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Gas chromatography using standard high-perfor-
mance capillary columns is recognized as an effective
method for qualitative and quantitative determination
of a wide range of organic compounds [1]. A good
reproducibility of the retention parameters in capillary
gas chromatography arouse interest of researchers in
using the retention indices of compounds to be deter-
mined as unique characteristics for identifying the
components of mixtures being analyzed [2].

According to the definition of Kovats [3, 4], the
retention index (RI, designation in equations Ri) is a
measure of the relative retention of matter, with a
hydrocarbon of normal structure being used as the ref-
erence substances. A retention index is assigned to
each normal hydrocarbon, which is the number of car-
bon atoms in its molecule multiplied by 100.
For example, the retention indices for n-pentane and
n-decane are 500 and 1000, respectively.
Chapter 3.7.15 of IUPAC Chromatographic Nomencla-
ture [5] defines that the Kovats’ retention index is the
result of logarithmic interpolation, obtained in mea-
surements under isothermal conditions:

, (1)

where Ri is the retention index; n is the number of car-
bon atoms in the n-alkane; log ta, log tn, and log t(n + 1)
are the logarithms of the retention time of a compo-
nent under study and two hydrocarbons, between
which the component elutes.

When analyzing mixtures containing components
with a wide range of boiling points, temperature pro-
gramming is generally used. With linear temperature
programming, the retention times of the components
of a homologous series increase linearly with increas-
ing number of carbon atoms. In the case of tempera-
ture programming, the corresponding quantities are
called “linear retention indices.”

Van den Dool and Kratz proposed a method of
using retention indices in gas chromatography with
temperature programming [6]. According to their
approach, the calculation of retention indices is sim-
plified since linear interpolation is performed, and the
retention time values can be used, rather than their
logarithms, that is,

(2)

Other compounds can be used as reference sub-
stances instead of n-alkanes. For example, in the iden-
tification of phosphorus-containing organoelement
compounds, series of compounds with the following
general structures (I, II, III) were proposed as refer-
ence substances for the determination of retention
indices [7, 8]:
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where R is an acyclic linear alkyl radical containing
from 1 to 15 carbon atoms in the structure; the alkyl
radical in compounds III contains from 3 to 20 carbon
atoms.

The retention indices do not depend on the errors
in measuring the f low rate of the mobile phase or the
adsorbent weight in the column, and they are relatively
insensitive to temperature changes. In using them, no
correction for pressure drop is required [9, 10]. The
use of retention indices avoids the errors of the first
and second kind, which appear in the identification of
isomers by their mass spectra, because of the insensi-
tivity of these quantities to the isomerism of the carbon
skeleton [11, 12].

In present-day automated systems for the identifi-
cation of organic compounds by gas chromatography
in combination detection by electron ionization mass
spectra, the retention characteristics are considered as
independent of mass spectral ones; they are subject to
accounting in assessing the probability of correct iden-
tification. For example, in the widely used Automated
Deconvolution and Identification System software
product [13], even when the mass spectrum of the
compound under study is completely identical with
that of the mass spectral library, the identification is
not recognized as reliable if the difference between the
experimental and library values of the retention index
exceeds a predetermined value (±20 index units). The
condition of the working capacity of such systems is,
obviously, the “saturation” of all mass spectral librar-
ies connected to them with the reference values of the
retention indices.

Currently, the chromatography–mass spectromet-
ric databases contain hundreds of thousands of refer-
ence mass spectra and, unfortunately, a significantly
smaller number of reference values of chromato-
graphic retention indices [14]. For example, the
NIST-14 database contains 385872 reference values of
retention indices for 82868 substances [15]. At the
same time, for other substances, the total number of
which in this mass spectral library is more than
250000, the reference retention indices are not given
at all. The absence of an exhaustive array of retention
indices in the most widely used mass spectral libraries
(NIST, Wiley) significantly limits the possibility of
reliable identification of compounds, which makes it
urgent to create a computational tool for their replen-
ishment.

The goal of the present paper is to generalize the
methods for predicting gas-chromatographic reten-
tion indices.
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Analysis of the publications allows a conditional
division of the methods for predicting gas-chromato-
graphic retention indices into two groups: (1) the
methods based on the search for correlation depen-
dences between the retention parameters and the
structural or physicochemical properties of the sub-
stances and (2) the approaches built on the use of
additive models based on the classical theory of the
structure of molecules.

Correlation dependences of the retention parame-
ters on structural or physicochemical properties of sub-
stances. The models that enable prediction of the
quantitative characteristics and physical and physico-
chemical properties of organic compounds gained an
English-language name Quantitative Structure Prop-
erty Relationship (QSPR). The study of chromato-
graphic retention is a part of the model defined by the
general name Quantitative Structure Activity Rela-
tionship (QSAR) [16]. Information on the application
of QSPR/QSAR methods in the period from 1996 to
2006 is reviewed in [16]. The data obtained from 2007
to 2011 are summarized in [17], where practical
advices are given on how to avoid typical problems
when using models.

Molecular descriptors are used in these models to
describe the structures of chemical compounds.
Molecular descriptor is a parameter that characterizes
the structure of an organic compound, based on iden-
tifying specific features of this structure. In principle,
a descriptor can be any number that can be calculated
from the structural formula of a chemical compound,
for example, molecular weight, the number of atoms
of a certain type (hybridization), bonds or groups,
molecular volume, partial charges at atoms, etc. [18].

In QSPR/QSAR practice, fragment descriptors,
topological indices, physicochemical descriptors,
quantum chemical descriptors, etc. are used to predict
chromatographic characteristics. A rather complete
set of molecular descriptors used in modern struc-
ture–property studies is described in [19], which can
be considered an encyclopedia of molecular descrip-
tors. Consider the possibility of using molecular
descriptors to predict the retention indices.

Application of physicochemical descriptors. Physi-
cochemical descriptors [18] are numerical character-
istics obtained in the simulation of the physicochemi-
cal properties of chemical compounds or quantities
having a clear physicochemical interpretation. The
method for prediction of the retention indices is based
on the use of very detailed and well-systematized data
on the physicochemical properties of organic com-
pounds. These include boiling point, volatility, dipole
moment, Henry coefficient, molar refraction, satu-
rated vapor pressure, and other properties [20–25].

Review [26] considers the energy characteristics
and physical properties of adsorbates used in the cor-
relation ratios of the retention parameters. As energy
characteristics, the authors used the electronic polar-
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izability, the ionization potential, the diamagnetic sus-
ceptibility, the electron density of molecules, and the
resonant energy of the π-electron system. The physical
properties of adsorbates, which have found application
in correlation ratios, include heat and energy of for-
mation, surface tension, density, viscosity, heat of
crystallization, evaporation, and combustion, and
molar volume. Such characteristics are determined for
a small number of compounds; therefore, the possibil-
ity of predicting retention parameters based on them is
extremely limited.

The correlation three-parameter equations are
characterized by the highest accuracy of the calcula-
tion of retention indices; they connect the chromato-
graphic constants with the boiling points of organic
substances [22]:

, (3)

where Tbp is the boiling points of organic substances of
one homologous series; a, b, and c are parameters of
the linear–logarithmic three-parameter equation; and
A is a parameter corresponding to the taxonomic
groups of homologues or congeners. In the case where
the retention indices are calculated within the isomer
groups, that is, parameter A has a constant value, we
can use equation [27]

Ri = aТbp + b, (4)

where Tbp is the boiling points of organic substances of
one homologous series; and a and b are the parameters
of the equation.

The number of parameters in the equations used is
no less important. To calculate the retention indices by
physicochemical constants, nonlinear four-parameter
relations are proposed [25] in addition to the three-
parameter equations (3).

The retention indices obtained by using chromato-
graphic phases of different polarity can serve as physi-
cochemical characteristics for the correlation of reten-
tion parameters [28]. Such methods of calculation are
more accurate than the correlations using physico-
chemical properties, but at the same time, they are
more limited in use in connection with the lack of
experimental data for different chromatographic
phases.

The disadvantage of the method of approximation
of retention indices with the use of various physical
and chemical quantities is the lack of a sufficient array
of reference data relating to the compounds under
study.

It is shown [22] that the physicochemical charac-
teristics can be calculated using the principle of struc-
tural analogy. The retention indices in this case can be
calculated from the boiling points of any structural
analogs, that is,

, (5)

bplog logRi a T bА с= + +

bp
*log ' log ' 'Ri a T b А с= + +

where Tbp is the boiling points of the structural ana-
logue; a ', b ', and c ' are parameters of the linear–loga-
rithmic three-parameter equation; and A is a parame-
ter corresponding to the taxonomic groups of homo-
logues or congeners. Using the method of structural
analogy, based on the study of regularities of the
change in the properties of substances in the transition
from one molecular structure to another, enables the
identification of the patterns of changes in the physi-
cochemical properties of compounds with a gradual
complication of the structure of molecules and thus
the determination of the characteristics of substances
for that experimental data cannot be obtained for a
number of reasons [22, 29].

The accuracy of calculations depends largely on the
proper selection of structural analogues in each case
under consideration [27]. As structural analogues, it is
proposed to consider substances with a structurally
close carbon skeleton and different functional groups,
multirow homologs, and aromatic and heterocyclic
compounds, that is, rather broad taxonomic groups.
Either groups of substances that include a large num-
ber of diverse structures or, on the contrary, taxo-
nomic groups containing a small number of relatively
structurally similar substances are used as a sample for
determining the corresponding correlations [22]. A
linear relationship with a high correlation coefficient
(greater than 0.999) is shown between the retention
indices of the homologous series of alkylmethyl- and
alkylethylfluorophosphonates, dimethylaminoalkyl-
cyanophosphonate, and alkylmethylmethylphospho-
nate with the same structure of the alkyl radical [30].

It should be noted that the same class of substances
could be compared with several rows of structural ana-
logs, which provides independent control over the
correctness of the obtained retention indices. Satu-
rated alcohols can be considered as structural analogs
of compounds containing an O-alkyl radical, because
of their greatest availability.

Obviously, the method of structural analogy is
based on the dependence of the properties of organic
compounds on the number of identical structural
units; therefore, many methods for evaluating the
physicochemical properties of compounds are based
on the use of additive models related to the conven-
tional approaches in chemistry [31]. However, addi-
tive models become of little use in the complication of
the structure of substances, because various kinds of
intramolecular interactions and electronic effects
appear. Apparently, the deviation of the experimental
data from the calculated values in this case indicates
the presence of these effects, and if they are correctly
interpreted, the introduction of appropriate correc-
tions minimizes discrepancies and makes possible the
assessment of the correlations between the change in
structure and property [32].

Since the regularities of the variation of most dif-
ferent physicochemical constants of organic com-
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pounds (A) in any homologous series are identical,
they can be described by the same elementary linear
(first-order) recurrence relations [33–37], that is,

A(n + 1) = aA(n) + b, (6)
where n is the number of carbon atoms in the mole-
cule, and a and b are coefficients (they are individual
for one homologous series and are calculated from
data for three or more simple homologues of the same
series). Several computer programs enable calculating
the boiling points, for example, according to the Clau-
sius–Clapeyron equations and the Truton rule [38,
39]. To calculate the boiling point at atmospheric
pressure by additive models, the ACD/Labs program
[40] and computational bases on its basis [41] can be
used. According to the data [42], the “structure–con-
dition–property” model constructed on the basis of
neural network simulation ensures a high accuracy of
predicting the boiling points of hydrocarbons at differ-
ent pressures in a wide range of experimental measure-
ment conditions.

The main drawback of the above methods of calcu-
lation is their very approximate nature.

Application of fragment descriptors. Fragment
descriptors (PDs) are a numerical characteristic of the
chemical structure, indicating whether a specific
structural fragment exists in it or specifying how many
times it is contained in this structure [43]. Fragment
descriptors are calculated using molecular fragments
comprising certain atoms that play a specific role in
the description of this characteristic [43–46]. The
review [44] describes 11 main categories of fragment
descriptors. The unique role of fragment descriptors is
that they form a basis of the descriptor space; that is,
any molecular descriptor (and any molecular prop-
erty) that is an invariant of a molecular graph can be
uniquely decomposed into this basis [47], which
means that any structure–property relationship can be
approximated using them.

Fragment descriptors can also be used as a basis for
the methodology of additive models [48–50], based
on the assumption of the total effect of the contribu-
tions of structural fragments (which are substituents
attached to specific molecular compounds in a single
series of compounds) or group contributions into the
total value of the properties of the chemical com-
pound.

Three main problems associated with the use of
fragment descriptors are mentioned in publications
[51]:

—a problem of “rare” or “missing” fragments;
—a problem of adequate representation of stereo-

chemical information;
—absence of physical interpretation.
The problem of rare and missing fragments is,

apparently, the most serious of the three mentioned.
Indeed, the number of fragments and, consequently,
the number of fragment descriptors are practically

unlimited: they considerably exceed the number of
possible chemical structures. As a result, any chemical
structure contains fragments that are missing (or are
present in too small amounts) in the training sample
used to construct the QSAR/QSPR models needed to
predict the desired property. Hence, a problem arises
that is characteristic of the whole practice of applica-
tion of fragment descriptors: the properties of organic
compounds that are absent in the training sample can-
not be reliably predicted [44, 52].

Application of quantum-chemical descriptors.
Quantum-chemical descriptors (QCDs) [53] are
numerical quantities obtained as a result of quantum
chemical calculations. Such descriptors as the energy
of the boundary molecular orbitals; partial charges at
atoms and partial orders of bonds; the Fukui reactivity
indices (free valence index, nucleophilic and electro-
philic superdelocalizability); the energy of cationic,
anionic, and radical localization; and dipole and
higher multipole moments of the electrostatic poten-
tial are most often used as descriptors.

A variety of information on the structure of the test
substance is usually obtained using computer pro-
grams, in particular, HYPERCHEM [54], GAUSS-
IAN [55], GAMESS [56], etc., which enable calcula-
tions by ab initio methods, semiempirical methods
(PMX, CNDO, AM1, PM3), and other methods of
molecular mechanics (MM+) [57]. Note that for all
calculation methods of quantum chemistry,
general limitations are typical caused by the impossi-
bility of unambiguous selection of the most optimal
ratio in parameters “accuracy” and “calculation rate”
[58–60].

The success of the practical application of QCDs
largely depends on the knowledge of the features of the
approximations and the approach to parametrization
of each method and the constraints imposed on the
range of objects and properties that can be correctly
calculated. For example, the standard deviation of the
retention indices for 41 chlorinated dibenzo-p-diox-
ins, calculated by this method, was 25.16 index units,
and the maximum deviation was 66.54 index units
[61]. Such results are inferior to the requirements for
the accuracy of analysis, which generally raises doubts
about the advisability of using quantum-chemical
descriptors for predicting retention indices.

Application of topological indices. Among the
methods of mathematical simulation, the selection of
which depends on the nature of the chemical com-
pounds and the properties being analyzed, topological
methods take a special place. Topological methods use
only the information contained in the structural for-
mula of the test compound [62] and suppose, first of
all, the study of the interaction of atoms in a molecule
[63, 64].

Topological indices (TIs) are some numerical
parameters that are put in correspondence with the
accepted image of molecules in the form of structural
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formulas [65, 66]. Topological indices are difficult to
give a physicochemical interpretation, since their val-
ues are obtained through formal operations over
graphs [67]. Currently, a number of varieties of topo-
logical indices are developed and applied: centric,
composite, theoretical-information, topological-
information, and topological-configuration [68].
Their values are determined not only by the structure,
but also by the relative arrangement of the atoms of the
compound under study on the plane [69]. The appli-
cation of the so-called “three-dimensional indices” is
described [61], in the calculation of which the real dis-
tances between atoms in the molecule are used. The
most popular topological indices, widely used in the-
oretical chemistry, are given in Table 1 [61, 70–76].

A new semiempirical topological index (SETI) is
presented in [77]. This index was originally developed
to predict the chromatographic retention of linear and
branched alkanes and alkenes [77, 78]. Later, it was
applied to other classes of organic compounds: esters,
ketones, aldehydes, and alcohols [79–85]. The SETI
is calculated by equation

, (13)

where IET is a semiempirical topological index; Ci is
the contribution of the value of each carbon atom or
functional group in the molecule; δi is the sum of the
logarithm of the value of each neighboring carbon
atom and/or the logarithm of the value of the func-
tional group.

(C )ET i i
i

I = + δ∑

Table 1. Topological indices [61, 70‒76]
TI calculation equation Drawbacks Notes

Wiener index

 (7)

where Dij is the ith jth element of the distance matrix, which 
shows the shortest distance between the vertices i 
and j in graph G, that is,

 (8)

(9)

where zi and zj are the charges of the nucleus (the number of 
all electrons) of atoms i and j connected by a given bond; b 
is a quantity characterizing the order (multiplicity) of the 
bond

Some of the information 
contained in the distance 
matrix is lost during the 
summation of its elements; 
therefore, the values of the 
Wiener index, referring to 
different isomers, are often 
overlapped

Proposed for describing the 
dependences of physicochem-
ical properties of alkanes on 
their structure. Assumes the 
maximum value for 
unbranched isomers and 
decreases as their branching 
increases

Randic connectivity index

 (10)

 (11)

where δ is the difference between the number of valence 
electrons and the number of hydrogen atoms associated 
with this atom; i and j are the numbers of atoms of the mol-
ecule formally connected by the bond under consideration; 
δi and δj are the δ values for two atoms of the bond; and k 
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Does not distinguish between 
the m- and p-isomers of aro-
matic compounds

This index is a mathematically 
encoded information on the 
number of atoms in the mole-
cule, their interconnections, 
and the degree of branching of 
the molecule; it can be calcu-
lated for different connectiv-
ity levels of atoms of the 
molecule with each other

Hosoya index

 (12)

where pk is the number of ways of selecting k edges of the 
graph so that no two of them have common vertices; n is the 
number of vertices of the graph

One of the hard-to-compute 
topological indices

It was used to assess the 
thermochemical properties 
of alkanes, bond orders,
and π-electron energies in con-
jugated hydrocarbons
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SETI enables us to evaluate steric effects caused by
the action of neighboring groups of substituents on the
carbon atoms. Table 2 lists the results of the use of
SETI for predicting the retention indices of organic
compounds on a standard nonpolar stationary phase
using a linear equation.

New topological indices are constantly developed.
At present, more than 1000 topological indices are
known, for which the dependence of physical and
chemical properties on the structure of the compound
has been searched. There are programs that allow you
to select proper topological indices. For example, the
DRAGON-7 program for describing the compound
structure offers 5270 descriptors [86]. The selection of
topological indices for solving the problem of finding
the structure–property relation is, as a rule, quite ran-
dom and largely depends on the intuition and ingenu-
ity of the researcher. In this case, approximate formu-
las of different accuracy and reliability can be obtained
for representing a property as a function of the same
index. The most common criterion for assessing the
suitability of a topological index is the square of the
correlation coefficient, as well as the standard devia-
tion, the Fisher test, etc. [87].

Some of the topological indices are related by sim-
ple relationships. In [88], the results of checking the
approximate equations by equation

Ti = a + bTj, (14)

are reported, where Ti and Tj are topological indices,
and a and b are the coefficients of the linear equation.
Coefficients a and b are selected by the least squares
method. Such an analysis is performed for the topo-
logical indices of three series of hydrocarbons:
alkanes, polyalkylbenzenes, and monocyclic struc-

tures. It is demonstrated [88] that between various
topological indices, there are approximate linear rela-
tions with a sufficiently high correlation coefficient of
0.84 < r < 0.99. At the same time, it should be noted
that the indices of the same groups of compounds of
different series contain approximately the same infor-
mation about the structure, and, accordingly, they are
characterized by common prediction errors.

Methods of mathematical statistics and machine
learning. To solve the regression problem of struc-
ture–retention in the vector description of the struc-
tures of chemical compounds, the following methods
of mathematical statistics and machine learning are
most often used in chemoinformatics: multiple linear
regression (MLR) [89]; partial least squares (PLS)
[90]; artificial neural networks (ANN) [91], etc.

The histogram of the number of applications of
mathematical statistics and machine learning for the
simulation of chromatographic parameters is pre-
sented in Fig. 1. It is seen that the method of multiple
linear regression is well studied and is most often used
to predict the retention indices. Note that artificial
neural networks became interesting to researchers
only after a significant development of the method of
backpropagation [92, 93]. Due to their ability to learn
and generalize data, information retrieval systems
built on the principle of an artificial neural network
have been successfully applied in chemistry, especially
in those cases where the analytical form of the rela-
tionship between the structure and properties of com-
pounds is unknown [94, 95].

Table 3 shows the application of MLR for predict-
ing the retention indices of organic compounds at
standard weakly polar phases, published in the period
from 2007 to 2013. Standard deviation is the main cri-

Table 2. Results of the use of SETI for predicting the retention indices of classes of organic compounds on a standard non-
polar stationary phase

Class of compounds Number
of isomers

Coefficients of equation 
Ri = a + bIET

Standard 
deviation Reference

a b

Alkanes 157 116.8000 –19.0500 26.2  [79]
Alkanes С5‒С14 79 122.8446 –41.7054 2.3  [77]
Alkenes, ethers, alcohols 548 123.4758 –48.0866 7.0  [79]
Branched alkanes 59 120.4671 –29.0457 5.8  [78]
Methylbranched alkanes 178 123.1610 –39.5251 4.3  [78]
Esters 81 123.7900 –48.1400 5.8  [80]
Aldehydes and ketones 54 123.4951 –45.6553 5.0  [81]
Alcohols 44 124.1239 –51.3739 5.7  [82]
Alkylbenzenes 122 123.0632 –43.6579 8.3  [83]
Haloalkanes 141 124.7788 –56.8944 8.0  [84]
Aldehydes and ketones 31 123.8071 –47.5985 5.5  [85]

Mean value 7.6
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Fig. 1. Histogram of the number of applications of mathematical statistics and machine learning for the simulation of chromato-
graphic parameters: MLR, multiple linear regression; ANN, artificial neural networks; PCR, principal component regression;
PLS, partial least squares; PCA, principal component analysis; SVM, support vector machine.
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terion for the accuracy of predicting the retention indi-
ces. The correlation coefficient of the methods con-
sidered below is from 0.9930 to 0.9999.

Table 4 compares the MLR, PLS, and ANN meth-
ods used to calculate the retention indices of organic
compounds. The data presented in the table show that
the accuracy of predicting the retention indices by
these methods decreases in the series of ANN > PLS >
MLR. In general, the total standard error for these
methods is in the range from 7.6 to 151.0 index units.
The average value of the standard deviation of all
methods according to Tables 3 and 4 is 38.4 index
units.

Thus, in the implementation of computational
methods, data of a large sample of compounds with
multiple branching of the carbon skeleton are used,
and to improve the accuracy of the calculation of
retention indices, descriptors are required that must be
sensitive to structural isomerization, which is a signif-
icant limitation of this approach.

Use of additive models to predict the retention indi-
ces of organic compounds. In practice, because of the
insufficient volume of experimental data on physico-
chemical characteristics that are not sensitive to the
structural isomerization of topological and approxi-
mately calculated quantum-chemical descriptors,
methods based on the construction of additive models
according to the classical theory of the structure of
molecules are used to calculate the retention indices of
organic compounds.

A general approach to additive models for estimat-
ing the retention indices can be described by equation
[3, 128]

(15)

where Ri0 is the retention index of the “base” com-
pound, which is taken as a basis for further transfor-
mations of the structure; ΔRii is the increment of the
gas-chromatographic retention index corresponding
to each of such structural transformations.

It is proposed to subdivide the additive models into
three types, depending on the selection of Ri0 and the
method for calculating ΔRii [128]. The application of
varieties of additive models is considered below. The
additive models of the first type are based on the appli-
cation of increments [129]. Increment ΔRii is numeri-
cally the difference between the retention indices of
structures R–X and R–Y, that is, corresponds to a
change in the retention index in the transformation of
structure R–X into structure R–Y,

. (16)

The introduction of the same group of atoms into
molecules of similarly constructed compounds
changes the values of the retention indices by the same
amount [129, 130].

There is a linear relationship between retention
indices of homologues containing alkyl radicals with
an unbranched carbon chain and the number of car-
bon atoms [21, 36]:

, (17)

where a is a constant characterizing the contribution
of the interaction energy of the methylene group with
the stationary phase; b is a constant reflecting the con-
tribution of energy of interaction of functional groups

0
1

,
N

i
i

Ri Ri Ri
=

= + Δ∑

R X (RX RY)Ri Ri Ri− →= + Δ

log Ri an b= +
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Table 3. Results of using MLR for predicting the retention indices of organic compounds
Class of compounds 
(number of analytes) Molecular descriptor Standard 

deviation Reference

Alkylpyridines (18) Valence, molecular indices 27.7  [96]
Sulfides New topological indices 12.6‒27.3  [97]
Esters (90) TD 8.1‒18.2  [98]
Sulfur-containing heterocycles (114) QCD 9.5  [99]
Solvents (49) QCD 14.0‒53.0  [100]
Various organic compounds (52) Molecular weight, boiling point, McReynolds 

constant, branching index, etc.
7.0‒26.7  [101]

Aldehydes (15), ketones (42) Semiempirical electrotopological indices, SET 11.7  [102]
Volatile compounds (71) Molecular weight, density, etc. 33.6  [103]
Esters (100) Semiempirical electrotopological indices, SET, 

McReynolds constant
12.9  [104]

Polycyclic aromatic hydrocarbons (209) Polarizability, Kier and Hali indices 12.8‒13.4  [105]
Esters, ketones, aldehydes, alcohols (106) Hydrogen-associations and electronegativity dis-

tance vectors
25.7  [106]

Alkylbenzenes (22) Molecular weight, boiling point, the highest occu-
pied molecular orbital occupied, the lowest unoc-
cupied molecular orbital, dipole moment, etc.

17.5‒26.8  [107]

Polycyclic aromatic sulfur-containing 
heterocycles (114)

Electronegativity distance vectors 9.5  [108]

Terpenes (47) — 7.6  [109]
Polychlorinated dibenzofurans (115), poly-
chlorinated dibenzodioxins (41), polychlori-
nated naphthalenes (62), polychlorinated 
biphenyls (210)

Generalized correlation index 17.9‒40.6  [110]

Polychlorinated naphthalenes (62) Electronegativity distance vectors 39.0  [111]
Substituted benzenes, benzaldehydes, and 
acetophenones (35)

Calculation of the polarity value for the stationary 
phase

20.4‒22.8  [112]

Alcohols, ketones, ethers (106) Modified molecular index of the polarizability 
effect, modifiable internal molecular polarizability 
index, TI

14.5‒34.3  [113]

Alkyl-substituted cyclic hydrocarbons (174) Charged local surface area of 56 descriptors 35.3  [114]
Hydrocarbons (134) Descriptors calculated by the Dragon program 

(>400)
19.5–27.3  [115]

Various forensic structures (846) Descriptors calculated by the Dragon program 
(526)

64.0–81.0  [116]

Terpenes Topological indices 55.8  [117]
Various components of essential oils — 74.9  [118]
Cyclic compounds of rosemary and essential 
oil of sage (40)

QCD, the lowest unoccupied molecular orbital, the 
highest occupied molecular orbital, polarizability, 
dipole moment, descriptors calculated by the 
Dragon program

51.9  [119]

Components of aromatic essential oils One- and two-dimensional descriptors 58.1  [120]
Essential oils(116) — 68.0  [121]
Polychlorinated biphenyls (209) Descriptors calculated by the Dragon program 76.0  [122]
Methyl fatty esters (167) Zero, one-dimensional, and two-dimensional 

descriptors
17.3–31.9  [123]

Pesticides (168) — 151.0  [124]
Components of essential oils (100) Descriptors calculated by the Dragon program (325) 50.3  [125]
Alkylphenols The number of H atoms, the relative number of O 

atoms, the Balaban index
13.3  [126]

Aromatic components (656) Topological and quantum chemical descriptors 59.6–61.0  [127]
Mean value 34.7
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with an adsorbent into the retention; and n is the num-
ber of carbon atoms.

Linear dependence (17) is more generally observed
for nonpolar stationary phases, the retention at which
is determined by the dispersion forces [26]; however,
the first terms of the homological series do not obey
the linear correlation. According to the results [26],
this effect is because the properties of the methylene
group located close to the functional group change
under the influence of the latter. It is considered that
the linear dependence (17) is observed, starting with
the third or fourth member of the homologous series.
In [26], examples of violations of the linear depen-
dence for the fifth to eighth terms and above and vari-
ous equations for taking into account the nonlinear
change in retention indices as a function of the num-
ber of carbon atoms are given.

If the transformation leads to a more complex
structure, then such a model of calculation is usually
called a straight line. If the use of increments leads to
a simplification of the structure, the model is called
reversed [128]. The increments of similar transforma-
tions, for example, when a phenyl group is replaced by
a methyl group, are averaged for different compounds
and, as a result, reference values are obtained. The dis-
advantage of this approach is that when using incre-
ments, the structural features of specific compounds
are not fully taken into account [128].

For example, the chromatographic retention indi-
ces of unknown compounds were calculated using
incremental model in order to identify impurities con-
tained in the reaction mixture formed during the
chemical neutralization of O-isobutyl-S-(2-diethyl-
aminoethyl)methylthiophosphonate [131, 132]. As
structural analogies, the authors considered transi-
tions from –N(iPr)2 to –N(Et)2 and from O-ethyl to
O-isobutyl substituents. The required increments of
the retention indices of the corresponding structural
transformations were estimated from the data
obtained for simpler compounds. As a consequence,
the average value of ΔRi in the case of recalculation of
compounds with the –N(iPr)2 moiety into com-
pounds with the –N(Et)2 moiety was 146 ± 2 index
units, and the mean value of ΔRii in the case of recal-

culation of compounds with the (–X–Et)
moiety into compounds with the (–X–iBu) moiety
was 154 ± 7 index units. Using the obtained estimates
of ΔRi, the authors successfully identified the decom-
position products.

The increments of retention indices, obtained in
the structural transformations of various functional
groups of organic compounds were calculated [2,
133–137]. The variety of such increments is one of the
main drawbacks hindering the wide application of
additive models. Another problem of the effective use
of ΔRi values is the inevitable loss of information about
the structural features of molecules, which makes it
difficult to control the correctness of their subsequent
application [27].

The additive models of the second type differ from
the previous ones by the absence of Ri0; the desired
index is calculated by adding atomic and group incre-
ments, and f is used as an additional correction:

, (18)

where f is the term the same as the average deviation of
the calculated retention indices from the experimental
values for compounds of the given series.

This model of calculation of the retention indices is
used in the NIST program [138, 139]. The calculated
retention index is given together with the confidence
interval in index units; for example, for acetone, the
confidence interval is 57 (50%) and 246 (95%) index
units. This means that in the case of the 50% probabil-
ity, the experimental retention index would be within
57 index units of the estimated retention index, and for
the 95% probability, this limit would be 246 index
units. Data analysis is based on erroneous measure-
ments for the entire class of compounds (ketones)
under study.

The additive model of the third type implements a
modified or incrementless approach [128]. It is funda-
mentally different in that ΔRii, in fact, is calculated
each time in the calculation of retention indices,
which enables taking into account the structural fea-
tures of compounds as precisely as possible. The mod-

1

N

i
i

Ri Ri f
=

= Δ +∑

Table 4. Comparison of MLR, PLS, and ANN used for predicting the retention indices of organic compounds

Class of compounds (number of compounds)
Standard deviation

Reference
MLR PLS ANN

Various components of essential oils 74.9 88.8 48.9  [118]
Cyclic compounds of rosemary and essential oil of sage (40) 51.9 53.7 31.7  [119]
Components of aromatic essential oils 58.1 46.8–53.3 39.1  [120]
Compounds of essential oils (116) 68.0 57.0–61.0 49.0  [121]
Polychlorinated biphenyls (209) 76.0 35.0 63.0  [122]

Mean value 65.8 56.5 46.3
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ified additive model involves calculating the retention
index based on data on the expected structures of the
desired compounds by comparing the obtained values
with the experimental ones. Such a version of the
model can be called direct [128].

This version of additive models is based on the
analogy of calculation methods with the approaches of
hypothetical “assembly” of molecular structures of
compounds to be characterized from simpler analogs
[128, 140]. For example, if ABCD = ABC + BCD –
BC, then Ri(ABCD) = Ri(ABC) + Ri(BCD) –
Ri(BC). This method excludes the need for a prelimi-
nary calculation of increments and helps optimizing
the selection of the initial structures by the criterion of
their best fit for the compounds under study. It
assumes the availability of reference values of the
retention indices of selected precursors, and multi-
stage assembly patterns should be avoided as this leads
to a decrease in the reliability of the estimates obtained
[128, 140].

The additive model of the third type was used to
determine the structures of 839 congeners of poly-
chlorinated hydroxybiphenyls [140], 211 structural
isomers of 4-nonylphenols [141], cyclohexane chlori-

nation products [142, 143], condensation products of
carbonyl compounds [144, 145], and chloro- and bro-
mosubstituted anilines [146]. The regular increase in
the number of isomers during the transition from the
simplest to the higher homologues of any series with a
significant decrease in the fraction of compounds
characterized by different analytic parameters and
physicochemical constants makes the use of a modi-
fied additive model particularly relevant, since it is
optimal for calculating the retention indices of any
series of compounds in the presence of data for the
simplest homologues [130].

The maximum accuracy of the estimations of the
retention indices can be achieved only when all the
features of the structures of the target compounds that
affect their gas-chromatographic retention parameters
are reflected in the selected precursor structures [128].

The calculation of the retention indices by a modi-
fied additive model using saturated hydrocarbons
shows that the same alkane structure can be used to
predict two different types of branching compounds.
Information on the number of structural isomers of
aliphatic alcohols in comparison with saturated
hydrocarbons (Table 5) can be used to calculate their
retention indices. These data confirm the possibility of
using one alkane to calculate the retention indices of
several alcohols with different types of branching of
the O-alkyl radical. Thus, the use of the retention indi-
ces of alkanes for predicting the retention indices of
precursors can lead to serious errors.

In the analytical practice, there are modified addi-
tive models based on the indices of other compounds
of the same series. In this case, the correlation depen-
dences of the retention indices on the structure of the
compounds are also used. The selection of equations

Table 5. Number of possible isomers (N) of aliphatic alco-
hols and saturated hydrocarbons depending on the number
of carbon atoms in the alkyl radical

Class 
of compounds

Number of carbon atoms
Total

1 2 3 4 5 6 7 8 9 10

Alcohols 1 1 2 4 8 17 39 89 211 507 879
Alkanes 1 1 1 2 3 5 9 18 35 75 150

Table 6. Characteristics of prediction of the retention indices of organic compounds obtained using additive models

N is the number of isomers; SD is the standard deviation; Δmax is the maximum deviation from the reference value of the retention
index.

Class of compounds Additive model
Prediction characteristics

Reference
N SD Δmax

Polychlorinated dioxins Modified by precursors 115 5.6–6.6 20–30  [150]
Chlorophenols '' 7 5.6 12  [140]
Chlorobromodioxins '' 63 3.3 7  [151]
Bromobenzofurans '' 115 6.3 19
Chlorodioxins '' 42 5.6 12  [152]
4-Nonylphenols Modified by alkanes 12 13.2 24  [141]
Alkylarenes Incremental 21 6.3 24  [137]
Terpenes '' 49 20.2–31.7 53–73  [153]
Alkenes and cycloalkenes '' 26 6.7 20  [154]

[154]
[154]

Aromatic compounds '' 28 12.5 30
Alcohols '' 44 10.9 36
Aromatic compounds '' 92 25.7 153  [155]
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describing such dependences is quite complex and
unique for each series of compounds, which limits the
universality of this method. Examples of this approach
to the estimation of the retention indices of polychlo-
rinated dibenzo-p-dioxins, dibenzofurans, and diben-
zothiophenes are described [147–152].

Information on the application of additive models
for different classes of organic compounds is summa-
rized in Table 6. It is seen that the most accurate is the
predicting of retention indices using a modified addi-
tive model, based on the application of data on the ini-
tial compounds of the class under consideration. In
our opinion, this method takes into account all the
structural features that affect the values of retention
indices without taking into account additional criteria
and corrections.

In general, many works are devoted to the develop-
ment of methods for calculating and predicting the
retention indices for capillary gas chromatography.
Substantial progress is achieved in the framework of
separate classes and series of organic compounds,
which opens the possibility of creation in the near
future of a universal software-computing device for
obtaining the arrays of reference retention indices by
calculation with accuracy acceptable for analytical
practice.
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