 2895.

Translated by O. Zhukova